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ON THE DISAGGREGATION OF EXCESS DEMAND FUNCTIONS

By J. D. GEANAKOPLOS AND H. M. POLEMARCHAKIS

We solve the problem of the restrictions imposed on the Jacobian A at prices § of the
aggregate excess demand function x(p) of m agents in an exchange economy with /
commodities, under the assumption of individual rationality. Given an arbitrary differen-
tiable function x (p) satisfying homogeneity and Walras’ law, we attribute rational individ-
ual excess demand functions x'(p), ..., x™(p) to the m agents such that at any arbitrarily
specified vector j aggregate excess demand is equal to x( 5) and the following condition is
satisfied: There exists a subspace M of dimension m such that the Jacobian at 5 of x(p) and
the Jacobian at j of the aggregate excess demand function define the same linear function
on M. If x(p)#0,M can be taken to have dimension (m+1). As an immediate
consequence of our proof for m = 1 we show that even if j, x(p), and Dx(p) are known for
the excess demand function of a single agent, the substitution effect and the income effect
cannot be unambiguously determined without knowledge of the utility function.

We extend the results proved at a point to large open neighborhoods. We show that if
x(p) is an arbitrary function which is bounded from below and satisfies homogeneity and

Walras' law, and if x(5) #0, then we can find an open neighborhood G of 5 and (I -1)
individually rational excess demand functions x'(p), . . ., x!~(p), such that T, x*(p) =

x(p) everywhere on G.

1. INTRODUCTION

IN THE CONTEXT of a pure exchange economy, an agent is said to be rational if it
expresses excess demand so as to maximize a preference preorder subject to the
budget constraint. A group of agents is said to be rational if every member of the
group is a rational agent. It is a question of methodological as well as empirical
importance to characterize the class of functions that can arise as excess demand
functions of rational agents. For instance, suppose an econometrician wants to
estimate the Jacobian A at prices p of the aggregate excess demand function of m
rational consumers (or m aggregate types of consumers) in an economy with /
goods. What restrictions can be placed a priori on the form of A? Furthermore,
suppose an economist hypothesizes that a function x(p) is the aggregate excess
demand function for prices fluctuating in some open set (in a short span of time
prices may not change much) or even for all prices. Are there any further
restrictions that can be stated a priori about x(p) beyond those on the Jacobian A
which must hold for the point case? In other words, does the rationality assump-
tion allow us to be skeptical of any hypothesized x(p) so long as x(p) satisfies
Walras’ law and homogeneity?

Gerard Debreu solved the hardest case, showing that even with global
information no restrictions may be placed on x(p) when m = 1. We solve in this
paper the infinitesimal or point case for any m and ! (of course for m =1 the point
case follows immediately from Debreu’s theorem). In addition we show that in the
local case (for x(p) # 0) once there are / — 1 agents the aggregate excess demand
function x(p) can be arbitrary except for Walras’ law and homogeneity.

It is well known that when m =1 the Jacobian A can be decomposed into a
substitution and income effect. Our proof for the point case reveals that this
decomposition cannot be determined without knowledge of the utility function.
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Thus even if the econometrician knows A with certainty, he still cannot separate
the income effect from the substitution effect without knowing the utility function
of the agent as well. In the remainder of the introduction, we summarize our
results and give the intuition that lies behind them.

Under the assumption of nonvanishing Gaussian curvature of the indifference
hypersurfaces, the excess demand function of a single rational agent is differenti-
able and its Jacobian can be decomposed into the sum of two matrices, one
symmetric and negative semidefinite (the Slutsky substitution matrix) and the
other a matrix of rank one with rows colinear with the vector of excess demands
(the income effect matrix). Conversely, we show that given an arbitrary price
vector p and an arbitrary matrix A which can be expressed as the sum of a
substitution matrix K and an income effect matrix vx’, A = K —vx’, there exists a
locally quadratic utility function # and an endowment vector w such that the
excess demand function x(p) derived from (u, w) satisfies x(5)=2% and has
Jacobian A at p. This is the object of our Proposition 1 which thus completes the
characterization—at a point—of the class of functions that can be derived as
excess demand functions of a rational individual. Given any Jacobian A = K —vx’
we can always find K # K and 6 # v such that A =K —6x' (take K = (k —exx")
and # = v — ex for some small positive number ¢) and K, # satisfy all the necessary
conditions of Proposition 1. Thus either decomposition could arise from a rational
eonsumer and the econometrician cannot know which one is correct without also
knowing something about the utility function of the agent.

It was Sonnenschein’s original argument [11, 13] that Walras’ law and homo-
geneity exhaust the restrictions that can be imposed on rationality grounds on an
aggregate excess demand function. A subsequent series of papers, Debreu [3],
McFadden, MasCollel, Mantel, and Richter [6], Mantel [7, 8, 9], and Sonnen-
schein [12], demonstrated that this is indeed the case: An arbitrary, continuous
(or, at least, bounded from below) function satisfying homogeneity and Walras’
law can be decomposed into rational individual excess demand functions.
Furthermore, Debreu [3] gave an example to show that for the decomposition
theorem to be true the number of rational individuals to be aggregated cannot be
reduced below the number of goods in the economy. Consider the offer curve in
Figure 1, and observe that it clearly violates the weak axiom of revealed
preference. Consequently, no single rational individual can generate the offer
curve in Figure 1. Finally, Diewert [4] derived the analogue of the Slutsky
symmetry conditions for an aggregate excess demand function, as a function of the
number of agents in the economy.

Apart from giving what we think are short and elementary proofs of known
results we demonstrate that the decomposition of aggregate excess demand into
rational individual excess demand functions can be carried out gradually. In an
exchange economy with / commodities, given an arbitrary differentiable function
x(p) satisfying homogeneity and Walras’ law, given an arbitrary price vector
pe %' and given any subspace M containing p (of dimension m < [) we can find m
agents with utility functions u*, . . ., u™ defined everywhere on ', and quadratic
near p, and initial endowments w',...,w™ e 9% such that the derived excess
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FIGURE 1

demands x'(p),...,x™(p) satisfy: (a) mmCr=1x*(p))=ma(x(5)) and (b)
DE-1x*(p)) and Dx(p) define the same linear function on M. (By the symbol
v We mean the projection onto M.) If x(5) # 0, and M is not perpendicular to
x(p), we can get the same result using only m — 1 agents.

This result follows easily from our main theorem (similar to a result already
derived by Mantel), which shows that a slight strengthening of Diewert’s condi-
tions is a complete characterization of the Jacobian of the aggregate excess
demand function of m rational agents in an economy with / goods. The Jacobian,
A=K —uvx', of an individual rational excess demand function is symmetric and
negative semidefinite on the orthogonal complement of the excess demand vector,
[x]": This follows at once from the decomposition into a substitution matrix, K,
and an income effect matrix, vx’, the symmetry and negative semidefiniteness of
the former, K, and the colinearity of the rows of the latter, vx’, with the excess
demand vector, x. Consequently, the Jacobian of the excess demand function of m
agents is not arbitrary but must be symmetric and negative semidefinite on the
orthogonal complement of the space spanned by the excess demand vectors of the
m agents. Agreement with an arbitrary homogeneous function satisfying Walras’
law and its Jacobian can thus only be attained, and we prove indeed can be
attained, on the subspace spanned by the excess demand vectors of the m agents,
and p, the price vector, since, by homogeneity, p lies in the kernel of the Jacobian.
If the arbitrary function is not equal to 0 at j, x(P) # 0, we can choose the excess
demand vectors for the m agents so that the space M =[x',...,x™ 7] has
dimension (m +1). Thus if there is given an arbitrary function x(p) satisfying
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homogeneity and Walras’ law and a price vector § with x(§) = £ # 0 such that the
Jacobian Dx(p) is negative definite and symmetric on asubspace N perpendicular
to % of dimension / —m — 1, then there exist m rational individual agents (u*, w*),
k=1,...,m, such that the derived excess demand functions x'(p), ..., x™(p)
satisfy 2'§‘=1xk(ﬁ)=f and 7.y Dx"(ﬁ)=Dx(ﬁ). If x(5)=0, since Th_,x*=
x(p)=0, N must have dimension / —m. This completes the characterization of
aggregate excess demand as a function of the number of agents in the economy by
demonstrating that a slightly stronger version of the symmetry conditions of
Diewert [4] is not only necessary but also sufficient for rationality. Furthermore,
our results preclude the discovery of any additional properties of the aggregate
excess demand function of m rational agents for / goods.'?

We show in Part 3 that the results proved at a point can be extended to large
open neighborhoods (in a sense to be made precise).

2. THE POINT CASE

We consider a pure exchange economy with / commodities indexed by a
subscript i,i=1,..., L An agent is characterized by its consumption set X, a
convex subset of &', its endowment vector w, a point in &', and its utility function
u defined on X. We shall make the following assumptions:

ASSUMPTION 1: X = &',
ASSUMPTION 2: we X.

AssUMPTION 3: The utility function u is twice continuously differentiable and
strictly quasi-concave. For all x € X, Du(x)>0; furthermore, the indifference
hypersurface through x has no-where vanishing Gaussian curvature, and its
closure with respect to &' is contained in X.

In the discussion to follow we hold the consumption sets of agents fixed.
Consequently, an agent can be characterized as an ordered pair (x, w). The excess
demand function of an agent (u, w) is derived as the solution to the following
problem:?

OIS, . A

subjectto p'x =0.

By Assumption 2, given p & 2", there exists a unique x(p) € X —{w} which solves
(1). Furthermore, by the Kuhn-Tucker Theorem, x(p) solves (1) if and only if

! We shall not concern ourselves with problems that arise if the aggregate endowment vector is
observed (see [5] for a discussion); neither shall we consider the case of market demand functions—
i.e., demand functions with prices and nominal income as independent variables (see [11] for a
discussion).

2 We use the term “homogeneous” to refer to homogeneity of degree zero.

4 All vectors are column vectors. A superscript ‘'£>’ denotes the transpose.
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there exists A (p) > 0 such that

@) Du(w+x(p))-A(p)p=0,
p'x(p)=0.

By Assumption 2 and the argument in Debreu[2], x(p) and A (p) are continuously
differentiable functions of p on %". Their Jacobians can be computed by totally
differentiating (2), giving

(TP ) (e

Setting
S(p) —v(p)\_(D’u(w+x(p) -p\
@ (Soy ) O o)

which exists by Assumption 3, where v(p)e ®' and e(p)e & and
) K(p)=A(p)S(p),

we obtain:

(5) Dx(p)=K(p)—v(p)x(p),

(6) DA(p)=—A(p)v(p)' +e(p)x(p)"

The following is well known:

PROPOSITION A: Let x(p) be the excess demand function of an agent (u. w)
satisfying Assumptions 2 and 3. Then, everywhere on A, p'x(p)=0, x(p) is
continuously differentiable and homogeneous and Dx(p)=K(p)—v(p)x(p)'
such that (1) K (p) is symmetric and negative semidefinite; (ii) rank (K (p))=1-1,
(iii) p'’K(p)=K(p)p'=0; (iv) p'v=1.

Proposition A leads to the following:

COROLLARY A: Restricted to the orthogonal complement*” of x(p), [x(p)]
Dx(p) is symmetric and negative semidefinite. Furthermore, on [x(p), p]- Dx(p) is
symmetric and negative definite.

PrRoOOF: From (5), Dx(p)=K(p)—v(p)x(p). Let yelx(p)]~ Then
y'[Dx(p)ly =y'[K(p)ly ~y'[v(p)x(p) ]y =y [K(p)]y=<0. Symmetry follows
from the symmetry of K(p). Note that diagonalizing the quadratic form K(p)
shows that for any y£[p], y’K(p)y <0 since K (p) has rank /-~ 1. Q.E.D.

The results of Proposition A and Corollary A characterize the observable
restrictions implied by utility maximization on the behavior of a single agent. We

* Given a set of vectors {y', ..., y™}in R, [y, ..., y™] denotes their span, and [y', ..., y™1-its
orthogonal complement. Given a matrix M, [M] denotes the subspace spanned by the columns of M.
5 We use m to denote the projection to the subspace M.
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shall now turn to the related question of the conditions satisfied by an aggregate
excess demand function. Different agents are denoted by a superscript k, k =
1,..., m. Agentk is an ordered pair W™, w*) satisfying Assumptions 2 and 3, and
its excess demand function is denoted by x( p). The aggregate excess demand
function is given by x(p) =Z{.1x k( p). Corollary A can now be employed to yield
the following:

ProPOSITION B (Diewert): Let x(p) be the aggregate excess demand function of

agents {(u*, w*), k=1, ..., m} satisfying Assumptions 2 and 3. Then everywhere
on R., Dx( p) defines a symmetric, negative semidefinite quadratic form on
[x*(p),...,x™(p)]- and a symmetric, negative definite quadratic form on

x'(p), ..., x™(p), Pl

PrOOF: By definition, Dx(p)=327-, Dx*(p) =211 K*(p)-v*(p)x*(p)-
Let ye[x'(p),...,x™(p)]~ Then  y'[Dx(p)ly=y[Ei-1 K (p)ly+
Y [Er10*(p)x*(p)'ly ==r-1y'[K*(p)ly <0. Symmetry follows from the sym-
metry of K*(p), k=1,...,m. For ye[x'(p),...,x™(p),p]l" and y#0,
y'’K*(p)y<0,k=1,..., m; hence y'Dx(p)y <0. Q.E.D.

Propositions A and B and Corollary A cover one side of the characterization of
the class of functions that arise as excess demand functions of individual agents
(Proposition A and Corollary A), or of groups of agents (Proposition B): They
give a set of necessary restrictions on the Jacobian matrix of an excess demand
function. To complete the characterization, one would like to show that these
restrictions are not only necessary but sufficient as well. That this is indeed the case
will be demonstrated in the remainder of this section.

PROPOSITION 1: Let A be an (I x1) matrix. Let K be an (I x 1) matrix, © and %
vectors in R' and P a vector in R, such that A = K -5 and G) K is symmetric,
negative semidefinite, of rank (I—1) and 5'K = Kp =0; (i) p's =1; (iii) p'% = 0.
Then there exists an agent (u, w) satisfying Assumptions 2 and 3 whose excess
demand funciion x(p) satisfies the following: (a) x(p)==x, and (b) Dx(p)=
K — %' = A. Furthermore, u can be chosen to be quadratic on a neighborhood of
(x+w).

PROOF: Let e be an arbitrary real number, and consider the matrix

p-(% 7)

Observe that, since p'0 =1 while 'K =0, 52 [K]. Consequently, the (/+1)x/
matrix
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has rank / and the (I + 1) X (I + 1) matrix D is invertible. Let

D_l=( v” —‘7).

- q' z /)

the form of D' follows from the symmetry of D. Since KU"+ 94’ =1I, pre-
multiplying both sides of this equation by ' gives §* = j'; since —~Kg — 5z =0, we
have 5z = 0, hence Z = 0. We shall now show that restricted to [ p]", U"” defines a
negative definite quadratic form. By a theorem of Debreu [1], it suffices to
demonstrate that the quadratic form [U”—upp‘] is negative definite for some
peR Let p=1-—e Then [U"-upp'l[K-55'1=U"K—-U"55"+upi' =
I—-p5'+epi' —upt' =1 Since K is negative definite on [p]" and #¢[K],
[K —55'] is negative definite. Since [U"—upp'l=[K —55'1"", [U"—upp'] is
negative definite—as desired. Furthermore, since ¢ is chosen arbitrarily, we
may set it equal to 1. In this case x =0 and hence U" is negative definite. To
complete the proof we shall demonstrate that there exists a utility function
u satisfying Assumption 3 and w € %, such that the excess demand function x (p)
of the agent (u,.w) satisfies (a) and (b). Choose w such that (w + %) >» 0, and let
uw+x)=3x+w)U"(x+w)+ @ — (% +w)U"(x+w). Then D*u(x+w)=U"
and Du(£+w)= (£ +w)'U"+p'— (X +w)'U"=p". Consequently, if x(p) is the
excess demand function of the agent (&, w), x(5) = % and Dx (p) = K ~ 5%". Finally
it remains to demonstrate that the utility function u satisfies Assumption 3. There
exists an open neighborhood of ¥ in &', v, such that everywhere on V +{w}, the
quadratic utility u(x + w) satisfies Assumption 3. We can choose a compact subset
of V, W, and modify u or ®'—w so that Assumption 3 is satisfied everywhere
on & Q.E.D.

REMARK: Observe that in the previous construction ¢ was chosen arbitrarily. It
is easy to see that if e =0, U" is negative semidefinite and hence corresponds to a
concave utility function.

COROLLARY 1: Let K be an (I x 1) matrix, % a vector in R', and p a vector in 738
such that (i) K is symmetric, negative semidefinite, of rank (I—1), and 'K =Kp=
0; (i) p'% = 0. Then there exists a vector § in R' and an agent (u, w) satisfying
Assumptions 2 and 3 whose excess demand function x(p) satisfies the following:
(a) x(p) =%, and (b) Dx(p) = K — 0%". Furthermore, u can be chosen to be quadratic
on a neighborhood of (% +w).

PROOF: Since rank (K)=1/-1, there exists ve R' such that v£[K]. Since
[K]1=[p] p'v # 0. Consequently there exists k € R such that j‘(kv) = 1. Letting
¥ = kv, the result follows from Proposition 1. Q.E.D.

Proposition 1 and Corollary 1 have at least two important consequences. In
estimating the Jacobian A of the excess demand function of a single rational



322 J. D. GEANAKOPLOS AND H. M. POLEMARCHAKIS

agent, the econometrician cannot impose any more restrictions on the matrix A
than that it has the form A = K — 5%’ with K and 5 as above. But worse still, even if
the Jacobian A is known with certainty at the point p, X, it is impossible to separate the
substitution effects from the income effects without knowledge of the (unobservable)
utility function. For example, suppose A=K — %’ Let K =K —¢%%' and ¢ =
0 —ex where ¢ is a small positive real number. Then K is the sum of symmetric
and negative semidefinite matrices and so is itself symmetric and negative
semidefinite. Furthermore, if we choose ¢ small enough the rank of K cannot be
less than the rank of K. To see this, note that since rank(K)=1-1, we can ﬁnd
[ -1 linearly independent VECtors yy, ..., Yi- 1 such that Ky; #0, i = , =
But then for £ small enough Ky = j1—exg'y; #0. On the other hand kp—
Kp—x%'p=Kp=0,s0rank K is exactly -1 and K sausﬁes all the assumptions
of Proposition 1. Fmally, po=p'o—ep'=p'v=1 and K-ox'=
K—exx'—(6—ex)f' =K -0%' = A. So by Proposition 1 we can find a rational
agent with Slutsky substitution matrix K and income effect § whose Jacobian at p
is also equal to A and who also demands X at p; and another agent with Slutsky
substitution matrix K and income effect # who demands £ at 5 and whose excess
demand has Jacobian A at p. It is impossible to determine without information
about the utilities of the two agents which agent one is observing,.

Proposition 1 and Corollary 1 give sufficient conditions for the characterization
of an individual excess demand function at a point j. We shall now turn to the
derivation of sufficient conditions for the characterization of aggregate excess
demand functions at a point.

THEOREM: Let x(p) be the aggregate excess demand of m consumers in an
exchange economy with [ goods. Then forany pe R, 5'x(p) =0, p'Dx(5) = — x(p)
and Dx(p)p = 0. Moreover, we can find a subspace N of dimension atleast]| —m — 1
such that N L[x(p), p] and on N, Dx(p) is a symmetric and negative definite
quadratic form. On N =[N, p}, Dx(p) is a symmetric and negative semi-definite
quadratic form. If the individual excess demands x,(p), . . . , x(p) are observable,
then N =[x1(p), .. ., Xm(P), p1". Conversely, letA be an (I X 1) matrix, X a vector in
R', and p a vectorin R, suchthat (i) p'A=~%", Ap=0; (i) p'x = 0; (iii) A defines
a symmetric, negative definite quadratic form on a subspace N, NL[% p] of
dimension |—m—1 and therefore by (1) a negative semidefinite symmetric
quadratic form on N =[N, p).

Then if % #0, we can find m agents {(u*, w*), k=1, ..., m} with u* quadratic
on a neighborhood of p, k=1,...,m, such that the aggregate excess demand
function x(p)=3p.1x“(p), where x*(p) is derived by utility maximization
of the agent (*, w*), and satisfies: (a) x(p)=Z%, (b) Dx(p)=A, and
(©) [x1(P)s. .., xm(®), PY-=N. If =0, we need m+1 agents {(u*, w"),
k=0, 1,...,m}.

PrOOF: The first half of the theorem follows from Walras’ law, the homo-
geneity of x(p), and Proposition B.
To prove the second half, choose an orthogonal basis (G, ..., 7" ", p/|5l) for
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®'suchthat N=[¢g™*",...,d Jandif %20, £'7“#0,k=1,...,m5Let Q be
the orthogonal transformation of the standard basis (e t...,e) of &' to
@G",...,3"", p/lplh);’ a subscript Q denotes vectors and matrices expressed in the
new basis. Let Ao=Q 'AQ, po=07'p, and =0 '%. Then po=
©, ..., 0plh, X0 = (%£,0), and

A

A 0
Ao = [—f/upu 0]'
S——

[

-1 1

The form of A follgws from (1) and (2). But from (3) we can gain additional
information about A:

m l-m-1 1
11 12
AQ AQ 0 }m
Ao=| A% K ol-m-1,
- Zpl 0 0]}1

where K is the symmetric, negative defintive matrix defined by A on the subspace
N, expressed in the new basis (41, . . . , -1, p/IPl)- Kisan (I —m - 1) X —-m = 1)
matrix, Xo = (£, 0) =(£,, 0, 0), A} isan (m x m) matrix, AZisan(mxIl-m-1)
matrix, and A% is an (I —m —1X m) matrix.

Define
m I-m-—1 i
—al A2 0m
Ko=(AY) K oll-m-1
0 0 olh

where a is a very large positive real number. We shall later let (1/m)Ko be the
Slutsky substitution effect for each of the m agents, k=1,..., m.

Clearly Ko is symmetric (since K is) and Kopo = 0. If a is large enough, Ko is
negative semidefinite, and has rank / — 1. To see this, recall X is negative definite
and consider the product

(¥} y‘)[ ol Ag][y‘] = ~aly’+2yiAGy. + y:Ky
I’Z(Ag'Kyz 1 1AQY2T Y288Y2,
and assume |(y;, y2)||= 1. Then we can find constants C and & >0 such that
2y1AGy2<|yilllly2lC <lly:lIC and y5Ky, < — 8ly,|® if y, # 0. Notice that if [|y,||is
very small, ||y,|| must be close to 1 in order that ||(y;, y,)||= 1. Hence we can find a
level of |lyill, [71ll, such that [lysl|C —8lly|* <0 for all y; with ||ys]|<[|7]l. Now
choose @ so big that —ally | +|ly:|C <0 for all y, satisfying |[7:]l <|ly:|| < 1. This

8 This is done as follows; Let (&',. .., &'"", p/l5]) be an orthogonal basis for R'—this is possible
since pe %', —and let p be a rotation taking ¥ into (e/lle])|x|, where e == _,e’. Then q* can be
defined as p~'(e").

7 The matrix Q has columns (§',...,d" ", p/llpl).
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proves that

[—aI A.‘;]
(A K

is negative definite, hence of rank /—1, and thus proves Ko is negative
semidefinite and of rank / —1.

Assume temporarily that £#0 and that therefore xx =% ‘G“#0 for k=
1,..., m. Then define K% =(1/m)Ko and Bo = Ko — Ac. By construction

-1 1 m Il-m-1 1
‘are B — - =
B 0l4-1 [ Bh 0 0]}m

Bo = =| BY 0 0} -m-1
£lpl 0fh £1/lipl 0 0J}1

where B = —al —AY and BS = (Ag)' — A%.

Define £5=(0,...,0,%£,0,...,0) for k=1,...,m and recall that £ #0,
k=1,...,m,if £ #0.If ¥ =0 we will have to change our definition of 5. But for
now assume £, #0, k=1,..., m.

Now we shall define 55, k=1,..., m, such that 5(£5)" is a matrix with kth
column identical to that of By and 0’s everywhere else. Then it will follow that
m L 5(%5) =Bg; and since 37-,K5 =K, we will have Ao =Ko—-Bo=
2r-1(K6 —56(%6)"). Let

ﬁl,k/ft
—k .
ve Biyu/ K|

Vel

Observe that 7% is well-defined under the assumption that £f = £, #0. By
construction, the following conditions are satisfied: (i) K%is symmetric, negative
semidefinite, of rank / — 1 for all k; (ii) [3'0[(—".5 = ( for all k; (iii) [5:9172 =1forall k;
(iv) Ao =3 r.1(KY5 - 56(%5)"). Considernowforeach k,k =1, ..., m, the triplet
(K* o* x*) defined by K*=0K507", 7 = 0k, and 7* = Qf'fg. Since Q is an
orthonormal matrix, Q' = Q~'. Consequently, K * is symmetric and has rank /—1
and is negative semidefinite. Since Q is orthonormal, it preserves inner products,
hence p'K* =pS5K % =0, p'g* =pata =0, and p's* = p'oii'y = 1. Proposition 1
yields the existence of m agents {(u*, w*), k=1, ..., m}satisfying Assumptions 2
and 3 whose excess demand functions {x* ( p),k=1,..., m}satisfy: (i) x*(p)=x*,
k=1,...,m; (i) Dx*(p)=K*-5"(x")"

This concludes the proof for the case £ # 0. If £ =0, we proceed in exactly the
same manner, except that we define
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k=1,...,mand ¥ =(—-1, -1,..., =1,0,...,0). Then 7§ becomes
él,k 0
—k : -0 .
to=| A , k=1,...,m and ©Dgo= . Q.E.D.
R : A @ 0
1/lipll 1/l

From the proof of the theorem, we can deduce several interesting
consequences, showing how to decompose gradually an arbitrary x(p).

PROPOSITION 2: Let A be an (I X l) matrix, ¥ a vector in R, D a vector in %,
and M a subspace of R' of dimension m<I such that (i) p'A =—%', Ap=0;
(ii) p'x = 0; (iii) p € M. Then there exists m agents {(u k, w5, k=0,1,...,m— 1}
with u* quadratic on a neighborhood of p, k =0, 1, . .., m, such that the aggregate
excess demand function x(p)=3p_dx"(p) derived by maximizing the utility
function satisfies: (a) x(p) = x, and (b) Dx(p)y = Ay Vy € M. Furthermore, if (iv)
x#€[M]", we need only m—1 agents. Also (iii) can be dispensed with by taking
M =M +[p] and then using one more agent.

Proor: Choose an orthogonal basis (g1, 42, - - . , §i—1, §/||2]} such that M =
[Gs .- » Gm-1, B/IBW]). If Z&[MT", the 1, .. ., Gm—1 can be chosen so that £'7* #
0,k=1,...,m—1.

Now proceed exactly as in the proof of the theorem except that, since we don’t

know that A is symmetric and negative definite on a subspace N, we must define

Iz1 1
KO=[—I 0]}1—1.
0 olh
Then
m—-1 l-m 1
By BY% 0]im-1
Bo=Ko-Ao=| By BZ O0|H-m
£1/lxll  #/lxll 01}
where

B8 =-AY%, B%=I1-A%, By=-I-Ay; and B% =-A3.

Proceeding exactly as in the previous case (and noting that Ko is surely
symmetric, negative semidefinite of rank /-1, and poko = 0) we can use m—1
agents to get agreement on the first m—1 columns of Bg. Here only the last
column of Bg, is necessarily 0 making a subspace M of dimension m. We need the
last agent so that if £, =0, k <m —1, we can define

k

-~

x-k0= (07--'10: ’0,--'70)



326 J. D. GEANAKOPLOS AND H. M. POLEMARCHAKIS

and (£3)x = — 1. Choose any of the agents, say 1, and add (0, X1, . . . , X;~1, 0) tO
£h. Then 2r2o%6 = £ and the first m — 1 columns of Ag plus the last have been
realized. Q.E.D.

COROLLARY 2: Let A be an (I X [) matrix, % a vector in R', and j a vector in R,
such that (1) p'A=-%', Ap=0; (ii) p'x=0. Then there exists | agents
{(u*, w*), k=1, ..., 1}, quadratic near p, such that their aggregate excess demand
function x(p) satisfies: (a) x(p) =x; (b) Dx(p)=A. If X #0, we can get the same
result with | —1 agents.

PrOOF: Take M = R' in Proposition 2 and note that unless =0, i¢[M]".

This completes the characterization of the restrictions that can be derived in
general for the Jacobian of the aggregate excess demand function of m agents in
an economy with / goods, under the assumption of individual rationality. Also a
technique for gradually decomposing the aggregate excess demand has been
presented. We have tried to make explicit the difference between the equilibrium
X =0 case and the disequilibrium ¥ # 0 case. This difference can be exploited to
show that it is possible to decompose an arbitrary function x(p) satisfying
homogeneity and Walras’ law into only / — 1 rational individual agents on an open
set not containing any equilibria, rather than just at a point.

3. THE LOCAL CASE

We now extend the results derived in the previous section for a point by showing
that to decompose an arbitrary excess demand function globally it is sufficient (and
in general necessary) to use ! agents while to decompose an arbitrary excess
demand function locally away from the aggregate no trade point, even on an entire
quadrant, it suffices to consider /—1 consumers. Furthermore, it is clear from
Proposition B that / -1 is a lower bound even for local decomposition.

ProrosiTiON 3: Let B(p): R’ >R be a positive, homogeneous, and twice
differentiable function. Then for any R.={pe R (p/lpl)=¢}, the function
B(p)mrpe” is derivable from a monotonic, quasi-concave utility function u for all
pegti, k=1,...,L3 The same is true if we replace e* with any ye R' and R
with {pe R |p'y >0, (p/llpl) = e}.

ProoOF: Debreu [3] constructed indifference curves generating the excess
demand B(p)qrr(,,)ek, and Geanakopolos [5] found a utility function giving rise to
the same excess demand.

PROPOSITION 4: Let x (p) be a twice differentiable excess demand function. Given

e>0andp’e R withx (p°) #0, there exists an open set H in R, containing p°, and
1 -1 individual excess demand functions x‘(p), ce x"l(p) derivable from utility

8 T(p)={y e R'|p'y =0}. mr¢»y = projection of y onto T(p) in the direction p.
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maximizing individuals {(u*, wh), k=1,...,1—1} on R. such that x(p)=
it x*(p) for all pe H. The x*(p) can be chosen to be linearly independent.
Furthermore, if x;(p®) < 0 while x,(p°) > O for all j # i, H can be taken to be the set of
all p e R such that x (p) stays within the quadrant containing x(p°) and bounded
away from its boundary.

LEMMA 1: Let p69§'+, xeT(p), x#0. Then we can choose (l—1) of the
standard basis vectors e*1, ..., e and write x=2'238.[I—-pp'/Ip|Fle", with
B.=0,i=1,...,1+1. If x is negative in only one coordinate, we can take B, >0,

i=1,...,1—1. Note that wr¢yy = [I—pp'/|plFly for any y e B

PROOF OF LEMMA 1: x =(x1,..., X4 .. ., X1) = Zk~1xe”. Projecting on T(p)
we get x =Zi_1x[I~pp'/lp[*Je”. Let & =[I-pp'lpl*le*, k=1,...,1 Then
X = E'k-lxké". But

! {
kZkaé" = klek[I —pp'/|lp|*le"

= kZilpk(e" —ﬁw —p/llpllz)(élpi) =p-p=0.

Hence —é*=3%,.p/pr)é’, k=1,...,1 Consider now x=2Xj_1x;&". Since
x#0, pe%®’, and p'x =0, we may, with no loss of generality, assume that
x;<0. Replace &' by —x,2/Z\(p;/p)é’. We now have x expressed as a linear
combination of (I — 1) of the &*’s. If x, were the only coordinate less than zero, x is
now expressed as the strictly positive linear combination of (/ — 1) of the &*’s. If
x, <0 as well (i # ), it may be the case that, after &' has been replaced, the co-
efficient on the ith is still negative—i.e., x, —x;(p,/p) <0. This is no problem.
Simply eliminate &’ in the same manner as above, reintroducing &' (but with a
positive coefficient), and thus adding a strictly positive amount to all the other
coefficients. Repeat this process until all the coefficients are nonnegative. Note
that since at every step one of the *’s was entirely eliminated, no more than (I — 1)
of the coefficients can be strictly positive. On the other hand, it may be that less
than (/ — 1) of the coefficients are strictly positive; for instance, if x, —x,(p./p)) =0
for some i # I, both &' and &' drop out. Q.E.D.

PrOOF OF PROPOSITION 4: We shall first consider the simple case where
x(p°) <0 while x,(p°), ..., x11(p°)>0. Define G={xeR'|x,>0,k=1,...,
[-1,x<0,|x|>e k=1,...,1}. Since G is open and x(p) is continuous,
H={pe%k.|x(p)eG} is open and contains p°. We now define
xk(P)=Bk(P)[I—PP'/"P”2]ek’ k=1"--,l—1s pe'%i where Bk(p)=
max[xx(p)—x:(0)x/P1), €], k=1,..., I=1. Note that B(p) is homogegeous,
and B (p) is strictly positive everywhere on &'.° Thus, by Proposition 3, x“(p).is
derivable from a monotonic, quasi-concave utility function u for all pe R

° B« (p) is not differentiable but by making the function a bit more complicated we could easily
remedy this. The same remark applies to the y;(p) we define later.
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Moreover, for pe H, x(p)e G, |x,(p)l=e¢, k=1, ..., [, and Bi(p) =
x.(p)—x:1(p)(Pi/ p1), and so

-1 -1 !
S @) -2 S L = S vl = x(p),
k=1 Pt k=1 k=1

for all p € H. This completes the proof of the proposition for the special case where
x(p®)>0,k=1,...,1—1, while x,(p°) <O0.

X2

{xIB'x=O}-——-&

FIGURE 2

REMARK: In the case of a two good market, where except for the point x =0
the conditions for the special case considered above are always fulfilled, given any
p° such that x (p°) # 0, the entire segment of the curve x (p) can be rationalized as
the offer curve of a single rational individual so long as it stays in a compact set in
the open quadrant containing x(p°). In Figure 2, x(p) cannot be globally
explained as the excess demand function of a single rational agent since it violates
the weak axiom of revealed preference: At prices p, x(f) is chosen though
p'x () <0, while at prices p, x(§) is chosen even though j'x (#) < 0. Nevertheless,
the curve x (p), so long as it stays in the same quadrant and bounded away from the
coordinate axes, does satisfy the strong axiom of revealed preference and hence
can be considered as part of the excess demand function of a single rational
consumer.

To complete the proof of Proposition 4, we shall need the following.
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LeMMA 2: For pe R, any (I—1) of the standard basis vectors of R,

e, ..., e"1, satisfy the property that their projections on T(p) span T(p) and are
linearly independent. Consequently, any x € T(p) can be uniquely written as

1-1 -1
x= T Bull~pp'/ lplPle*: = ;Bk,e""-

PrOOF OF LEMMA: Consider the linear map from [e koL, e"‘, cees e"'-‘] to
T(p) given by

-1 -1 -1
L re"'~> X Bull —pp'/lplle" = ¥ Bu™;

it maps a space of dimension (/ —1) into T (p) whose dimension is (/ — 1) as well.

But its kernel is simply {0} sincep#[e™,. .., e*-1]. Thus its range must have
dimension (/ —1)and span T'(p); hence e, ..., e rare linearly independent and
span T'(p). Q.E.D.

We can now complete the proof of Proposition 4. Proceed as in Lemma 1 to get
Bip)=0,i=1,...,1-1, and write

-1 1-1
x(0%)= L B ~p"@")/IpF1e" = X B.(p7)".

From Lemma 2, &%, ..., & are linearly independent and span T(p®). Now
suppose, to begin with, that 8,(p°)>0, i=1,...,!—1. Then as p varies around
p°, since x(p) is continuous so is B,(p), i=1,...,1—1, and hence, in some
neighborhood of p°, B.(p)>0, i=1,...,1/—1. The continuity of B:(p) follows
from the continuity of x(p) and the linear independence of gh .. ek, We
now define x'(p)=v.(p)I—-ppYllpl’le" =v(p)e", where v.(p)=p.(p)+
max (6 —B,(p), 0), with & as small as we like in the open interval (0,
min{Bl(po), ..+ Bi—1(@®)}). Furthermore, v, (p) is homogeneous and strictly posi-
tive on &%, i=1,...,1—1. Thus, by Proposition 3 each, x'(p), is the excess
demand function of a rational agent. Furthermore, for all peH, H =

peR|B.p)>6,i=1,...,1-1},
-1 -1 -1
L#' ()= L %)= 3 B.(p)"=x(p).

Note that the &*’s form the boundaries of a “quadrant” in T'(p). Consequently,
we have shown that as long as x(p) stays bounded away from the boundary inside
the same quadrant, x(p) can be explained as aggregate behavior of (/—1)
rational agents. Note, in addition, that the subset of the graph of x(p) that can be
rationalized using (/ — 1) agents need not be connected.

Figure 2b shows the segment of the original offer curve in Figure 2a that can be
attributed to / — 1 (i.e., 1 in this case) rational agents.

Finally we consider the case where x(p°) = =}-18:(p°)é" and at least one of the
B:(p°)’s is equal to zero. In that case consider S.™* = {p € R.||p|=1}. Then S.™' is
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X2

x(p%)

FIGURE 2a

X2

FIGURE 2b

compact and p'e“* > a >0 everywhereon S, ', i=1,..., - 1. Thus by choosing
y* in an open neighborhood around e* it will still be the case that p‘y*t>1a >0
everywhere on S.!, i=1,...,1—-1. Hence p'y“>0 everywhere on R..
Furthermore, the y“’s can be chosen such that everywhere on %. ',
p£ly", ..., y*]. Consequently, defining 7% =[I —pp"/|pIly*, i=1,...,1-1,
we see that T(p) =[3", ..., 7®] and x(p°) = ZIZ1& (%) 7" with &(p*)>0, i=
1,...,1—1Forany x(p) let x(p) = =/Z1&(p)7 " As before, £&(p) is continuous in
p. Proceeding as in the earlier part of the proof we define

x'(p)=bi(p)I—pp'/lPI*Iy* = bi(p)7*, peR, i=1,...,1-1,

where b;(p) = £(p) +max {0, 8 — ¢(p)}. Hence p'y* >0 for all pe R, (but not
necessarily on %%), and b(p) is strictly positive and homogeneous on ..
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Moreover, on H ={p e R.|p'y*>8,i=1,..., -1} we have that
-1 ‘ -1 K -1 «
L x(@)= Lh)y" = L4&p)7=x0).
Consequently, as long as x (p) lies bounded in the interior of the positive quadrant
definedby 5, ..., 75— in T (p),itcan be derived as the aggrepgate excess demand
of I —1 rational agents. Q.E.D.

Harvard University
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