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1 Introduction

Afriat’s theorem brilliantly characterizes the observable implications of utility max-
imization. Consider a finite set of observable price-consumption data {(p1, x1), . . . ,

(pn, xn)}. What are the testable implications of the hypothesis that all the consumption
bundles xi were chosen by maximizing the same unobservable utility function u over
budget constraints determined by the corresponding prices pi ?

To answer this question, Afriat (1967) defined the observable net expenditure matrix
Ai j = pi · (x j − xi ) and the unobservable net utility matrix Φi j = u(xi ) − u(x j ). If
utility were observable, we could deduce the ranking of the consumption bundles by
the sign of each Φi j . Lacking that information directly, the observable data nevertheless
indirectly reveal that u(xi ) ≥ u(x j ) whenever Ai j ≤ 0, since in that case x j must
have been affordable when xi was chosen. If u is known to be monotonic, then Ai j < 0
reveals u(xi ) > u(x j ).

It follows that if the data are derived from maximization of a monotonic utility,
then there can be no cycle in the A matrix containing a negative element but no
positive element. This property is called the generalized axiom of revealed preference
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or GARP.1 Afriat’s theorem asserts that GARP is the only observable implication of
utility maximization, even if one restricts attention to concave and monotonic utilities.

Afriat gave an extremely interesting, though complicated, inductive/combinatorial
proof of his theorem, but his argument was incomplete, because it failed to deal with the
cases in which some Ai j = 0. In the proof, he introduced another important property
of matrices, which we shall call additive GARP, or AGARP, which requires that the
sum of the entries of any cyclic subset of the matrix must be nonnegative. With this
concept in mind, his proof can be divided into three steps. First, he argued that if A
satisfies GARP, then the prices in the given data can be rescaled, replacing each pi with
λi pi , creating a new data set with net expenditure matrix ΛA that satisfies AGARP
as well as GARP. This is the most interesting part of his proof, but also the part that is
incomplete. Second he shows that for any matrix a satisfying AGARP, like a = ΛA,

there are hypothetical utility levels (ϕ1, . . . , ϕn) and a hypothetical net utility matrix
Φi j = ϕi −ϕ j such that a +Φ ≥ 0. Third, he shows that then there must be a concave
and monotonic utility u, with u(xi ) = ϕi , such that xi ∈ arg maxx∈RL {u(x) − pi · x}
for all i .

Several later authors sought simpler and complete proofs, along different lines from
Afriat. Varian (1982) gave a different inductive/combinatorial proof, using step three
of Afriat but combining the first two steps. Fostel et al. (2004) did the same in a shorter
proof. Diewert (1973) observed that Afriat’s theorem could be looked at as a problem
in linear programming, and in their second proof, Fostel, Scarf, and Todd succeeded
in giving a duality theorem proof of Afriat’s theorem, again combining steps one and
two.

I return to Afriat’s original approach and prove steps one and two separately, both
from the maxmin theorem of two person zero sum games. In step one, the “Afriat”
player chooses scalar multiples of the prices, while the other player chooses a cycle.
The maxmin theorem allows me to complete Afriat’s first step and to strengthen it. I
show that the “Afriat” player can find scalar multiples such that no matter what nonzero
cycle the other player chooses, the sum of the net expenditures over the cycle will be
strictly positive. I call this strict additive GARP or SAGARP. This strict conclusion
allows me to fill the small gap in Afriat’s original logic, albeit using a maxmin rather
than combinatorial method. In my second lemma, the “Afriat” player chooses the
hypothetical utilities and the other player chooses an entry i j . Using another maxmin
argument, I show that the “Afriat” player can guarantee that every ai j + Φi j ≥ 0.

I present my proof because I believe each of the first two parts of Afriat’s argument
is worthy of proof on its own, and to help illuminate the power of his approach. His
method of proof contains more information than his theorem. My strengthened version
of step one does not follow from Afriat’s theorem itself, and it allows me to derive
his theorem correctly. The separation of the two steps allows one to instantly derive
the theorem of Brown and Calsamiglia (2008) that the only observable implication of
utility maximization and constant marginal utility is that A satisfies AGARP. Finally,
some readers might agree that a game theoretic proof is the most straightforward.
It uses familiar concepts, and it does not require the introduction of any artificial

1 For the origins of this name and the distinction between GARP and the Strong Axiom of Revealed
Preference (SARP ), see Fostel et al. (2004).
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auxiliary variables. Naturally any linear programming proof, such as the one obtained
by Fostel, Scarf, and Todd, can be reinterpreted as a maxmin proof. But my proof
follows a different logic (for example, by separating steps 1 and 2).

In Sects. 2 and 3, I recapitulate the definitions of GARP, AGARP, and SAGARP,
and in Sect. 4, I prove Afriat’s theorem from the maxmin theorem. I present the
Brown–Calsamiglia theorem as a corollary.

2 Generalized axiom of revealed preference

Definition The pair (p, x) is a price-consumption datum if p ∈ RL+\{0}, x ∈ RL+.
Consider a fixed finite set of price-consumption data {(p1, x1), . . . , (pn, xn)}.

Definition The utility function u : RL+ → R rationalizes the price-consumption data
{(p1, x1), . . . , (pn, xn)} iff for every i,

xi ∈ arg max
x∈RL+

{
u(x) : pi · (x − xi ) ≤ 0

}
.

Define the net expenditure matrix A by Ai j = pi · (x j − xi ).
If u rationalizes the data, then Ai j ≤ 0 implies u(xi ) ≥ u(x j ), since x j is affordable

at price pi and xi was chosen. We say that xi is revealed preferred to x j .
We say that u is monotonic iff u(y) > u(x) whenever y >> x .2 If u is monotonic

and rationalizes the data, then Ai j < 0 implies that u(xi ) > u(x j ), since if pi · x j <

pi · xi , then there is also y >> x j [and therefore u(y) > u(x j )] with pi · y ≤ pi · xi .
We say then that xi is revealed strictly preferred to x j . It follows from the transitivity of
utility maximization choices that if a monotonic u rationalizes the data, then there can
be no cycle in the consumption data of revealed preference including a strict revealed
preference. More precisely, consider the following definitions.

Definition A cycle c on N = {1, . . . , n} is a sequence of distinct integers
(i1, i2, . . . , ik) with each i j ∈ N . The cycle c defines a one-to-one function c : N → N
by c(i j ) = i j+1 if 1 ≤ j ≤ k − 1, c(ik) = i1, and c(i) = i if i is not in the sequence.
Note that if for some i ∈ N , c(i) �= i, then for all t ≥ 1, ct+1(i) �= ct (i).

Definition Given an n × n matrix a with zeroes on the diagonal, any cycle c defines
a cyclic subset ac = {aic(i) : i ∈ N }. Call ac nonzero if some element of it is nonzero.

Definition An n × n matrix a with zeroes on the diagonal satisfies GARP if every
nonzero cyclic subset ac contains a positive element.

We have just argued that if a monotonic u rationalizes the data {(p1, x1), . . . ,

(pn, xn)}, then the associated net expenditure matrix A must satisfy GARP.

2 The notation y >> x means that yi > xi for all i .
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3 Additive GARP (AGARP and SAGARP)

Definition An n × n matrix a with zeroes on the diagonal satisfies additive GARP or
AGARP iff for every cycle c, sum(ac) = ∑n

i=1 aic(i) ≥ 0.

Definition An n × n matrix a with zeroes on the diagonal satisfies strictly additive
GARP or SAGARP iff for every nonzero cycle c, sum(ac) = ∑n

i=1 aic(i) > 0.
Clearly, SAGARP is stronger than AGARP which is stronger than GARP. We shall

see that if a data set satisfies GARP, then by rescaling the prices, replacing each pi

with λi pi , we can create a new data set with net expenditure matrix ΛA that satisfies
AGARP and even SAGARP, as well as GARP.

4 Afriat’s theorem

Afriat’s Theorem The price-consumption data {(p1, x1), . . . , (pn, xn)} can be ratio-
nalized by a continuous, concave, and monotonic function u : RL+ → R if and only if
the matrix A defined by Ai j = pi · (x j − xi ) satisfies GARP.

Lemma 1 Suppose that a is an n × n matrix with zeroes on the diagonal satisfying
GARP. Then there is an n×n diagonal matrix Λ with strictly positive diagonal elements
such that Λa satisfies SAGARP.

Proof Let C be the (finite) set of all cycles c on N for which ac is nonzero. We suppose
C is nonempty, for otherwise the lemma is trivially true.

Consider the two person zero sum game in which the Afriat player chooses any
row i ∈ N and the Cycle player chooses any nonzero cycle c ∈ C . Cycle pays Afriat
aic(i), which is well defined since each cyclic subset ac contains exactly one element
from each row. By GARP, each nonzero cyclic subset contains a positive element, so
Afriat could trivially assure himself a positive payoff if he moved second. We show
he can do so even if he moves first, with the correct mixed strategy.

Denote the set of mixed strategies of Afriat by Δn−1 = {λ = (λ1, . . . , λn) ∈ Rn+ :∑
λi = 1}. Denote the set of mixed strategies of Cycle by Δ#C−1 = {π = (π(c)c∈C :

π(c) ≥ 0 for all c ∈ C and
∑

c∈C π(c) = 1}. The payoff to Afriat from a mixed
strategy pair (λ, π) ∈ Δn−1 × Δ#C−1 is

∑
c∈C

π(c)
n∑

i=1

λi aic(i)

By von Neumann’s minmax theorem, the game has a minmax solution (λ∗, π∗) ∈
Δn−1 × Δ#C−1 with payoff to Afriat of v = ∑

c∈C π∗(c)
∑n

i=1 λ∗
i aic(i).

We shall prove that v > 0 by showing that if v ≤ 0, then there must be a way of
splicing together cycles in C to create another cycle that violates GARP. If v ≤ 0,
then no pure strategy of Afriat pays more than 0, hence

∑
c∈C

π∗(c)aic(i) ≤ 0 for all i = 1, . . . , n
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Take any cycle that has positive π∗ weight. By GARP, it contains a positive element,
say in row i1. From the i1th inequality above, there must be another cycle c ∈ C that
has positive π∗ weight with ai1c(i1) < 0. Let i2 = c(i1). Proceed in cycle c, setting
ik+1 = c(ik) as long as aik c(ik) ≤ 0. If ik is reached for which aik c(ik) > 0, then
from the ik th inequality above, there must be another cycle d ∈ C that has positive
π∗ weight with aik d(ik ) < 0. In that case let ik+1 = d(ik). In this manner of splicing
cycles, an unlimited sequence (i1, i2, . . . , ik, . . .) is generated with all ait it+1 ≤ 0.
Let i� be the first entry that repeats an earlier entry, say i j . The cyclic set ac∗

derived
from c∗ = (i j , i j+1, . . . , i�−1) violates GARP, because all its entries are nonpositive,
and because it must include the (negative) entry point of the cycle that generated
i�−1i� = i�−1i j . This contradiction proves v > 0.

From the definition of minmax solution, no pure strategy of Cycle gives a better
payoff for him than v, hence

n∑
i=1

λ∗
i aic(i) ≥ v > 0 for all c ∈ C

Define the diagonal matrix Λ by Λi i = λ∗
i for all i . Since the number of cycles is

finite, we can perturb the diagonal λ∗ slightly to make them all strictly positive without
changing the fact that sum(Λa)c > 0 for every nonzero cycle.3 �	
Lemma 2 Let a be an n × n matrix with zeroes on the diagonal satisfying AGARP.
Then there is ϕ∗ ∈ Rn such that mini, j [ai j + ϕ∗

i − ϕ∗
j ] ≥ 0.

Proof Let v ≡ supϕ∈Rn mini, j [ai j + ϕi − ϕ j ]. Observe (by taking ϕ = 0) that
v ≥ −||a||∞ = − maxi, j {|ai j |}. Therefore, we can confine the sup search to ϕ with
|ϕi − ϕ j | ≤ 2||a||∞. Clearly adding a constant to each ϕi does not change anything,
so WLOG we can also restrict attention to ϕ with

∑
ϕi = 0. Let S = {ϕ ∈ Rn :

||ϕ||∞ ≤ 2||a||∞, and
∑

ϕi = 0}. Since S is compact, there must be some ϕ∗ ∈ S
with

v ≡ sup
ϕ∈Rn

min
i, j

[
ai j + ϕi − ϕ j

] = max
ϕ∈S

min
i, j

[
ai j + ϕi − ϕ j

] = min
i, j

[
ai j + ϕ∗

i − ϕ∗
j

]

For the same reasons, we may suppose that ϕ∗ is one of the maximizers, over all
ϕ ∈ Rn, with the fewest number of i j for which v = [ai j +ϕ∗

i −ϕ∗
j ]. It follows that if

there is some i j, i �= j, at which v is achieved, v = [ai j +ϕ∗
i −ϕ∗

j ], then v must also
be achieved at some jk with j �= k. Otherwise, by subtracting a small constant from
ϕ∗

j , we could find another ϕ ∈ Rn which either increases v or reduces the number of
i j at which v is achieved.

Define the n × n matrix Φ by Φi j = ϕ∗
i − ϕ∗

j . From the last paragraph, we see
that by starting from i j and jk, we can construct a cycle c such that each element of
[a + Φ]c, is equal to v. Since a satisfies AGARP, and since the sum over any cycle of

3 Note that we were able to deduce that λ >> 0 by proving first that Λa satisfies SAGARP rather than just
AGARP.
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Φ must be 0, A + Φ must also satisfy AGARP. So sum[a + Φ]c = (#c)v ≥ 0, hence
v ≥ 0. �	
Lemma 3 Suppose the price-consumption data {(p1, x1), . . . , (pn, xn)} generates a
net expenditure matrix a satisfying AGARP, and suppose there are hypothetical utility
levels ϕ ∈ Rn generating a net utility matrix Φ with a + Φ ≥ 0. Then there is a
concave, monotonic, and continuous utility function u : RL → R with u(xi ) = ϕi ,

such that xi ∈ arg maxx∈RL {u(x) − pi · x} for all i .

Proof For all x ∈ RL define

u(x) = min
1≤i≤n

[
ϕi + pi · (x − xi )

]

As the minimum of linear functions, u is concave and continuous. Since each pi is
nonnegative and nonzero, pi · z > 0 for any z >> 0, hence u is monotonic. Since
rearranging terms in a ji +Φ j i ≥ 0 gives ϕ j +p j (xi −x j ) ≥ ϕi for all i, j, we conclude
that u(xi ) = ϕi for all i . Clearly u(x)− pi ·x = min1≤k≤n[ϕk + pk ·(x −xk)]− pi ·x ≤
[ϕi + pi · (x − xi )] − pi · x = ϕi − pi · xi = u(xi ) − pi · xi . �	
Proof of Theorem Given data generating a net expenditure matrix A satisfying GARP,
follow Lemmas 1–3, yielding strictly positive multipliers λi and continuous, concave,
monotonic utility u such that xi ∈ arg maxx∈RL {u(x) − λi pi · x} for all i . It follows
that if for some x ∈ RL , p · x ≤ p · xi , then u(xi ) ≥ u(x).

Conversely, if the data are rationalized by any monotonic utility, it is trivial that A
satisfies GARP. �	
Corollary The price-consumption data {(p1, x1), . . . , (pn, xn)} generates a net
expenditure matrix Ai j = pi · (x j − xi ) that satisfies AGARP if and only if
there is a continuous, concave, and monotonic function u : RL+ → R such that
xi ∈ arg maxx∈RL {u(x) − pi · x} for all i .

Proof Assuming A satisfies AGARP, apply the same proof given for Afriat, skipping
Lemma 1 by taking Λ to be the identity matrix. To argue in the opposite direction, the
utility maximization condition immediately gives Ai j +Φi j = Ai j +u(xi )−u(x j ) ≥
0. Hence, A + Φ trivially satisfies AGARP. But any cyclic subset of Φ sums to 0. So
A satisfies AGARP. �	
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