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Asymptotic Behavior of a Stochastic Discount Rate

By J. Geanakoplos1, W. Sudderth2, and O. Zeitouni3

Abstract

The mean discount rate for a simple stochastic model behaves asymptotically roughly
like 1/

√
n in contrast to the usual geometric discounting in a deterministic model.
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1. Introduction

A stochastic model for interest rates was studied in Farmer and Geanakoplos
[1]. In their model, the current rate, say rn, is multiplied by a volatility factor
evXn+1 so that the rate in the next period is rn+1 = rne

vXn+1 . Here v is a given
scale parameter and {Xn}n is a sequence of independent random variables, that
equal plus or minus 1 with probability 1/2 each. If the initial rate is r0, then the
rate in period n is

rn = r0e
vSn

where Sn = X1 + · · ·+Xn is a simple, symmetric random walk on the integers. The
value of future consumption in period n should accordingly be discounted by the
amount

Dn = e−r0e−r1 · · · e−rn = e−
∑n
i=0 ri = e−r0

∑n
i=0 e

vSi
,

where S0 = 0. Farmer and Geanakoplos [1] show that the mean discount factor
Mn = E(Dn) behaves roughly like a constant times 1/

√
n as n→∞. Thus future

consumption or wealth is discounted much less in this stochastic model than in the
usual geometric one.

The proof in [1] used ingenious path counting methods, and does not seem to
carry over to more general distributions of the increments. In this note, we use
classical Markovian tools to generalize the result in [1] to the class of random walks
Sn on the real line that have bounded increments with mean zero.
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2. The Model and Main Result

Let X1, X2, . . . be independent, identically distributed random variables that
are bounded with mean zero and a positive variance. Consider the random walk

Sn = X1 + · · ·Xn, n = 1, 2, . . .

and define the discount factor

Dn = e−
∑n
i=1 e

Si
.

Let Mn = E(Dn) be the mean discount factor.

Theorem 2.1. Under the assumptions above, we have that

Mn =
1

n
1
2+o(1)

(2.1)

where o(1) denotes a function of n that converges to 0 as n→∞.

Our methods do not give optimal rates, so we do not characterize the behavior
of the o(1).

The next two sections are devoted to the proof of Theorem 2.1. For simplicity,
we assume from now on that the random variables Xn are bounded by 1 in absolute
value. Absolute constants that appear in the proof may depend on the distribution
of the increments.

3. The Lower Bound for Mn

The key to the proof that Mn ≥ 1/(n
1
2+o(1)) is the following lemma. Let ε be

a small positive number, say ε < 1/5.

Lemma 3.1. There is a positive integer n0 = n0(ε) such that

P [Si ≤ −(i− n0)ε, i = n0 + 1, . . . , n0 + n] ≥ 1

n
1
2+o(1)

. (3.1)

Before proving the lemma, we first observe that the lower bound in (2.1) will
follow from it. Let

D′n = e−
∑n0+n
i=n0+1 e

Si

, and M ′n = E(D′n).

Then, if the lower bound holds with M ′n in place of Mn, then it also holds in its
original form. This is because

|
n0+n∑
i=1

eSi −
n0+n∑
i=n0+1

eSi | ≤
n0∑
i=1

e|Si| ≤ e+ e2 + · · · en0 = c0.
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So
e−c0M ′n ≤Mn ≤ ec0M ′n.

Now expressions of the form 1/(n
1
2+o(1)) remain of the same form when multiplied

by a constant. Hence, it suffices to prove the bound for M ′n.
Assume now that (3.1) holds. Then, for n ≥ n0,

M ′n ≥ e
−

∑n0+n
i=n0+1 e

−(i−n0)ε

· P [Si ≤ −(i− n0)ε, i = n0 + 1, . . . , n0 + n]

and

e−
∑n0+n
i=n0+1 e

−(i−n0)ε

≥ e−
∑∞
i=1 e

−iε

> 0.

So, for the lower bound, it suffices to prove the lemma.
The proof will be in several steps and it will be convenient to prove

P [Si ≥ (i− n0)ε, i = n0 + 1, . . . , n0 + n] ≥ 1

n
1
2+o(1)

(3.2)

rather than (3.1). The two inequalities are equivalent since {−Sn} satisfies the same
assumptions as {Sn}.

Fix a large positive integer K to be specified below and set δ = 5ε. So δ < 1.
The idea of the proof of Lemma 1 is to get bounds on the behavior of the random
walk as it travels through the sequence of intervals Ii = [Kiδ,Ki+1), i ≥ 1, starting,
in each case, from a point in the interior near Ki.

Notice that, since the random walk is recurrent with increments bounded by 1,
there is a positive integer n0 such that

p = P [Sn0
∈ [K,K + 1)] > 0.

This is the same n0 that appears in the statement of Lemma 1.
Let P x denote the distribution of the random walk starting from the real number

x (so that P = P 0). It follows from the Markov property that

P 0[Si ≥ (i− n0)ε, i = n0 + 1, . . . , n0 + n] ≥ p · PK [Si ≥ iε, i = 1, . . . , n].

Thus it suffices to prove that

PK [Si ≥ iε, i = 1, . . . , n] ≥ 1

n
1
2+o(1)

. (3.3)

The first step in the proof gives a lower bound on the probability that the
random walk exits each of the intervals Ii at the upper boundary. For y real, let

τ+y = min{n : Sn ≥ y} and τ−y = min{n : Sn ≤ y}.

Step 1. For i = 1, 2, . . ., it holds uniformly for x ∈ [Ki,Ki + 1] and uniformly in
i that

P x[τ+Ki+1 < τ−
Kiδ ] ≥

1

K
(1 + o(1)). (3.4)

(Here o(1)→ 0 as i→∞.)
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Proof. Let τ be the exit time for the interval (Kiδ,Ki+1); that is,

τ = min{τ−
Kiδ , τ

+
Ki+1}.

By the optional sampling theorem, Ex(Sτ ) = x. Also, since the increments of {Sn}
are bounded by 1, we have

Ki − 1 ≤ x = Ex(Sτ ) ≤ p̄(Ki+1 + 1) + (1− p̄)Kiδ,

where p̄ = P x[τ+Ki+1 < τ−
Kiδ ]. Hence,

p̄ ≥ Ki −Kiδ − 1

Ki+1 −Kiδ + 1
.

Inequality (3.4) now follows.

Notice that when the random walk exits the interval Ii = [Kiδ,Ki+1] to the
right, it is then at a position in [Ki+1,Ki+1 + 1) so that Step 1 can then be applied
to the next interval Ii+1.

The next step gives an upper bound for the time the process spends in the
interval (0,Ki+1). The integer K will also be specified in this step.

Step 2. There exist K0 and a positive constant c1 such that, for all K ≥ K0, i ≥ 1
and all x ∈ (0,Ki+1), we have

P x[τ+Ki+1 ∧ τ−0 > K2(i+1)+iδ] ≤ e−c1K
iδ

. (3.5)

(Here a ∧ b denotes the minimum of a and b.)

Proof. Recall that the Xi have mean 0 and finite, positive variance σ2. Let Z be
a standard normal random variable and let a = P [Z > 2/σ]. Then, by the central
limit theorem,

P [
Sn√
nσ
≥ 1

σ
] > a > 0,

for n sufficiently large. Choose the integer K0 > 21/δ so that this inequality holds
for all n ≥ K0. Now let K ≥ K0 and

τ = τ+Ki+1 ∧ τ−0

be the exit time from the interval (0,Ki+1). Then, for x in the interval,

P x[τ ≤ K2(i+1)] ≥ P [SK2(i+1) > Ki+1] = P [
SK2(i+1)

Ki+1σ
>

1

σ
] ≥ a.

It now follows from the strong Markov property that, with bKδc denoting the largest
integer that is less than or equal to Kδ,

P x[τ > K2(i+1)+iδ] ≤ (1− a)bK
iδc ≤ e−c1K

iδ

,

where c1 = − log(1− a)/2.
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Now we combine Steps 1 and 2.

Step 3. Under the same assumptions as in Step 1, it holds uniformly for x ∈
[Ki,Ki + 1] and uniformly in i that

P x[τ+Ki+1 < τ−
Kiδ ∧ (K2(i+1)+iδ)] ≥ 1

K
(1 + o(1)). (3.6)

Also, if Sl = x and Sl, Sl+1, . . . , SτKi+1 is a path satisfying the condition of the

event above, then Sj ≥ jε for j = l, l + 1, . . . , τ+Ki+1 − 1.

Proof. Inequality (3.6) follows from Steps 1 and 2. For the second assertion, recall
that δ = 5ε. Now j < K2(i+1)+iδ < K5i. So jε = jδ/5 < Kiδ < Sj .

Next we need an upper bound on the time for the random walk to reach a
positive boundary.

Step 4. If n is a large positive integer and ñ =
√
n log n, then

P [τ+ñ < n] ≤ e− 1
4 (logn)

2

. (3.7)

Proof. Since the increments of {Sn} are bounded by 1, it folows from Azuma’s
inequality that for i = 1, 2, . . . , n

P [Si > ñ] ≤ e− ñ
2

2i ≤ e− ñ
2

2n = e−
1
2 (logn)

2

.

Thus

P [τ+ñ < n] ≤
n∑
i=1

P [Si > ñ] ≤ ne− 1
2 (logn)

2

≤ e− 1
4 (logn)

2

,

where the final inequality holds for n > e4.

Suppose now that Km is the largest power of K smaller than ñ. Then, by (3.7),
there is an exponentially small chance that the random walk will traverse more than
m of the intervals Ii by time n. Now use Step 3 and the strong Markov property
to see that

PK [Si > iε, i = 1, . . . , n] ≥ (
1

K
)logK ñ(1 + o(1))logK ñ.

It is straightforward to verify that the quantity above on the right is bounded below
by 1/(n1/2+o(1)). This completes the proof of (3.3) and of Lemma 1.

4. The Upper Bound for Mn

The argument that Mn ≤ 1/(n
1
2+o(1)) is based on certain properties of the

excursions of the random walk {Sn}. Recall that the increments of the walk are
bounded in absolute value by 1. An excursion is here defined to be any path
Sn, Sn+1, . . . , Sn+k−1 such that Sn and Sn+k belong to the interval (−1, 1) but
the intermediate positions Sn+1, . . . , Sn+k−1 do not. The length L = k of such an
excursion is measured in units of time.

Let ε be a small positive number. The following lemma is probably known.
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Lemma 4.1. Let L be the length of an excursion of the random walk {Sn}. Then
there is a constant cε such that, for x > 0 sufficiently large,

P [L > x] ≤ cε

x
1
2−ε

.

Proof. Assume, without loss of generality, that the position of the random walk at
the beginning of the excursion L is in the interval [0, 1). Let Ax = [τ+

x1/2−ε < τ−0 ]

be the event that the walk exceeds x1/2−ε before reaching a negative value. An
argument using the optional sampling theorem similar to that for Step 1 in the
previous section shows that there is a constant c2 such that, for x large,

P (Ax) ≤ c2

x
1
2−ε

.

Next let τ = min{n ≥ 1 : Sn 6∈ (0, x
1
2−ε)} and let Bx = [τ > n]. Then an argument

similar to that for Step 2 in the previous section shows there is a constant c3 such
that, for x large,

P (Bx) ≤ e−c3x
2ε

.

Now, if L exceeds x, then either the walk reaches x1/2−ε before it reaches a negative
value or it stays in the interval (0, x1/2−ε) for an amount of time at least as large
as x. So

P [L > x] ≤ P (Ax) + P (Bx) ≤ c2

x
1
2−ε

+ e−c3x
2ε

.

The assertion of the lemma follows easily.

To complete the proof for the upper bound, consider, for large n, the event
En that there are less than e log n excursions that begin by time n. Then, if En
occurs, the length of at least one of these excursions must exceed n/(e log n). So if
m = be log nc is the greatest integer less than or equal to e log n and L1, . . . , Lm are
the lengths of the first m excursions, it follows from Lemma 4.1 that,

P (En) ≤
m∑
i=1

P [Li > n/(e log n)] ≤ cεm

( n
e logn )1/2−ε

≤ cεe log n

( n
e logn )1/2−ε

=
cε
′(log n)3/2−ε

n1/2−ε
.

On the complement Ecn, there are at least e log n excursions by time n and
therefore at least e log n visits to the interval (−1, 1). Hence, on Ecn

n∑
i=1

eSi ≥ e−1e log n = log n

and
Dn ≤ e− logn = n−1.
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Now Dn is everywhere less than or equal to 1. So we have

Mn = E(Dn) =

∫
En

Dn dP +

∫
Ecn

Dn dP

≤P (En) + n−1 ≤ cε
′(log n)3/2−ε

n1/2−ε
+ n−1.

The last expression is easily seen to be bounded above by 1/n1/2−2ε for n sufficiently
large. Since ε is arbitrary, the upper bound in (2.1) follows and the proof of Theorem
2.1 is complete.
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