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It 1s shown that 1 a two period general equilibrium securities model where assets
pay in money the generic dimension of the set of equihbrium allocations, n the
mcomplete market situation, 1s §— 1, where S 1s the number of assets. Hence the
degree or real mdetermimacy 1s mdependent of the number of assets This result
requires, beyond fewer assets than states, that the number of traders be larger than
the number of securities and that the asset return matrix be 1n general position. The
generic dimension for arbitrary returns matnix 1s also obtained. It 1s argued, m
addition, that the presence of real or mixed assets does not by itself lower the
degree of indetermmacy. Journal of Economic Luterawure Classificaion Numbers.
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1. INTRODUCTION

It has long been known in economics that the notion of general com-
petitive equilibrium displays a basic multiplicity, though this indeterminacy
has usually been disposed of as being almost entirely nominal. An Arrow-
Debreu economy, for example, typically has a continuum of equilibrium
price vectors, but only a finite number of these give rise to distinct com-
modity allocations. The acconting relation called Walras Law implies that
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ently undertaken a study sumilar to ours. Theorem 1’ in Section III has been obtained jointly
with J Moore Financial support from NSF 1s gratefully acknowledged. The second author
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the economy-wide system of excess demands has one more endogenous
price than it has independent market clearing equations. However, the
homogeneity of demand, ie., the fact that the aggregate excess demand
function depends on relative prices and not on their absolute level, explains
why most of the ensuing indeterminacy is nominal. Our starting point here
is the observation that for economies less idealized than that of Arrow—
Debreu, involving the exchange of monetarized assets, the indeterminacy
caused by Walras Law is greater than one-dimensional, and because there
is no corresponding increase in the homogeneity of demand, the difference
manifests itself as a real indeterminacy of equilibrium.

In this paper we draw a sharp distinction between economies in which
the assets promise delivery in a money (say green pieces of paper) whose
exchange value can exceed its (marginal) use value, and those economies
where the assets deliver in a commodity money whose exchange value is
tied to its use value. In the latter situation the lock-step balance between
Walras Law and the homogeneity of excess demand preserves local
uniqueness of real equilibrium. But in the money case there is usually a
multidimensional continuum of competitive equilibria, each representing a
different commodity allocation. Often there will be Pareto comparability
between equilibria.

An important, preliminary, example of real indeterminacy in a
“monetary” economy occurs in the standard static Walrasian setting if we
add an extra commodity, which we call money, that has no efect on any
agent’s utility. Let each agent be endowed with m” green dollar bills (i.e.,
units of the money). As long as Y, m" >0, we know that the equilibrium
price of money must be equal to its use value, namely zero. But if
Y, m"=0, and we allow m" to be negative or positive, then the price of
money is not tied to zero, and in fact it is easy to show that typically there
is a one-dimensional continuum of equilibria involving different commodity
allocations. The same is true if 3, m" >0, but each agent & owes a money
tax d” to the government with ¥, d* =Y, m".!

The reason for this real indeterminacy with money can be expressed in
two equivalent ways. Note that the excess demand for money is degenerate,
i.e., at any vector of prices the demand for money will match 1ts supply.
Introducing money thus adds one more variable price, but does not add
another independent market clearing condition. Equivalently, if the price of
each dollar is fixed at 1, demand for real commodities is no longer
homogeneous in commodity prices, yet Walras Law still applies to the
commodities, so that if all the commodity markets clear but one, this last
will clear as well. Note that both explanations of indeterminacy rest on the

! An old argument, usually attributed to Abba Lerner, holds that govenment money taxes
are a major reason government 1ssued paper money has value.
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fact that at least for some h, m”" # d*; i.e., the economy is in midstream with
some agents already debtors and others creditors.? Otherwise commodity
demand would be homogeneous in commodity prices (or equivalently, the.
price of money would not affect commodity demand). From now on we
shall always 1nclude money in our models, and we shall always fix the price
of each dollar at 1, ignoring equilibria in which money is valueless. All
prices are thus quoted in dollars, which become the units of account. When
we use the terms Walras Law and homogeneity we shall mean with regard
to commodity prices and demands, holding the money price fixed at 1.

Consider now an economy in which trade takes place sequentially,
perhaps in different states of nature. Let trade take place in period zero
(s=0) and again in period 1 for each state s=1, ..., S. Assume that every
consumer’s endowment of money in every state 1s zero. In each state s each
agent is required to balance the value of his expenditures and sales.> Agents
therefore face S+ 1 butget constraints. Since Walras Law can be applied
S+ 1 times, there are S+ 1 redundant market clearing equations and we
should expect S+ 1 dimensions of indeterminacy of equilibrium prices.
However, it is clear that there are also S+ 1 independent applications of
homogeneity, since each state’s commodity prices can be scaled independ-
ently without affecting demand. It is in fact easy to show that typically
there are only a finite number of distinct real equilibria. Thus although
there are S+ 1 dimensions of equilibrium price vectors, differing by their
absolute levels across the states, most of this indeterminacy has no effect on
real consumption.

Let us next enrich the model along the lines suggested by Radner [13]
and Hart [11] by allowing agents to trade in period O prespecified real
assets as well as commodities. A real asset is a promise to deliver a vector
of state contingent commodity bundles; agents can be allowed to buy or
sell these claims. If every conceivable real asset were traded, the model
would reduce to a special case of the Arrow-Debreu model. Whether or
not the real asset market is complete, it is evident that since the assets are
prefectly “indexed,” there are again S+ 1 independent operations of
homogeneity, and it can generally be shown that generic, real asset

2 Irving Fisher [8] recognized very clearly the indeterminacy of equihbrium in a monetary
economy caused by unantictpated (mid-stream) fluctuations m the absolute commodity price
level Indeed he advocated a government engineered inflation as a way of transferring wealth
from creditors to debtors m order to pull the American economy out of the Great Depression
We shall see in a moment that even perfectly anticipated price level changes can have real
effects when there 1s uncertamty and mcomplete asset markets.

3 One mterpretation of our model, 1n which money appears as the medium of exchange, 1s
as follows Agents are able to borrow as much money (dollar bills) from the central bank as
they wish at the begmning of each state Agents can then buy goods with their money or sell
goods for money At the end of the state-period they must pay back to the central bank
exactly as many dollars as they have borrowed.
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economies have a finite number of distinct real equilibria (see
Geanakoplos—Polemarchakis [9]).

The first general equilibrium model involving assets occurs in Arrow [1]
where assets are promises to deliver state contingent dollars. To distinguish
these monetary assets from the real assets above, we shall call them
financial assets or securities. Arrow concentrated on a specialized type of
financial asset that promises delivery of one dollar in precisely one state s,
and nothing in the other states. In his honor these have come to be called
Arrow securities. Arrow proved the remarkable result that when agents are
permitted to trade all S Arrow securities and spot prices are correctly
anticipated then the equilibrium commodity allocations are identical to
those that would arise in the Arrow—Debreu model discussed above where
agents are permitted to trade all possible state contingent commodities. We
can conclude that typically, in a complete Arrow securities economy almost
all the indeterminacy is nominal (i.e., not real). Again Arrow’s result may
be looked at as a balance between the S+ 1 occutrences of Walras Law
and of the homogeneity of demand, but the homogeneity is more subtle
than before. As usual, demand for assets and commodities is in period zero
homogeneous of degree zero relative to period zero prices. For each state
s=1, the demand for the sth Arrow security is homogeneous of degree
one,* and the demand for all the other securities and commodities is
homogeneous of degree zero, in the absolute level of prices in state s,
provided that the asset price for the sth Arrow security is varied inversely
with p,. Once a state s is realized, asset promises will make some agents
creditors and others debtors. According to our preliminary example,
changes in the absolute level of prices p, can have real effects. What
happens is that if these price changes are anticipated, then rational agents
will readjust their portfolios of Arrow securities so that in the end there are
no real effects.

In this paper we consider economies with an incomplete set of arbitrary
financial assets, as in Cass [4], Werner [14], and Duffie [ 7]. These papers
all suggest that there may be real indeterminacy. In fact, Cass [3]
constructs an explicit example with one financial asset and two stated in
which there is a one-dimensional continuum of distinct real equilibria. In
this paper we follow Cass’ lead by taking up the general problem of real
indeterminacy with financial assets. We find that “typically,” any change in
the relative rates of inflation (from 0 to s) across the states has a real effect,
even if it is perfectly anticipated. This means that there are S—1 degrees
of real indeterminacy. It is clear that there are at least two independent
sources of homogeneity in demand, including the usual homogeneity in

4 Since the mmtial endowment of assets 1s zero for every agent, homogeneny of any degree
15 enough to negate one dimension of multipheity
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period zero asset and comodity prices. The second source comes from the
fact that if all period one prices are doubled, and all asset prices halved,
then commodity demand is unaffected and asset demands are doubled. It
is not clear whether there are other sources of homogeneity, and our result
implies there cannot be. The occurrences of Walras Law provide no more
than S+ 1 degrees of freedom. Of these we see that S— 1 are real and 2 are
nominal.

More precisely, we begin by fixing the smooth preferences of each agent
and the state contingent dollar payoffs of each financial asset. The payoffs
of the assets can be summarized by an S x B matrix R. We say that the
asset payoffs are in general position if every submatrix of R is of full rank.
Clearly if the payoffs were chosen randomly, R would nearly always be in
general position. Our main result is given by Theorem 1, in Section II,
which essentially asserts that if there are fewer assets than states (B < S),
1e., if the asset market is incomplete, and if the assets are in general
position, then, provided there are at least as many agents as assets
and for almost any assignement of initial commodity endowments to
agents, the resulting financial asset economy has S— 1 dimensions of real
indeterminacy.

There is something of a surprise in this result. Indeed, we had initially
conjectured that the number was S— B (a number consistent also with
Cass’ example). As it turns out the dimension of indeterminacy is independ-
ent of the number of bonds B, as long as 0 <B < S. If B=0 the model is
obviously determinate. If B> S, one can apply Arrow’s [1] logic to show
that all the equilibrium commodity allocations are Arrow-Debreu equi-
librium allocations, and again there is no real indeterminacy. Theorem 1
points to an intriguing discontinuity. If markets are financially complete,
then the model is determinate. Let just one financial asset be missing and
the model becomes highly indeterminate. Thus, in this sense, the complete
markets hypothesis (B = S) lacks robustness.’ (Probably what this means
is that the hypothesis has to be interpreted as B> S, ie., one better have
some redundancy.)

The idea behind the proof of Theorem 1 combines two essential
ingredients. First, one can arbitrarily fix in advance the absolute level of
commodity prices in terms of some numeraire independently across all the
S states and still solve for equilibrium. The reason for this apparently
puzzling phenomenon is that fixing the absolute price level in each state
s is equivalent to transforming the financial assets into real assets that
all deliver in the same numeraire commodity in each state s, and
Geanakoplos—Polemarchakis [9] proved that numeraire asset economies

> We emphasize that we are measurmg degree of indeterminacy by number of dimensions
For other notions of size the story may well be different.
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always have equilibria. Second when 0 < B < S, changes in the relative rates
of inflation change the B-dimensional span of the assets. The set of
B-dimensional subspaces of R® has dimension B(S — B). Hence if 0<B < S
there are enough distinct subspaces to be filled by the S—1 degrees of
freedom. Finally, we show that if there are more agents than assets, then
a change of subspace typically means that the old equilibrium is no longer
feasible.

There is no doubt that many contracts and financial securities in the
world promise state contingent delivery in money, and not in real com-
modities. Moreover, there is little doubt that asset markets are incomplete.
Nevertheless, it is perhaps worthwhile to make three brief comments about
the robustness of our results. First, recall that we have taken the financial
asset payoffs as fixed exogenously. We shall not make any further effort to
explain how these payoffs are determined, or why others are missing. There
are obvious reasons why some contracts are denoted in money terms, not
the least of which is simplicity, and we see no reason why these monetary
payoffs would change to fully offset any change in the expected absolute
price level across the states. If they did, then they would indeed be real
assets. Or, at least, we see no reason why this would happen instantly to
accommodate any unexpected shock.

Second, there is no doubt that there are a great number of real assets in
the economy. One may conjecture that each independent real asset reduces
by one the dimension of real indeterminacy in the economy, so that if there
are A real assets, then there are only S— 1 — A dimensions of real indeter-
minacy. But like our previous conjecture, this is incorrect. Theorem 2,
in Section ITI, shows that as long as 4+ B <S/2, there are still S—1
dimensions of real indeterminacy, independent of A4 or B. In summary:
when markets are incomplete, the presence of financial assets creates an
indeterminacy in competitive equilibrium allocations of a degree that does
not depend on the absence of real assets.

Third, it is possible to give examples of financial asset payoff matrices R,
that are not in general position and for which the dimension of real
indeterminacy is less than S— 1. For example, if all the assets are Arrow
securities, then there is typically no real indeterminacy. Different readers
may have different views about which are the most salient financial asset
payoff structures. We have accordingly, in Section IIL, introduced a simple
formula that expresses the dimension of real indeterminacy typically
associated with any financial asset payoff matrices R. We do not find that
matrices R yielding no indeterminacy are more plausible than the R in
general position (for which Theorem 1 yields maximal indeterminacy). In
particular, our formula implies that as long as none of the rows of R is
identically zero the dimension of real indeterminacy is always at least S — B
(see, also, Balasko—Cass [2] and Cass [5]).
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II. THE MODEL AND MAIN RESULT

There are L+ 1 physical commodities (/=0, ..., L) and two dates. Spot
trade tomorrow will take place under any of S states (s=1, ..., S). Today
there is trade on current goods and on B financial assets or bonds
(b=1, .., B). Bonds pay money. We express their payoff by an S x B matrix
with generic entry r,. We say that R is in general position if every
submatrix of R has full rank.

There are H+ 1 consumers (2=0, ..., H). Every consumer # has a utility
function u" defined on RZFDS+1 and satisfying the standard differen-
tiability, monotonicity, curvature, and boundary conditions needed to get
a well-defined C” differentiable excess demand function (see, for example,
Mas-Colell [12, Chap.2]). Note: The degree of differentiability r is
assumed to be large enough for the subsequent transversality arguments to
be justified. Every consumer also has an initial endowment vector
w"e RS+ In this section, when we say that a property of economies
E=(R, u", w"; he H) is generic, we mean that for any R and " there is an
open, dense subset 9 < REFVS*Y whose complement has Lebesgue
measure zero and such that the property applies to all economies
(R, ", w"; he H) with endowment chosen in 9.

DerFINITION 1. An allocation (%, y) of goods and bonds 1s a fuancial
asset equilibrum for E= (r, u", 0"; he H) 1f:

1) T, x¥'=%,0" ¥, 7 =0,and
(i) there is a price system pe RF DS+ ge R® such that for every
h, (X", 7") maximizes #"(x") on

B'(p, q)= {(x", V) po-xb+q -y <po-wh, and

Py X <py- ! 4 yhry, all }
b

Since the budget constraints imply that S+ 1 of the market clearing
conditions are redundant, there is in general some indeterminacy in the
equilibrium allocations. If the indeterminacy affects only the holdings of
bonds, y", then we call it nominal indeterminacy. Otherwise, we call it real
indeterminacy. We are interested in the degree of real indeterminacy.

THEOREM 1. If 0<B<S, R is in general position, and H>= B, then,
generically, there are S—1 dimensiwons of real mdeterminacy; i.e., the set
of equilibrium allocations of commodities x contains the image of a C°,
one-to-one function with domain RS~ 1,
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Proof of Theorem 1. The proof proceeds in four steps. The first intro-
duces the notion of a real numeraire asset equilibrium and shows that the
set of financial asset equilibrium can be parameterized as real numeraire
asset equilibria, the parameter being an S-vector or prices of money 1n the
different states. The second step gives sufficient conditions for the real
numeraire asset equilibria corresponding to different parameters to be dif-
ferent. These conditions are of two types: (i) a full dimension requirement
on the span of the vectors of individual demand for assets at equilibrium,
and (ii) spanning requirements involving the return matrix and the par-
ticular parameter vector. Step 3 shows that the conditions of type (i) are
generically satisfied if H > B. Step 4 shows that if R is in general position
then the conditions of type (ii) are also satisfied for a $—1 dimensional
family of parameters. Combining we get the result.

Step 1. Given the prices p,, of the zero commodity (or, equivalently,
the price of money A,=1/p, in terms of good 0) our system of financial
assets is equivalent to a system of “real numeraire assets” where each asset
pays in (equivalent worth) of the zero commodity. More precisely, given a
matrix R=(F,), representing the payoffs of real assets in the numeraire
(commodity zero) for each state s, let us define allocation (X, 7) of goods
and real assets to be a real numeraire asset equilibrum if (i) and (1) of
Definition 1 are satisfied, but with respect to the budget set

B"(p,q)= {(x, Y):Po- Xo+q-y<po-wgand

Py X, Spoot+py-Y yiF, forall s}.
b

It is easy to see that (X, y) is a financial asset equilibrium, with asset return
R, if and only if (%, y) is a real numeraire asset equilibrium with p,=1 for
all se S and asset return matrix R = AR, where A is some diagonal S x S
matrix having 4;>0 for all s.

Step 2. For any Sx B matrix A, let us denote by sp[A4] the linear
subspace of R* spanned by the B columns of 4.

LemMmA 1. Let (x, y) and (%, $) be real numeraire asset equilibria for,
respectwely, E= (AR, u", " he H) and E=(AR,u" o"; he H). Suppose
that dim sp[y', .., y¥]=dimsp[ §', .., p?]=B and sp[AR]# sp[AR].
Then x # X.

Proof. Consider the vectors {ARy":heH} and {ARj": he H}. By
hypothesis there is some 4 such that ARp” # ARy". Suppose that x"= %",
From the smoothness and boundary conditions on u”, we must have that
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the goods equilibrium prices p and p are equal. But by Walras Law, which
holds state by state, that implies AR$”" = ARy". Contradiction. ||

Step 3. Let M be the set of diagonal positive matrices. We will now
establish a fairly intuitive fact. Namely that if H> B then generically at
equiblirium the vectors of individual assets demands span R®. More
precisely, we show that generically there is an open nonempty subset
VoM and a C' parameterization of allocations x(A), y(A4), A€V, such
that, first, (x(4), y(A4)) is a real numeraire asset equilibrium with return
matrix AR, and, second, y(A) satisfies the full dimension condition of
Lemma 1 (and, therefore, if A, A’eV and sp[AR]#sp[4A’'R] then
x(A)#x(A")).

The proof uses standard transversality techniques. We will not repeat
here the most familiar arguments.

Let f(p, q, 4, ®) be the excess demand function from P =R:LE+D x
REx RS . x REFDS+DHESD o RES+D 5 RE Of course this function is
not defined for all ge R? but only for those asset prices which satisfy a
“nonarbitrage” condition.

LemMa 2. fis a C" function on the (nonempty) interior of its domain of
definition. Moreover, f(p, q, A, @) =0 if and only if p, q are real numeraire
asset equilibrium prices for E= (AR, u", w"; he H). Also, f(p, q, A, ) =0
imphes that rank 0, f(p, q, 4, 0)=L(S+1)+ B.

Proof. See Geanakoplos and Polemarchakis [9]. |
Define now g: Px J — RXS+1D x R x RE where J is the B— 1 sphere, by

B B
g(pa q, /1, @, Z)=<f(p9 q, Aa CU), Z Zhy?""’ Z Zhyg)n

h=1 h=1

where 7 is the hth consumer demand for bond b at (p, g, 4, @).

Lemma 3. If g(p,q, A, w,2)=0 then rtankd,g(p,q, 4, w,z)=
L(S+1)+2B.

Proof. Let (p, g, A, , z)e g~ '(0). Because 7 € J we know that Z, # 0 for
some /. Given Lemma 2 it suffices to show that for any b= 1, ..., B there is
some perturbation 4” and 4° of the endowments of consumers 4 and 0 that
leaves fand y, , unaffected for all (#’, b") # (h, b) but does change y, ,. Let
A" be given by a decrease in wf, of g, and an increase m w’, of A, R, for
all s=1,.., S. Let 4° be given by an increase in wf, of ¢, and a decrease
in w% of A,R,,. Then consumer h decreases his demand y, , by one unit
and aggregate f 1s unaffected. }
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By the Transversality Theorem (se, e.g., Mas-Colell [12, Subsection 1.17)
for a.e. w the sets £ '(0) and g *(0) are C’- manifolds of respective dimen-
sions S and S— 1. By Sard’s theorem (see reference above) the projection
of f740) on M has a regular value A. From Geanakoplos and
Polemarchakis [9] we know that (5, §, 4, w)ef ~*(0) for some p, §. Hence
the regular value A is actually in the range of the projection. Therefore,
from the Implicit Function Theorem, there are open sets P, cP,=
{(p,q, 4): (P, q, A, w)e P}, V=M, and a C' function &: V' — P,, such
that (p,q, 4, w)ef 1(0)n (P, x {w}) if and only if &(A)=(p, ¢, 4, w).
Let P/, c P, be the closure of P,,. Then the projection of g;; '(0) n (P, x J)
on M is compact and so we can find a nonempty open set V< V' which
is disjoint from this projection. But this means that if A€V then the
{y"}£_ corresponding to £(A) satisfy the spanning condiuion of Lemma 1.
We have thus obtained the desired parameterization of equilibria.

Step 4. We now complete the proof by exploiting the hupotheses not
yet used, namely that B< S and R is in general position. We will see
that this implies that sp[AR] #sp[A'R] unless A=aA’ for some a>0.
Therefore, using Lemmata 1-3, the subset of M where 4, =1 provides our
S — 1 parameterization. We begin by a prelimmary lemma. We say that a
collection of subspaces L, ..., L, < R? is linearly independent if >, y, =0,
yr€ L, implies y, =0 for all 4.

LEMMA 4. Let R be an S x B matrix with nonzero rows and A a diagonal
invertible matrix. If sp[AR] = sp[R] then there are hmnearly independent
subspaces L, .., Ly R®, such that, first, every row of R is contained in
some subspace and, second, two rows belong to the same subspace if and only
if the corresponding entries of A are equal.

Proof. The hypothesis sp[AR] = sp[ R] 1s equivalent to the following:
there is a Bx B matrix Y such that AR = RY. This means that every row
of R is an eigenvector of ¥ with the corresponding element of 4 being the
eigenvalue. Given a linear transformation Y to each of its distinct real
eigenvalues A, .., Ax we can associate the linear subspace L, ..., Ly R”
where each L, is spanned by the eigenvectors corresponding to A,. The
collection {L,} is linearly independent (see, e.g., Halmos [10, p. 113]). |

In our case we should have K=1. Otherwise, because B < .S we would
have a subspace L < R® with dim L < B but containing a number of rows
of R larger than dim L. This contradicts the general position of R.

Summarizing, in our case sp[AR] < sp[R] implies A=al, «>0. Let
now sp[AR]=sp[A'R]. Then sp[A’~'AR]=sp[R]. Hence A=aA’" for
some o >0, as we wanted to prove.

Remark 1. Observe that Theorem 1 and its corollary hold for any
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smooth utilities and asset matrix R, but only when there are more agents
than assets, and only for a generic choice of endowments. There are good
reasons for this, aside from the technical requirements of the transversality
theorem. For example, if the endowment assignement were Pareto optimal,
then there would be a unique (no trade) equilibrium allocation, no matter
what the asset structure. Of course, if there is only one agent, then all
endowment assignments are Pareto optimal, and Theorem 1 could not
possibly apply. But if there is more than one agent, then generically an
endowment assignement is not Pareto optimal.

Remark 2. Suppose that B< H+1<S—1. In that case there are at
least as many dimensions of indeterminacy as there are individual types.
One would expect very often to find Pareto comparable financial equilibria.

Remark 3. 1If the assets were Arrow securities (i.e., every asset pays
one dollar in a state of nature and nothing otherwise) then the model is
generically determinate (see Geanakoplos and Polemarchakis [9])
Theorem 1 does not apply because R fails to be in general position when
B < S. See Section II for more on this.

Remark 4. The conclusion of the theorem implies that the set of equi-
librium real allocations x contains a nonempty S— 1 topological (ie., C°)
manifold. The conclusion can be strengthened to C' manifold (one only
needs to show that the derivative of the parameterization has full rank
everywhere). Because nothing of economic substance is involved we skip
the extra technical work.

Remark 5. The conclusion of the theorem can be sharpened when
H >z SB. In this case the entire set of equilibrium real allocations can be
expressed as the differentiable one-to-one image of an S—1 C' manifold
(the observation parallel to Remark 4 also applies here). For the proof one
considers the function g:PxJ—RIS+DxRExRSE where J is the
S(B—1) sphere, defined by

g(p,q A, 0,2 .., 2°)

B
=<f(pa 9, Aa w)a Z Z;l y’llama

h=1

B B B
1,k S (S—1)B+h S (S—1)B+h
Z Zp Y B Z B 5 eoes Z iy Y )

h=1 h=1 h=1

Exactly as in the proof of Theorem 1, one shows that 0 1s a regular value
of g, hence for a generic w, 0 is a regular value of g,,. But this is impossible
unless g *(0) = J because the range of g, has greater dimension than its
domain. If @ is generic for f and g we have then that f'(0) is an S



REAL INDETERMINACY WITH ASSETS 33

manifold. This yields that E={(p, ¢, 4, w)ef;'(0):4,=1} is an S—1
manifold. It is easily seen (use Lemma 1) that the real allocations corre-
sponding to any two points in E are necessarily distinct.

Remark 6. At the risk of repeating ourselves (see the Introduction), it
may be useful to devote a few words to understanding the failure of deter-
minacy in Theorem 1 in the light of the conventional theory of regular
economies (see, e.g., Mas-Colell [12, Sects. 8.2 and 8.37). Formally, our
general framework falls within the scope of the theory because money can
be viewed as a physical commodity as any other and, similarly, its price is
just one more relative price. The reason that the conclusions of the theory
(ie., generically the economy is determinate) do not apply is that techni-
cally our universe of admussible economies is degenerate. As long as con-
sumers do not derive direct utility from money and the total endowment of
the latter 1s kept equal to zero the excess demand for money remains null.
In fact, the decisive factor is that the total endowment of money be zero
{(even if money is directly valued at equilibrium its consumption must be
zero, i€, consumers must be at the boundary of their consumption sets
and, therefore, their demands for money may be locally insensitive to its
relative price). If money aggregate endowments become positive the model
1s determinate (with unvalued money its price can only be zero).

But even if the general theory does not apply one could ask: How can
the presence of an unvalued money commodity available in zero aggregate
amount affect the equilibrium prices and allocations of the remaining
commodities (we, after all, would not care if the indeterminacy fell entirely
on the relative price of money)? The answer should be obvious: the relative
price of the money commodity may have real (wealth) effects if consumers
arrive to the market with nonzero entitlements of money (aggregating to
zero). This can happen even in a one period two commodity world. What
the incomplete markets contribute to the story is an endogenous reason
(trade at time 0) for the nonzero individual endowments of money in the
markets of period one.

Remark 7. Financial assets in our model yield payoffs in what might be
called “inside money.” The aggregate endowment of each asset, and the
aggregate payoff in each state, is zero. This is, of course, of central impor-
tance to the indeterminacy that we find in financial assets markets since in
any equilibrium for a finite horizon model outside money cannot be
positively priced. However, 1n an infinite horizon model, like the overlap-
ping generations model, it is possible to have nontrivial outside money.
One could easily mtroduce uncertamnty and financial assets that have non-
zero aggregate supply into an overlapping generations economy. Indeed,
what is called money in that model is the archetypical financial asset.
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Remark 8. We have considered an economy with only two time
periods. This is more general than it may appear at first sight. We could
imagine an economy with many time periods, as in Debreu [6], where
time and uncertainty resolve themselves as in a tree. If all assets are traded
once and for all at data zero then the tree model can be regarded as a spe-
cial case of our two period model with as many states of nature, as there
are nodes in the tree (less one for date 0). The number of states of nature,
hence the degree of indeterminacy, can grow geometrically with the length
of the time horizon.

Remark 9. The possibility of combining Remarks 7 and 8 is intriguing.
One is irresistibly lead to comjecture that in an overlapping generations
economy with repeated moves of nature and incomplete financial markets
there will be an infinity of dimensions of indeterminacy!

Remark 10. Although our theorem only holds for a generic set of
endowments, once can guess that there are economies where across states
the endowments and von Neumann-Morgenstern utilities are identical,
and yet if markets are incomplete, the presence of financial assets creates
S — 1 dimensions of real indeterminacy, i.e., S—1 dimension of “sunspot”
equilibria.

III. REFINEMENTS

In this section we present two refinements of Theorem 1. In the first
{done 1 collaboration with J. Moore) we derive the general formula for
the degree of indeterminacy when no restrictions whatsoever are imposed
on the return matrix. In the second we discuss our problem when there are
both financial and real assets.

For any Sx B matrix R let K(R) be the maximal number of linearly
independent subspaces of R” which satisfy the property that every subspace
contains some nonzero row of R and that every row 1s contained in some
subspace. Let Z(R) be the number of rows which are identically zero. Then
Theorem 1 can be strengthtened to:

THEOREM 1'. If H>=B>0 then for any asset matrix R there are,
generically, S — K(R) — Z(R) dimensions of real indeterminacy.

Proof. We give the proof for the case Z(R)=0. Accounting for the
more general case is a trivial matter.
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Denote K= K(R). By hypothesis we can assume that the rows of R have
been renumbered so that

R,

where the rows of the matrices {R,, .., R} span linearly independent
subspaces of R

Let M, be the collection of positive diagonal matrices having the
properties that for every k the diagonal entries of the k-block are all equal
(and denoted A,).

LemMA 5. We have sp[AR] < sp[R] if and only if Ae M.

Proof. (i) Necessity. By Lemma 4 if two rows of some R, are
associated with different diagonal entries of 4 then it is possible to split the
rows of R, so that they generate two linearly independent subspaces. But
this contradicts the maximality property of K. Hence A€ M.

(11) Sufficiency. lLet AeM,. Then qR=0<«q,R,=0 for all
k< A.q.R,=0 for all k<>gAR=0. The first and last implication follows
from the linear independence of the subspaces generated by the rows of the
different R, (or A, R;). Hence sp[AR]=sp[R]. |

Because dim M =S and dim My=K Lemma5 implies that there are
precisely S— K directions of perturbations A of the identity for which
sp[ AR] # sp[ R]. Hence, noting that Steps 1 to 3 of the proof of Theorem 1
never use the hypothesis “B<.S and R is in general position,” we have
proved the more general Theorem 1’. |

When R general position, Theorem 1 sharply distinguishes between the
complete asset markets case (B> S), and the incomplete asset markets case
(B <.S) for which there are S—1 dimensions of real indeterminacy. The
general picture, however, is given by Theorem 1.

Notice first that if the asset markets are complete, i.e., if all the rows of
R are linearly independent, then Z(R)=0 and K(R)=S, because the
one-dimensional subspaces spanned by each row separately are linearly
independent. Hence the dimension of indeterminacy is S—S—0=0, as 1t
should be. Furthermore, if R consists of B distinct Arrow securities, then
K(R)=B, Z(R)=S—B, and again the dimension of indeterminacy is
S—(S—B)—B=0, as it should be. If R is in general position and
0<B<S, then K(R)=1 and Z(R)=0, as we argued in the last two
paragraphs of the proof of Theorem 1.
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There 1s another special case which is of interest, and which indicates
that the dimension of indeterminacy in practice 1s probably considerably
less than S— 1. Suppose that S can be partitioned into disjoint subsets
S=S8,uU -+ U Sk and that for each i <K, there 1s an asset in R which pays
out one dollar if se S, and nothing otherwise. Then clearly K(R) = K, and
so the dimension of indeterminacy is at most .S — K. Observe, however, that
the formula can also be made to yield a lower bound. As long as every
state can be reached by at least one asset (i.c., Z(R)=0) the dimension of
indeterminacy must be at least S— B < .S— K(R).

Our second refinement takes as starting point the fact that in actuality
there are both nominal and real assets. It may seem reasonable to conjec-
ture that the larger is the proportion of real assets, the smaller is the
indeterminacy associated with financial assets. However, we now show that
the dimension of real indeterminacy is robust to the introduction of real
securities, as long as markets are sufficiently incomplete. We will not make
here an effort to get the best possible result.

In order to avoid the difficulties with existence that are known to plague
models with real assets which yield vector-valued payoffs (see Hart [11]),
we shall confine our attention to real numeraire assets, i.e., real assets that,
for each state se€ S, pay only in commodity 0.

Let R be the Sx B matrix representing the B financial assets and let R
be the Sx A matrix representing the real numeraire assets. Thus r, is the
number of dollars paid by financial asset b in state s, and 7,, is the amount
of good 0 paid by real asset « in state s.

The definition of an equilibrium is now a triple (x, y, 7) satisfying (i) and
(ii) of Definition 1 with the budget set B*(p, ¢, §) defined as

{(X, ¥ J7)3Po'xo+4’3"+q‘)_’<l’0'wg and

B A
ps'xsgps'w;l—i_ Z ersb+p50 Z yzfsaforalls}'
b=1 a=1
THEOREM 2. Suppose that B> 2, S>2(A+ B), and H> A + B. Then for
a generic choice of matrices R and R, there is a generic set of endowments
such that each of the corresponding economies has S— 1 dimensions of real
indeterminacy (in the sense of Theorem 1).

Proof By following the logic of the proof of Theorem 1, it suffices to
show that for a generic choice of matrices R and R, there is no diagonal
matrix A # ol with AR<sp[R, R].

Let @ be the set of Sx (B+ A) matrices W= (R, R) which have rank
B+ A, satisfy r,, #0 for be {1,2}and se S, and have r, /r,, # 1, /ry, for all
s# s € S. Clearly, 2 is an open, dense subset of all Sx (B+ A4) matrices. It
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has a complement of null measure. We shall show that there is a generic
subset 9’ < 9 of matrices (R, R) for which only diagonal matrices A that
are multiples of the identity satisfy AR < sp[ R, R].

Suppose in particular that AR'e sp[R, R] and AR’e sp[R, R], where
R’, R? are, respectively, the first and second column of R. Since we can
rewrite

Ay 01 Iy Ury, (VN I IV

0 g rs1 0 1/rg Ag

we must have two (4 + B)-dimensional vectors z and Z with
1/r; 0 W 1/ry 0

. [R R]z= [R, R]:.
0 1/r, 0 Urs,

We know, of course, We know, or course, that z=(4,0,..,0),
2=(0, 4,0, ..., 0) 1s always a solution for any 1. We show that for a generic
choice of R and R, there is no other choice of z and 7 that constitutes a
solution.

Note first that if §>2(A4 + B), then there are more equations to satisfy
than there are unknowns. It suffices to show, therefore, that eliminating
from the domain the previous special configuration of z and 2, the above
system of equations has zero as a regular value. That is, it suffices that
given any R, R and solution z#(4,0,..,0), 2#(0, 4,0, ..,0), we can
perturb any equation s by changing the R, R, z, Z in such a manner that
the remaining equations are not disturbed. A routine application of the
Transversality Theorem would then finish the proof.

Suppose that for a solution R, R, z, Z, there is some k, 3 <k <A+ B with
either z, #0 or 2, #0 (or both). It follows that z,/r # 2, /r,, for at least
S—1 of the S states. For any such state s, a small perturbation of w, (if
k<B, wy=ry; if BKK<A+B, wy=7, 4,5_,) will change the sth
equality without disturbing the rest. For the remaining state s,, one can
change z,. That will affect every equality, including s,; but this is clearly
a perturbation with an effect which is independent of the other S—1
perturbations.

Suppose alternatively that z, =2,=0 for all k> 3. Then we are back to
exactly the framework of Step 4 in the proof of Theorem 1, with only two
financial assets, and we know that there are no solutions to the system of
equations except for z= (4, 0, ..., 0), 2= (0, 4, ..., 0), which we have excluded
from the domain.
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Remark 11. More generally, we could, and should, also consider mixed
assets which pay both in real commodities and in money. Once again there
will be natural sufficient conditions guaranteeing that the dimension of
indeterminacy is S — 1. For example, suppose that for each asset the states
can be divided into those in which the asset pays in units of account and
those in which the asset pays in numeraire commodities. Loans with
collateral are of this type: there is a specified financial payment and a real
collateral payoff in case of default (which here should be thought of as an
exogenous event). One could also think of form-issued debt in similar
terms. Let 4 be the total number of mixed assets. Suppose that for every
s€ S there are two assets and a collection F(s)< S of at least 24 + 1 states
(including s) on which the two assets both pay in money. Then the proof
of Theorem 2 does easily yield that there are S—1 dimensions of real
indeterminacy.
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