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The Capital Asset Pricing Model as a
General Equilibrium With Incomplete Markets*

by John Geanakoplos** and Martin Shubik **

ABSTRACT

We recast the capital asset pricing model (CAPM) in the broader context of general
equilibrium with incomplete markets (GEI). In this setting we give proofs of three pro-
perties of CAPM equilibria: they are efficient, asset prices hie on a “security market line™,
and all agents hold the same two mutual funds. The first property requires a riskless asset,
the latter two do not. We show that across all GEI only one of these three properties of
equilibrium is generally valid: asset prices depend on covariances, not variances We extend
CAPM to many consumption goods in such a way that all three properties hold. But now
the definition of a riskless asset depends on preferences and endowments, and so cannot be
specified a prion.

1. Introduction

This paper is devoted to clarifying the relationship between the CAPM stock market
trading model and general equilibrium with incomplete markets. CAPM yields three impor-
tant views of financial markets. First, that they are efficient. Second that asset prices
depend not on the variance, but rather on the covariance of the underlying payoffs with a
particular, privileged portfolio. Third, that all portfolio holders may be perfectly happy to
hold only a few specially designated mutual funds.

By placing CAPM in the broader context of general equihbrium with incomplete
markets (GEI) we find that only the second property, that covariances (and not variances)
matter to asset pricing, retains validity. Risk averse agents diversify, to be sure. but n
general they will not be satisfied with the same mutual funds In GEI equilibrium there 1s
no arbitrage. but the final allocations are almost never Pareto optimal. In fact, they are
almost never constrained Pareto optimal.

Although there is no variant of either the efficiency principle or the mutual fund prnin-
ciple that 1s precisely true throughout GEI, one may still wonder if perhaps efficiency 15
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approximately true if CAPM is a “reasonable™ description of reality. CAPM assumes a sin-
gle consumpuion good i each state of nature. To regard CAPM as a descriptive model, one
must suppose that in reality relative commodity prices are not much affected by redistribu-
tions of income. In that case, GEI equilibria do become constrained Pareto efficient, but
not Pareto efficient.

When there are many goods, what is the meaning of the riskless asset which 1s so cen-
tral to CAPM? Should it promise the same quantity of money in each state, irrespective of
the (different) rates of inflation? Should it guarantee equivalent purchasing power measured
in terms of some specified basket of goods ? How should the basket be chosen ? Is there an
analogue to the riskiess asset 1n a multi-commodity world”?

We shail show that there is a generalization of CAPM to a muiti-dimensional world (m-
CAPM). To each m-CAPM economy, there corresponds a collection of “riskless” assets. [f
any one of these is marketed, then all the equilibrta will be Pareto optimal. But the rub s
that this set of riskless assets depends on the underlying m-CAPM economy. [t cannot be
calculated without knowing the preferences and aggregate endowments of the economy for
each possible state of nature. Without a riskless asset the equilibria will be far from Pareto
optimal.

In the classical one good CAPM model the presence of a niskless asset is crucial to
Pareto optimality. Perhaps the single most obvious policy recommendation that can be
denived from the moddel is that the government should always engineer the creation of the
niskless asset if 1t is not there already. Yet (at least in the U S.) for a very long time there
has really been no asset which purported to be riskless, when inflation 1s taken into account.
For the one good CAPM, that is a puzzle, since there is no ambiguity about what the riskless
asset should be. In the mulu-dimensional CAPM. a niskless asset exists, but knowing how
to calculate 1t might be impossible.

In Part I we place the one good CAPM inside GEI. In the presence of a riskless asset
(and quadratic preferences, and other CAPM hypotheses) we denive the Pareto efficiency
of equilibrium, the security market line, and the mutual fund theorem. We note that effi-
ciency fails when there is no riskless asset, but that the other two theorems remain valid. [n
Part II we describe a full-blown multi-commodity GEI model. We note that efficiency and
the mutual fund theorem fail, but that an analogue to the security market line does hold.
We also describe a special multi-good CAPM in which efficiency holds if there is a riskiess
asset. But the riskless asset cannot be described a prior1, independent of the data of the
economy.

2. Economic preliminaries

In the past few years there has been a great revival of interest by economusts in the
theory of general equilibrium with incomplete markets (GEI) anticipated by Arrow [1953]
and Diamond [1967], and expressed first in general form by Radner [1972] and Hart [1975]
The GEI theory focuses on the primitive characteristics of the agents and commodities,
treating financial assets as limited devices for transferring wealth across states of nature,
rather than starting with reduced form preferences defined on the assets themseives. The
extra structure preserved by this approach, which is just beginning to be fully explotted,
accounts for the renewed interest in the subject. In a series of papers, for example, by Cass
[1984], Werner [1985], Duffy [1987], and Geanakoplos-Polemarchakis [1986] existence of
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equilibrium was proved by using the boundedness from below of the consumption sets for
models with assets that all deliver in the same numeraire commodity in each state of nature,
such as the quadratic-utility capital asset pricing model (CAPM) we shall consider below
In reduced form representations of CAPM, the existence of equilibrium is not always
guaranteed (see Nielson [1985]).

Perhaps the most interesting general question that can be posed in the GEI (but not in
any reduced form) theory is: how close will equilibrium allocanons, constrained as they are
by the limited assets available to the market, come to achieving Pareto optimality?
Although no satisfactory definition of distance from optimality has been found for this
problem, the work of Hart [1975], Greenwald and Suglitz [1986], and Geanakoplos-
Polemarchakis [1986] shows that except for extremely rare choices of utility-endowment
characteristics for the agents, any absence of potential insurance contracts will prevent
equilibria from being fully Pareto optimal; in fact the missing asset markets will (with rare
exceptions) cause equilibrium allocations to fail to be even “constrained” Pareto optimal.!
One purpose of this paper is to show that the quadratic utility CAPM model, with a nskiess
asset, is precisely one of those rare economies for which equilibrium allocations always
attain full optimality (if every agent’s consumption is strictly positive in every state)

The CAPM name has been used to refer to any model 1n which it is possible to write
for each agent a reduced form utility for asset portfolios depending only on the means and
variances of their payoffs. It is a famous property of such models that there is a mutual
fund theorem and a security market line theorem. The mutual fund theorem states that all
portfolios held in equilibrium can be expressed as a combination of two portfolios, the so-
called market portfolio and a “zero-beta™ portfolio (see Lintner [1965], Sharpe [1964]}, and
for the case where there 1s no riskless asset see Black {1972]). When there is a riskless asset,
the zero-beta portfolio can be taken to be the nskless asset alone. The security market line
theorem asserts that in equilibrium there is a linear relationship between the expected
payoffs of assets with price equal 1, and the covariances of their payoffs with the market
portfolio payoffs Of course 1t 1s impossible to pose the Pareto optimality question in the
reduced form version of the model.

There are two well-known GEI models which give rise to reduced form mean-varnance
utilities for assets In one, the state space is taken to be infinite, and all assets are assumed
to have normally distributed payoffs. and all commodity endowments are kept at zero The
utilines are arbitrary von Neumann-Morgenstern, with common probabuiities. In the
second version, the utilities must be quadratic von Neumann-Morgenstern with common
probabilities. and the endowments of commodities must be zero, but the asset payoffs can
be arbitrary, and the state space finite. It is well-known that the normal distribution 1s
specified by its mean and variance, and that the expectation of a quadratic function depends
only on the mean and variance of the underlying distribution, so both of these versions
clearly give nse to reduced form preferences on assets of the mean-vanance kind. Either
version may be considered with or without a niskiess asset. The point of Theorem 1 of this
paper is that in the quadratic version with a niskless asset, all intenior equilibria are fully

' The reader can consult those papers for defimitions of constramned Pareto optimal. Geanahoplos-
Polemarchakis [ 1986] proves (except for rare exceptions) that when some of the asset markets are mis-
sing, the equilibrium will not even efficiently use the existing assets. when there are at least two com-
modities 1n every state of nature



Pareto optimal, no matter how few assets there are relative to the number of states of
nature. By contrast. in the other three GEI variations, equlibria are almost never Pareto
opumal when the asset markets are incomplete. This shows that Pareto optimality is a pro-
perty distinct trom the mutual fund and secunty market line properties, though closely
related. (For prior discussions of Pareto optimality, see Rubinstein [1974], Mossin [1977],
Rothschild [1986].)

In Part [ we consider 1n detail a model in which all consumers have quadratic von Neu-
mann-Morgenstern utilities with common expectations. The state space s finite and the
asset returns are arbitrary. The consumers are allowed to have endowments, however, pro-
vided that these lie in the span of the assets. [n Theorem 1 we prove that if there 1s a nskless
asset, all intenior equilibna are Pareto optimal.? In Theorems 2-3’ we derive the mutual
fund and secunty market line theorems with (2, 3) and without (2’, 3) a riskless asset from
a linear algebraic argument that does not appeal to the mean-vanance reduced form repre-
sentation.

In Part II we give a sufficient condition on preferences for all multi-commodity GEI to be
Pareto optimal (Theorem 4). One consequence (see Corollary) is that even in the one com-
modity model 1t 1s possible to obtain Pareto optimality with preferences other than quadratic.
(For a discussion of these classes of utilities and their connection to mutual funds, see Cass-
Suglitz {1970]. For an application to efficiency in the one good model, see Rubinstein
[1974].) We derive a multiple commodity CAPM model and observe that interior equilibria
are Pareto optimal in the presence of a riskless asset, and we note the difficulty of finding a
riskless asset in practice (Theorem 6). We note that even without the riskless asset. equilibria
in the multiple commodity CAPM are constrained Pareto optimal (Theorem 5). Finally, we
show that in all GEI equhbria there 1s a security market line giving prices in terms of co-
vanances with some privileged asset, but not necessarily with the market (Theorem 7).

I. A model with one good and quadratic utilities
1. The model

Let the set of states of nature be denoted by S = {0, I,..., S}. Let there be only one
good in each state of nature. The consumption set is taken to be R{+/. Eachagenth e H =
{1,..., H} 1s characterized by a quast-concave, monotonic function V*: R{+/ — R, and an
endowment vector of commodities e* € R{t!. In addition agents hold assets, descnibed
below.

The set of financial assets is denoted A = {I,..., A}. Each asset a € A 1s represented
by a vector r, € RS*!. Sometimes we shall take the first asset, r;, to be the so-called riskless
asset 1, which pays one unit of the commodity 1n every state of nature. r, = I = (1,..., 1}.
Let us denote by the (S+1) X A matrix R the entirety of assets. A portfolio © = (9,,...,
©,) 15 a holding of each asset, and yields a return R © across the S+ states of nature. Each
individual 4 begins with an endowment O+ = (64,..., ©4) = 0 of assets.

Equilibrium is defined by a price vector g € R4, and asset holdings ©* satisfying:

L 0= ) 6%
(1 heH heH
Oh = Argg Max{Vheh + RO) | q- O < q- O and (e" + RO} = 0}.

2 It 1s interesting that in CAPM Pareto optimality holds only for intenor equilibna, while in the
Arrow-Debreu mode! intenionity has no connection with Pareto optimality
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Notice that first trade takes place in the market for assets, then the state is realized, the
assets pay-off, and finally consumption occurs.3 Since there 1s only one commodity, there is
no need for the markets to re-open once the state of nature 1s realized. The defimtion of
equilibrium requires that all promises are honored (consumption is ¢# + R@). In parti-
cular, agents are allowed to go arbitrarily short, ©, < 0, in any asset, provided they ultima-
tely keep their promise (by reducing their consumption by —©,r,).

Allowing short sales violates the standard boundedness from below condition used to
guarantee the existence of equilibrium in Arrow-Debreu [1954]. Nevertheless, as shown for
example in Geanakoplos-Polemarchakis [1986], the possibility of short sales of assets does
not interfere with existence of equilibrium, provided that the consumption set is bounded
from below. We call an equilibrium (g, @4, h € H) interior iff e + RO* >> 0 forallh e H.

The assets can be variously interpreted. Some may be thought of as shares in a firm,
whose production decision has already been made (perhaps r, (0) < 0 and r, (s} = 0 for all
s € {1,..., §}). On the other hand some may be thought of as permissible contracts. For
example, if the initial shares ©* of the niskless asset r; = [ are zero for every household h € H,
and if there is another asset r; = (1, ..., 0) with @3 = () for all h, then trade between assets
1 and 2 can be considered saving and borrowing between consumption at s = 0 and
consumption at all other s.

Notice that the distribution of consumption across the states of nature, and across indi-
viduals, 1s constrained by the span of the assets. If A < S, there are imaginable insurance
contracts, i.e. trades of contingent commodities, that are not feasible with the imited asset
markets. It can easily be shown (see for example Geanakoplos-Polemarchakis [1986]) that
for “almost all” choices of utilities V# and endowments e*, all the resulting equilibria are
Pareto suboptimal (if A < §). The point of our first theorem is to show that for the special
case of the quadratic utility capital asset pricing model, full optimality is nevertheless at-
tained even when A < §, if there is riskless asset.

2. The assumptions
(A1) There 1s one commodiry in every state of nature.
(A2) The endowments et € RS*! satisty:
ehesplr,r,.. . rs)=spiRiforallhe H 1e
eh = Ryh for some y* € R4, and e* + ROG*>> 0 Vhe H.
Consumers are able to trade any fraction of their own imtial endowments.

(A3) Quadratic von Neumann-Morgenstern Unlities: For each h € H there is some number
a, > 0 and probabilities 74 > 0, an@ = ], such that
se

VB(W) = VR(Wo, W), ..., Ws) = 3 _ah[W,- La, W3],
se§ 2

Thus the von Neumann-Morgenstern utility of consumption for agent 4 s
uk(c) = c - %ahc"‘

¥ We have included the state s = 0 to make 1t easy to remnterpret the commodity 1n state 0 as
consumption that occurs simultaneously with the purchase of assets at nme 0 provided there 15 alsa an
asset, say rs, which satisfies ro = (7. 0 . 0) Under this interpretation the uncertainty s € {/. . §}
only affects consumption at time |



(A4) Common Expectations' zh = xh =z forallh, h' e H,s € S.

(AS) Monotonicity: Let & = W ©*h and lete = W2y ¢ LetM= RO + e Then [ -
ayM >> 0 for all h eH. ¢

Note that it 1s infeasible for consumption to exceed M, in any state s. and I - a,W; 1s the
marginal utility of consumption in state s for agent A, if he 1s consuming W.,.

We have already noted that under hypotheses Al-AS5, existence of equilibrium s
guaranteed. We shall shortly show that for any economy satisfying Al-AS. all its interior
equilibria are Pareto optimal if there 1s a nskless asset.

An equilibrium (q, ©*% h €H) gives nise to a consumption allocation x* = ¢4 + RO*,
h €H, with Z' xh=M=RO +e= R(, Z or) + Z e*. We call the equilibrium

Pareto optlmal lf and only if there is no allocatlon (yh, he H) w1th 2 yh < M and Vh(yr)
> Voxh) forall h e H.

3. CAPM with a riskless asset
In this section we shall assume in addition the presence of a niskless asset:

(A6) Riskless asset:r;=1=(1,1,..., 1).

At any equilibrium we know from monotonicity that the price of the riskless asset can-
not be zero. Moreover it is evident that the equilibnium conditions are homogeneous of
degree zero in g, hence without loss of generality we shall suppose that at equilibrium if r,
1s the riskless asset, then q; = /

Pareto Optimality

Theorem I- Let (q, ©%; h € H) be an interior equilibrium (e¢* + RO* >> 0 for all h € H) for
an economy satisfying assumptions Al-A6. Then the equilibrium allocation x* = e+ +
RO*", h € H. is Pareto optimal.

Proof- Let uk € RS+! be agent 4's marginal utility vector at the equilibrium allocation: u# =
I-ayxiforallse S, he Hi.e.ut =1 -a,xt forall h € H. Since the utilities are concave
and differentiable, and since there is agreement on the probabulities 7, 1t 1s enough to show
that all the u* are colinear.

Observe that on account of monotonicity, w.l.0.g. q; = 1. Let A be the set of assets a
for which g, # 0 Thenie A. Foreachae A, let?, = (1/q.)r, be the per dollar return on
asset a. Now for any agent 1 € H, observe that equlibrnium requires that 2 T, ult (Fu(s) —

1) = 0, for otherwise the agent could buy (sell) one unit of the riskless asset 1 and sell (buy)
1/q, umts of asset a. Similarly ifa € A/ A, so that ¢, = 0, then for all A, Z mouhr,(s) =

Let us now define an tnner product for two vectors x and y in RS*I by xOy= ZS 7T

X5 ys. We write x 1 yff 2 7 x; ys = 0. Using this notation, we have from above that u* |

(F.-1) forallh e H. Let K =spl{{(F.-1);ae A} U {r,; ae A/A}|, where for any set T of
vectors in RS*/, sp(T) denotes the span of T, i.e. the smallest subset of RS*! containing T.
Thenu? | K, forallh e H.
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Observe that since e* € sp[R) and since consumption x# = e* + ©% it follows that x €
splR)=spll, ry,..., ra) forall h € H. But recall that u# = J - a* x*, hence u* € sp [R] for all
h € H. But clearly sp[R] = sp [K; I]. Hence all the u* must lie in the same one-dimensional
subspace in sp{R] perpendicular to K; i.e., they are all colinear.m Q.E.D

Mutual Fund Theorem 2: Let (g, ©*; h € H) be an interior equilibrium for a CAPM eco-
nomy with a riskless asset satisfying assumptions A1-A6. Let x* = e* + RO" be the equili-
brium consumption of agent h, and let M = hEH e’ + RO be the market consumption

Then there are scalars s, and 7, for each agent h such that xk = sid + t,,l\{ If R has full
column rank and if e# = 0 for all &, then @ =5, (1. 0.. ., 0) + 1,©, where O is the market
portfolio of assets. & = hEH Oh = hEH O*,

Proof- We have already seen that if u# = I - anx*, then the u* are all colinear. Hence the

consumption vectors x* = (I/a,) (1 - u*] all lie in some two-dimensional space, spanned b

1 and some vector u, colinear with all the u*. Since hEH xh = M, we have that M € sp(l,

. Smce M = I xh= I (l/ay) [ - un) = si - 1yt follows that if M and 1 are
[3

colinear, then so are ] and u. and hence x* = sl for some scalar s,, for all h € H. If | and

u are not colinear, then sp(/,u] = sp[i,M] and we can write x* = 5,/ + t,M, forall h € H.

If ek = 0 for all 4, then x* = RO and M = R O. If R has full column rank, then @*1s
the umque portfolio with x* = R@* Hence we must have that in portfolio space, &* = s,
(],0,...,0)+th6.l QED

Before proving our next theorem, let us recall the definition of expectation and co-
variance between two vectors x and y in RS+!/. Ex denotes the expectation of x with respect
to the common priors %, Ex = x {01 = Z‘S s X5 COV(X,Y) = ZS”S (x, - Ex)(y, - Ev),

SE S€
and var x = cov(x,x). Notice that cov(x,y) = Z'S:r, (x;vs —x; Ey - y,Ex + ExEy] = ZS
Se se
wsx;¥s— ExEy = x Oy - ExEy

Security Market Line Theorem 3 Let (q, @* h € H) be an interior equilibrium for a CAPM
economy with a niskless asset satisfying assumptions Al- A6, taken with normahzation ¢; =
I Letr- RS+ — R represent the pavoffs of any potential asset, marketed {r = Ry’ for some
) or not (r # Ry for all y € RA). Then there 1s a unique price g(r) at which every consumer
h will be satisfied to continue to hold exactly ©*, despite the new opportunity of buying or
selling short the new asset at price g(r). (Of course if r = Ry, then q(r) = q - y» ) Moreover.
if q(r) # 0, so that # = r/q(r) 1s well-defined, then again denoting M = ¢ + RO and M =
M/q(M) we must have:
*) Fio]= cov (F, M)

— (EM -1
var M ( )

Proof* The existence of the price g(r) follows immediately from the Pareto optimahity
theorem. Indeed. jetting u* be the marginal utility vector at equilibrium of any agent 4, q(r)
= (uh O r)/(un 1) Since 1n any equilibrium satisfying our hypothesis. g# >> 0. g(r) 1s well
defined and independent of A. since all the u* are cohnear
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Observe that the secunity market equation (*) defines a linear relation between E7 and
cov(f, M) for all secunities 7 with g(7) = 1. Any line is determined by any two distinct points
on the line. It can trivially be checked that (cov(i, M), Ei) = (0,1) and (var M, EM) satisfy
(*), for the portfolio payoffs 7 = [ and 7 = M, respectively. Thus if there is a linear relation-
ship between cov(f, M) and EF for all portfolio payoffs # with q(f) = I, then (*) is the night
formula. (If var M = 0. then from Pareto opumality we know that for any . 4% 1s a constant
independent of s, and so (u* 0 7) / (uh O 1) = EF/El = EF. so (*) trivially holds..)

Consider now that I = g(#) = (u* (0 #)/(u* (I I). Recalling that for any two vectors x
andy, x Oy = cov(x, y) + ExEy, we have " CJ7 = cov(F, u*) + EuhEF. Finally, recall that
for any h we could find s, and 7, with u* = sk + t"M. Hence we have

uh O F = cov(?, skl + t*M) + Eu*EF, ot
uh T F = th cov(?, M) + Eu*EFV.
Taking u* (0 1, t» and Eu* as constants gives us a linear relationship between cov(#,M) and

Et. m Q.E.D.
Note the necessity of the hypothesis that g(¢) = [.

Portfolios that are free (for example buying 1 unit of M and selling short one unit of
the riskless asset 1) have “betas™ and returns lying on the line through the origin parallel to
the security market line.

4. CAPM without a riskless asset

There are other versions of mean-risk behavior in which the mutual fund theorem and
the secunity market line for marketed securities still holds, but Pareto optimality fails. This
shows that Pareto optimality is a separate, stronger property attaching to the quadratic uti-
lity, riskless asset version of the mean vaniance model. To make our point we shall prove
the mutual fund theorem and a security market line theorem for marketed assets 1n a qua-
dratic-utility CAPM model without a riskless asset. in which optimality need not obtain.

Definition: Let M = ¢ + RO = ROy be the market payoff. Let z = RO ,. We call @, a zero-
beta portfolio iff cov(z, M) = 0.

Lemma: Letr = RO, and M = r@y. Then there is a zero-beta portfolio ©, = @, + 10y,
for some 4, such that sp[r, M| = sp(z, M].

Proof: If var(M} = 0, there is nothing to prove. So suppose var(M) > 0. Le1 ©, = 0, +
AO@y. Then cov(RO, M) = cov(r®,, M) + Acov(M,M) so choose A = ~[cov(R@O,, M)/var
(M)). Then cov(z,M) = 0 and z and M are linearly independent if » and M are noncolinear.
Hence spir,M] = sp(z,M]. n Q.E.D.

Mutual Fund Theorem 2’ Let (q, @*; h € H) be an interior equlibrium for an economy
satisfying assumptions A1-AS, that is, possibly without a riskless asset, and let x#» = e# +
R@* be the final consumption of agent 4 € H. and let M = e + RO be the market portfolio
payoff. Then there is a zero beta portfolio payoff z, z = RO, satistying cov(z,M) = 0, such
that for all & € H, there are scalars s, and 1, for which x» = s, z + t, M. Moreover, if R has
full column rank and e# = 0 for all & € H, then ©% = 5,9 + 1,0 forall h € H.

Proof: Letu* = 1 - a,x* be the marginal utility vector of consumer 4. Let A be the set of
assets a with q, # 0, and let A/A be the remaining assets a' with q,, = 0. Noting that
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M =e + RO >> 0, we must have that g - @y # 0 for O solving M = ROy. Let M = M/(q
+ Op), and similarly for alla € 4 let 7, = rJ/q.. Then as we saw in the Pareto optimality
proof, at an interior equilibrrum it must be that u# 1 (7, M) for ali a € A and u* 1 r, for all
ae A/A. Letting K = sp[{(f.—M) | a e A} U {r, |a € A/A}], u* L K. But u* € sp[K, I, M]
forall h € H Thus the u* all lie in a two-dimensional set. Note the fact that / might not be
in sp[R] costs a dimension in this argument, and allows for the possibility of Pareto sub-
optimality.

If [ € sp[R], then we have already proved the result (letting z = ). If 7 ¢ sp(R}, then
we can still deduce that there is a two-dimensional space V containing all the x%, h € H. For
if there were 3 linearly independent consumption vectors x*, then the vectors u* = | — a, x*
would vary over at least 3 dimensions, since x* € sp{R] for all A.

Finally, let V be the (at most) two-dimensional subspace containing ali the x*. Since M
= hEH x#, M € V From the lemma, V 1s spanned by M and a zero-beta portfolio payoff

z= RO, Hencex" =5,z +t, Mforall h € H. If e* = 0 and R has full column rank, then
x'=RO# and @ =5,0,+1,0. u QE.D

Security Market Line Theorem 3'- Let (q, ©% h € H) be an intenor equilibrium for a
CAPM economy satisfying A1- A5, with prices g normalized so that g - @y = 1. Then there
is a linear relationship between the covariance of returns with the market return, and expec-
ted return, for assets with unit price. Precisely, there are scalars 4;, 4, 43 such that for any
portfolio ¢ with ¢ - ¢ = 1 and 7 = Ry, 4, cov(/,M) + A; Ef + A; = 0. Furthermore, if there
exists a zero-beta portfolio @ with g « €, = I, then letting £ = R, this linear relationship
takes the form:

cov(t.M) R
W (EM—E3).

Proof- For any portfolio y and any agent # € H, letting r = Ry,
u"Or _ coviub,r) = EurEr
CVY=TM T rOM T rOM
Restricting attention to §» with g -« § = I, 7 = Ry,
uh OM = cov(uh, ) + Eur EF
cov(l —ay xh F) + Eu* E}
= —ay cov(xh,F) + Eur EF.

(**) Ef-Ei=

So (u* I M)/a, = ~cov(xh, ) + (Eu*/ a,) EF.
Summung over h € H gives
5 wOM
heH ¢,
or A; = —cov(M,F) + AEF
Finally. observe that1f there 1s a zero-beta portfolio @, with g - @, = [, then the above

linear relationship must tahe the form (**) since any hnear relation 1s determined by wo
points, namely (var, M, EM), (0, E?) = QED

h
=- 3 cov(xh P+ 3 ii EF
heH heH %,
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II. Generalizations to multiple commodities and non-quadratic utilities

In this part we take a broader perspective, allowing for multiple consumer commo-
dities and therefore trade on spot markets and assets. and also for nonquadratic utilities.
The essential point that emerges here 1s that when asset markets are incomplete, there s
typically a lack of coordination between the desires of consumers and the desires of share-
holders. It 1s thus not correct to assert that under conditions of information symmetry,
perfect competition, etc., asset markets are efficient, or nearly so

We argue our case 1n two ways. We quote an argument in Geanakoplos-Polemarchakis
[1986]. that shows that generically, when the asset market 1s incomplete, the equilibrium
trade tn assets 1s inefficient in the strong sense that all traders could be made better off if
they made different asset trades, even if the subsequent spot markets were allowed to clear
at competitive prices, on account of the effect on rejative commodity prices when the spot
markets subsequently clear. When there is only one physical commodity in each state, the
desires of shareholders and consumers are necessarily the same, and indeed 1t is easy to see
that no reallocation of existing assets can Pareto dominate the competitive allocation.

Second, we consider the case where spot market relative prices are unaffected by asset
trades (the case with identical income effects on consumption). This is the case presumably
that is represented by the parable of the single commodity, assumed by the previous
models. Under this knife-edge hypothesis on income effects, asset reallocations alone
cannot Pareto improve on interior equilibria. If, in addition, attitudes toward risk are
quadratic. one would expect full Pareto optimality to obtain, as in Theorem 1. But this
turns out to be false, unless the assumption of a riskless asset is augmented by a far stronger
hypothesis. This abstraction further clanfies the role of the niskless asset in the one-
commodity world.

We shall begin by describing an equilibrium with multiple commodities and proving the
analogue to Theorem | for Pareto optimality in the general case.

From now on the commodity consumption space R{(S~/nL+D) consists of L+ physical
commodities, {0, I... , L}. n each of (S+1) states of nature. Consumers (W, ¢k, @) are
characterized by utility functions W" that are smooth and stnictly concave, and by
endowments ek € R[$+1L+1 and by their holdings &% of initial assets. It 1s often the case
that a utility function W* can be extended to a convex set X containing R (S+iL+1) while
retaining smoothness and strict concavity; the quadratic utility is an obvious example.* This
1s information which can be useful. so we shall take W# : X# — R where X" is any closed.
convex set, that 1s bounded from below, containing R {S+/L+1 Of course we shall always
restrict consumption to R{S+DiL+l)

Assets 7, a€ A {l, ..., A} now yield (L+1) dimensional vectors of commodities tn
each state, so 7, 1s given by an (S+1) X (L+1) matrix. The totality of assets is represented
by the collection R. The notation (R@),, for @ € RA. will mean the vector commodity payoff
that occurs in state s, given the portfolio © = (@,, ..., @,) We assume that asset | 1s not

+ We also require that DW"(x#) >> 0 for all x7 € R{$+00.+0 that satisfy ¢ £ M, where M 15 the
aggregate social endowment Itis not necessary to the theory that W be monotomic outside the feasible
set. mndeed, the quadratic utility 1s not monotonic tor large x#
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identically 0, and that it pays off a nonnegative amount in every commodity, and a positive
amount of some commodity in each state. A consequence of this mild assumption 1s that in
equilibrium the price of asset 1 can be taken to be strictly positive.

Asset prices are denoted, as before, by g € R4. Commodity prices are p € R{$+D(L+1),
The product p; (R@), means the payoff in units of account in state s that 1s obtained by
selling the commodity vector payoff (R@); at prices p; = (pso,---, Psi)-

Asbefore, welet @= I O+ ande= I etand M, = e, + (RO),.
he H heH

An interior equilibrium for the above economy is a tuple (g, p, (@*, x*); h € H) satis-
fying (©*, x*) eRA x R(§+(L+!)forallh € H, h§1-1 O = hZH Or = O, hEH xh =

€
S e+ R X Ot=M, and (O x*) e D" (q,p) = ArgMax {Wh (x) | (@,x) € R4 x
he H he_H X,
Xt g-@=¢q-Orandp, (x;~e") = p,(RO),forallse S),forallh e H.S

An extremely useful construction in the following 1s the asset constrained demand-
Dh(p | ©) = Arg Max {Wh (x) | x € X*, p,- (x; — e") = ps; (RO*), for all s € S}. The
X

choice x € D# (p | ©*4) iff agent h would choose x if he was forced to hold the portfolio @*,
but could trade freely on the spot commodity markets at prices p >> 0. An asset constrained
interior equlibrium is a tuple (p, (©*, x*); h € H) satisfying all the requirements of an equi-
librium except that the optimality condition (©*, x*) € D* (q,p) is replaced by the weaker
requirement x* € D# (p | ©*). We shall shortly say more about these.

Finally, let D* (p) = Yh D* (p | @) be the set of all conceivable commodity bundles

h might demand, if he did not have to worry about his budget constraint for assets, but if he
could only spread his limitless wealth across states of nature through assets Consider for
example the case where there 1s only one commodity per state of nature, and where X* is
all of RS+/. Then the prices p are 1rrelevant, since there is no spot trade. If the asset span,
sp(R}, has full rank S+1, so that the asset market is complete, then D*(p) 1s all of RS+/. If
the number of assets A < S+1, then D*(p) is an A-dimensional affine subspace of RS*/(a
subspace translated by the endowment e*).

1. A sufficient condition for Pareto optimality with multiple commodities, non-quadratic
utilities, and incomplete markets

For general X* < R(S+1iL+D et us give:

Defimtion. For x € X*, let ut(x) = DWh(x) be the marginal utility of agent 4.6 Given com-
modity prices p >> 0, we say that the vector u >> 0 is ray p-reachable for agent h iff there
is some A > 0 and x € (D*(p) n interior X*) with uk(x) = Au

Definition: We say that the map u* has the ray property at prices p for the economy (R,
(Wh, Xk ek @k); h € H) iff whenever the image uh(Dk(p)) of Dk(p) under u* contains

* Notice that we have allowed the choice set for commodities in calculatng demand D#(q.p) to
include all of X# Since we are restricting attention to demands x* intenior to R {$* 1/ +1)| this mahes no
difference on account of the concavity of W* We have already mentioned the great smportance for
Pareto optimality of considening only interior equihibria

¢ This definition is shghtly different from the one given 1n Section 2. since here it includes the pro-
bability weights 1, if they are used 1 the definttion of W*
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u>>0 {A>0| 3 x € D* (p), u* (x) = Au} 1s an interval and inf {Wh (x) | ut (x) = Au, A
>0, xe D" (p)} < Wh (e) and sup {Wh (x) | uh (x) = Au, A > 0, x € D*(p) } 2 Wh (M).

Defimition (co-reachable hypothesis): We say that the asset structure R allows for co-
reachable agents at prices p iff (1) every map u* has the ray property at p. and (2) a vector
u1s ray p-reachable by any agent & iff 4 1s ray p-reachable by all agents b’ € H.

The co-reachable hypothesis means that the images of the D*(p) under the maps u*
contain the same rays for all agents h € H, and furthermore that these ray images are large
intervals. No matter what the utilities W#, 1if u* (X*) has range including all of R{§-//L+D
(as may be assured by the proper boundary conditions). and if the asset markets are com-
plete. then the co-reachable hypothesis 1s trivially satisfied. There are cases where the
hypothesis 1s satisfied even when the asset market is incomplete. For example. under the
one good. quadratic von Neumann-Morgenstern hypothesis of Section 2, u# (x) = [ —~ aux.
If X* 15 taken to be RS+ and all the e* € sp[R], then the sets D* (p) are identical vector
spaces, and the sets u(D*(p)) are each identical transiations of D* (p) by the vector 1. If /
€ spiR] = D" (p), then u* (D* (p)) 1s a vector space, hence it includes all multiples Au of any
vector # that it contains. In particular. suppose that 0 << A = u* (x) = I - a,x. Then letung

x; =4, (1 -4u) € D (p) = sp(R), we find that for A — 0, Wh (x;) — Wh (4~ ), which 1s

the bliss point or maximum achievable utility. and for 4 — o, W# (x,) — - 2 < W* (k).
Hence the ray property holds, and co-reachabulity is confirmed.

Note that if for ali # € H we choose X* = {x € RS*/ | x, = -A)}, for A > max l/ag.

co-reachability could stmilarly be confirmed, and at the same time we would have X*
bounded from below. The images u* (D* (p)) would be ray identical (although perhaps not
pointwise identical). If A > 1/a,, then 1t can easily be checked that for any 4 >> 0, there is
x € Xk with u” (x) = Au, for some A > 0, and W (x) < W (0) < W* (e#). The sigmficance
of the co-reachability hypothesis, when X* is bounded from below. 1s illustrated by the fol-
lowing generalization of Theorem ! to many commodities and possibly nonquadratic
utlities.

Theorem 4. Let (q, p, (©*, x*); h € H) be an interior equilibrum for the economy (R, (Wh,
Xk, ek, ©k); h € H). Suppose that the co-reachability hypothesis holds at p. Then the allo-
cation (x* h € H) is fully Pareto optimal.

Proof- Let u = u* (x¥) for some b’ € H. We must show that u? (x?) = Ahy forallh € H.
For this 1t suffices to find (@*, £#) with " € D* (p | ©*) and u* (£*) = Au, for some 4 > 0,
with Wa (£#) = Wh (x*) since it follows at once that then £* = x4 To see this, note that if
h had asset income g - ©*, his demand at prices (g, p) would be (O*, &), since there the first
order conditions are satisfied But g - ©* is either greater, less, or equal to g - 6% = ¢
@+, If less, then from the fact that W* 1s monotonic near x#, and from the availability of
the nonnegative asset 7; 1t follows that 1t would be possible to make a better choice than
(@*, x* at prices (¢,p) and asset income g - ©4.7 A similar argument shows that ¢ - &% > ¢
-@* would contradict the optimality of (©*%, £%) Hence the conclusion that g - @ = g « ©*,
and x* = &k, follows from the strict concavity of W*.

7 The choice (a@h + (I-a)O*, axt + (I1~a)ih) st strictly preferred to (Oh, xh), for 0 < a < I, and
satisfies the state by state budget sets exactly, while leaving asset income to spare. For a near I, W, 1s
monotomc at ax® + (I~a)i*, and so spending the extra asset income on 7; makes W# higher stll.
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From the ray property there exists (@4, x4) and (04, x4) with W (x§) < W (eh) < Wk
(xh) < Wk (x4) and u* (x}) = A and u* (x4) = Au. Note that A, < 4, for by concavity of
Wh, we must have that (A,u) - (x4 - x}) > 0. From the diminishing marginal returns that are
a consequence of strict concavity, we must have 0 < () + (x3 - x}) < (,u) - (x4 - x}),
hence 4; < A,.

Again from the ray property, to each 4, < 4 < 4,, there is (6,%) with u* (¥) = Au, and
% € Dk (p | ©). From the last paragraph, we know that all such £ satisfy W4 (£) = W* (x4),
and hence ¢ - © < g - ©4. But from the fact that p >> 0, and (g,p) is an equilibrium, we
know that g does not permit arbitrage, i.e. there is no © with R@ > 0and g -+ @ = 0. Since
X* is closed and bounded from below, the set of x that satisfy the budget constraints with
asset income less or equal to g - @;, at asset prices g, is compact. A standard argument now
shows that there must be some (@, ) as above with W# (£) = Wh (x#),

Note first that u* is a one-to-one function. Take y # z; by strictly diminishing returns,
u(y) - (y-z) < pu(z) - (y-z), so u(y) # u(z). Hence we can write %(A), for 1, = 1 = 4,. More-
over, the function £ is continuous 1n 4. If 4, — A*, then since the £ (4,) lie in a compact set,
by passing to subsequences we have £ (4,) — x* and u* (x*) = A*u. So the function ¢ * (4 |
A; S A= 4, ) — R given by (1) = W* (2(/)) is continuous. The continuous image of a
connected set must be connected, so the image of ¢ must contain W# (x?). u QE.D.

As a first consequence of Theorem 4, let us consider the models of Section 2, but now
extended to allow for a class of nonquadratic utilities:

Corollary: Under assumptions (1), (2), (4), (5), (6), let Wk (x) = sé? s muh (x;), where all

the u* belong to one of the following exclusive classes: (a) u* (z) = % (1 + apz)%, 0,>0,b

<I1,b#0, (b)uk(z) =log (1 + asz), a, >0, (c) uh (z) = —e ~(1+akz_qa, > (. Any interior
equilibrium for such an economy must be fully Pareto optimal.

Proof: We need only apply Theorem 4, taking advantage of the fact that each u* can be
extended to X* = {x € RS*! | x; = -1/a, + €}, where 0 < €. Consider case (a), where u’(x)
= an(l + a, x,)>7;. Note that for any x € X*, uh = ut(x), uk = a,zmmb1, where m € sp(R).
So for any i’ € H, take x{ = (1/a;) [Am-1] € sp[R]. For 4 bigh enough, x4 € X* and u*
(x7) = (aplap) Ab-luk. As i — o, Wh (x#) — o« As A — 0, eventually —(1/a,)] << xk' <<
0, so W (x#) < W* (e*), and the co-reachability hypothests is confirmed. A simular argu-
ment works for cases (b) and (c). » QE.D.

2. Constrained optimality

The most important application for us of Theorem 4 1s to economies with many goods,
but where the reiative prices in each state of nature can be taken to be independent of the
distribution of income. Consider now utilities of the form: W (x) = Zs Tz uk (v (x50,

S€ .

Xsp, .-, X)), where v RL+1 — R represents “in state™ utidity, and u* - R — R represents
the attitude toward nisk of agent h We shall suppose that the concave and strictly quasi-
concave, monotonic v# give rise to the same “income effects” To be precise, let x* (p,, /)
= Arg Max {v# (x;) | x,€ RL+/, p, x; = I} be the state s demand of agent A.

Assump;zon 1.1. x% (p,, 1) 1s a differentiable function at all (p,, /) for whichx’ (p,. I) >> 0.
Furthermore, if at (p,, I*), x* (p,, ") >> 0 for all h € H, then [3a% (p,, 17)/3]) = Z, (p.)
Z 0, independent of /" and h
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Two example of unlities satisfving 1.1 are (1) all individuals have the same homo-
geneous utility v, = vt or (2) v? (xg, ty ., X)) =xq+ VM (xg ..., xy) forallh e
H In the first case. Z, (p;) = x* (p,, 1)/1. which1s independent of 7 and A, but not of p,. In
the second case. Z, (p,) = (1.0, .... 0) (if py = 1), which 1s independent of 4, I, and P,. [t1s
well-known, after Gorman. that all distributions of income that allow for strictly positive
spot market clearing prices p, give nse to the same price vector p; = g, (¢(f gy = 1).

For our two examples, these spot market clearing prices p; are easy to calculate. In (1),
ps = Dv(M)/[3v(M,)/3x50). In (2) p, is the marginal utiiity vector for each consumer at
(any) atlocation which maximizes the sum of utilities, given the aggregate endowment M,.
Notice that in both cases p, will depend on s, if the aggregate endowment is not constant.

The consequences of assumption 1.1 can be seen immediately for constrained optimalty.

Thevrem 5. Let (R, (Wh o (u*, vk, a%), eh, ©*) be an economy in which the (vt ek O#)
satisfy assumption 1.1. and suppose that (q, p, (©*, x*), h € H) 1s an interior equilibrium.
Then the allocation (x#; h € H) 1s constrained Pareto optimal.

Proof. Since all interior asset constrained equilibria (p, (0%, ¢4); h € H) sausfy p = p, 1t
follows that (f Wh (£h) > W# (xh), thenq- &% > q - ©# But then g - th or>gq- hZ

eH
©*, contradicting W OF = W Ok a QED

3. CAPM with multiple commodities: the riskless asset revisited

Assumption 1.1 generalizes the requirement that there ts only one physical commodity
per state of nature. at least for the purposes of obtaining constrained optimality A natural
conjecture 1s that if in addition we carry over assumptions 2-6, including the hypothesis that
the u* all belong to one of the same utthty classes (quadratic, or exponential, etc.) given by
the corollary to the last theorem, then we might be able to prove full Pareto opumality for
mtertor equilibria A moment's reflection 1n the one commodity world, where 1.1 and 1.2
hold tnivially, shows however that even when all the in “state utilities™ v# are 1dentical and
homothetic, full Pareto optimality cannot be expected. It is clearly necessary that the “in
state™ marginal utility of income is constant; otherwise 1t has implications for risk aversion,
and we know that only special risk averse behavior can give nse to full optimality. Note,
incidentally, that both of our examples (1) and (2) of acceprable v# do give rise to constant
“1n state” marginal utility of income But there 1s a more interesting problem, having to do
with the meaning of the riskless asset in a many commodity world.

When there 1s only one commodity, 1n every state, the niskless asset should provide for
delivery of one umt of the good 1n each state, or | unit of account in every state. if we take
the price of the good to be one. But when there are multiple commodities, with different
relative prices across the states of nature, then what should the niskiess asset provide”
Should 1t identify some significant commodity bundle. and pay off in constant purchasing
power relative to this bundle ? The right answer 1s that it shouid distnbute purchasing power
across the various states so that the increase 1n “within state™ utility is the same across all
states.

Defintnon: Let Wk (x) = Zs muh (v (x,)), and suppose that at equilibrium, consumption
S€E

1s.&k = (£h; 5 € §). A niskless asset r for consumer 4 satisfies Dv# (%) - r, = [ foreachs e §.
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Assumption 6.1: The collection of assets includes a riskless asset for at least one agent
heH.

Notice that the riskless asset for consumer h cannot be defined without knowledge of
the spot market clearing consumptions % (or equivalently, without knowing the spot
market clearing prices ), unless there is only one commodity per state. On the other hand,
observe that under the hypothesis that all the “in state™ utilities v* are identical and homo-
geneous, the same asset r is a riskless asset for every consumer. Furthermore, under this
homogeneity hypothesis, all initial endowment allocations (R, (eh,©%); h € H) that give nse
to the same aggregate endowment M also give rise to the same riskless asset, at every inte-
rior equilibrium. Thus the following theorem is not without content.

Theorem 6: Let (R. (Wh & (uk, v, 7th), eh, @) h € H) be an economy in which all vé = v
are tdentical and homogeneous of degree one. Furthermore, suppose that assumptions 2
(the span of R includes e” for all h € H), 3 1 (that all u* are drawn from one of the same
special classes designated earlier), 4 (the priors 1% are common), 5 (monotonicity), and 6.1
(there 1s a riskless asset for at least one individual &) hold. Then any intenor equilibrium is
fully Pareto optimal.

The proof of the above follows immediately from Theorem 4 Let us repeat that the
above theorem shows that the capital asset pricing model can be extended to a model with
a genuine multiplicity of commodities, 1f all consumers have the same homogeneous pre-
ferences of degree one within each state. To achieve full Pareto optimality, only one asset
1s required. beyond the initial endowments of all the consumers By choosing the spot
market price normalizations appropnately, one can of course arrange 1t so that this asset
pays off commodities with value equal to one in every state. We have therefore called this
the riskless asset, by analogy to the one commodity model of the last section (to which 1t
clearly reduces when there 1s indeed only one physical commodity) On the other hand.
when there are many commodities the correct price normalization cannot be predicted in
advance, i.e. 1t 15 impossible to know what asset will serve as the nskless asset without
knowing the “in state™ preferences and the aggregate endowment

Under the conditions of Theorem 6. let us normalize prices p, = DV, (M,) Let the
money pavoffs of each asset r € RS+1(L+1 be F € RS+ defined by F, =p,-r. s=0.1. .,
S. If in addition the w* are quadratic for all A, then one can easily derive the exact analogues
of Theorems 2, 3. 2" and 3" 1n this multiple commodity world

4. Security market line

A central relauonship 1n the capital asset pricing model 1s the security market line.
which suggests that the return to an asset 1s lincarly related to the covaniance of the asset
return and the market return. The fact that 1t 1s the covanance. and not the vanance, which
1s important to the pricing of assets 1s one of the enduring lessons of CAPM

But this 15 a lesson which holds much more generallv than for the CAPM model. We
shall derive a secunty market line for any GEl model. provided that we are permutted 10
substitute an arbitrary asset u € R+t +) for the market asset In particular. after making
this substitutton we can always find a “nshless™ asset without making anv assumptions
about the return matnx R or the preferences Wh Let (R, (Wh, Xl eh, ©4), h € H) be any
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multi-commodity general equilibnum model with incomplete markets. Let (g, p, (©*, x*);
h € H) be an interior equilibrium. For each r € RS*/1tl+/i Jet F € R**! be defined by 7, =
poor.s=0.1...., S.

Theorem 7. Let (R, (W*, X*, ek, ©") h € H) be a multi-commodity GEL. Let (g, p, (0, x*),
h € H) be anintenior equilibrium. Let . € R{1! be arbitrary, and satisfy sgsﬂ’ = [. Then

there is always a renormalization of prices p that maintains equilibrium, such that with res-
pect to these prices there is z € sp[R] with Z, = K for all s € S, and there 15 i € RS+)(L+))
such that for all r € sp[R] with q(r) = 1,

Cov.(4,F)

(Evi-Endl = s

[E-,ﬂ - EYZ] .
Remark. Note that the security market line holds only for marketed secutities (with price
equal 1).

Proof. Choose any h € H. From the separating hyperplane theorem there is a vector ji* €
R$+inL+D guch that for all y € R{S+InL+D_if Wh(y) = Wk(x*), then gk - y = gk - xh
Clearly gt = 1kp, for some 1% > 0, for eachs = 0, 1, ..., S. Moreover. there is some 4 > 0
such that for each r e sp[R], Aq(r) = ji" - r. Let u € R[$+U(L+D be defined by u, = (1/A)
fik. Then for all r € sp(R], q(r) = sgs:ts;i,r} =,40,F

Let us observe that without loss of generality we can always renormaiize p so that there
is 7 € sp[R) such that p; - ry =k foralls =0, /, ..., S, and 4 and F are linearly independent.
Asset r; satisfies p, + r,(I) > Oforalls = 0, [, ..., S (recall the definttion of GEI in the be-
ginning of Section II) so that r, will do unless 7, and j are colinear. If all assets r € sp(R]
with g(r) = I vield money payoffs 7 colinear with 4, the theorem is vacuously true. If there
is some r € sp{R], with g(r) > 0, and 7 not colinear with 7; and &, then let z = ar,;+ (I-a)r,
with0 <a <1 Thengq(z) > 0,andif aiscloseenoughto l, p;- z,>0foralls=0,1,.... S.
Moreover, Z ts linearly independent of 4 and 7;. So we can renormalize Z to be the niskless
asset. Thus without loss of generality suppose we have z € sp{R], with Z, = k for all 5, and &
and Z hinearly independent.

If g(r) = 1forr e splR], then I = 40,7 = Cov.(ii,7) + e;iiE .. Hence there 1s a (ne-
gative) linear relation between Cov,(4i,F) and EF. As long as Var i > 0, the claimed equa-

tion must describe this relationship. =
Q.ED.
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