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When Seeing Further is Not Seeing Better

By using games like chess as models for the process of making decisions in
a complex world, we discover circumstances under which looking far ahead
in a decision tree leads to poor choices. In particular we assert that the
Shannon algorithm, which is the basis of most computer chess programs, is
flawed because it does not take into account its own bounded rationality.
We derive several meta-principles for decision making, and show that they
explain some recent successful deviations from the Shannon algorithm. We
conjecture that they will lead to other important modifications, or even a
completely new algorithm.

A new machine has called into question our assump-
tions about calculation. Deep Thought, a chess-playing
machine that can calculate more moves ahead than all
other computer program, has taken first place in the World
Computer Chess Championships, defeated a number of
human grandmasters, and even challenged, albeit unsuc-
cessfully, World Champion Gary Kasparov. Deep
Thought’s designers are working on an even more power-
ful microchip with which Deep Thought will be able to
calculate an additional two full moves ahead, giving it
enough strength (so they claim) to beat Kasparov with
ease. Can we agree with Gary Kasparov, who still believes
that brute calculation does not necessarily provide the best
answers?

Because chess is a complex setting in which we
cannot accurately quantify our ignorance, and in which
the calculation of all possible consequences of an action is
beyond the capabilities of any computer, even beyond
those of any computer imaginable, we can use the game as
a metaphor for studying decision making, learning, and
expertise. At the Santa Fe Institute conference on Leamn-
ing in Economics, Psychology, and Computer Science,
held in January 1991, the game of chess was a frequent
example in many of the discussions. As a consequence,
the two of us began chatting about chess and computers,
and John posed the following puzzle.

If computers could perfectly assess the value of a
position in chess, they would not need to look ahead more
than one move. On the other hand, if they are incapable of
evaluating a position at all, it would do them no good to
look ahead more than one move. Why is it then, that when
their ability to evaluate positions lies somewhere between
the two extremes, it seems to help them to look ahead as
many moves as possible? One easy explanation is that
positions become appreciably easier to evaluate as one
goes deeper into the game. But can this be the whole story
oreven beright? After all, the typical foresight horizon of
the strongest chess computer is only four or five moves,
and who would argue that positions are on the average
much simpler at move 15 in a game than they are at move

11? Of course, some positions are clarified by looking
ahead, but at the same time, many simple positions have
complicated successors further down the tree of moves.
The more we talked, the more the puzzle grew, and we
began to hunt for some general principles. The trail led us
to some surprising discoveries, and a new project at the
Santa Fe Institute emerged.

The question that we have raised applies to many
situations besides chess, and indeed our project is not
really about chess, but about decision making in complex
environments. Imagine, for example, a traveler who needs
to drive from downtown Manhattan to the Upper West
Side of New York City. She is only vaguely familiar with
the layout of the city, but she does have a detailed map.
Using the map is difficult in traffic, and it is time-consum-
ing to park somewhere for a closer look. Furthermore, the
map is not completely clear about one-way streets, and
says nothing atall about traffic jams, road construction, or
stop lights. Should she try to trace outas much of the route
on the map as can be reliably remembered, including all
sorts of alternate routes to allow for unforeseen complica-
tions (i.e., look ahead as far as possible, keeping in mind
that no one could retain a complete plan, allowing for all
contingencies, in such a complex situation), or is it better
toadopt a one-step look-ahead plan, such as always trying
to head uptown and somewhat toward the west. Consider
also a father facing a difficult decision about how to
discipline a child. Should he try to calculate all the
possible ways in which his child, and his other children,
might react. and then how they subsequently might react
to his reaction to their reaction? Or should he simply do
what seems fair on general principles? One caneasily find
similar examples in a variety of other settings, from the
worlds of economics and politics, to the affairs of the
heart.

Are there rules, “meta-principles,” prescribing when
making choices based on general principles is superior to
looking as far ahead as possible, and vice versa? If some
calculating is to be done, are there meta-principles pre-
scribing what to calculate? The Shannon algorithm for
game play by computers, which we will describe below,
is based on the belief that seeing further is seeing beter,
and so comes firmly down on the side of calculation at
the deepest possible level in a decision tree. But when
sight is cloudy at best (as is the case when a computer
looks at any given chess position), is this belief justified?
Since the Shannon algorithm does not make any allow-
ance for its own imperfect vision, we think not, at least
not all of the time. In fact, we have discovered several
ways in which looking ahead can be misleading, as well
as ways in which it can be helpful.



Of course, we are not the first to have noticed that
looking far ahead is not always the best policy. But there
appears to be very little systematic work on finding an
alternative. Some people have tried to figure out why
search depth has been so successful in practice, particu-
larly for chess computer programs. But relative to the
tremendous amount of effort put into hardware and soft-
ware intended to help computers look ever deeper, there
has been relatively little work directed at understanding
the failures of search depth, and when such work has
been done, the usual recommendation is to look even
further ahead.

Information and informadon-processing consider-
ations play an important role in economic theory, includ-
ing capital theory, finance, macroeconomics, game theory,
and labor theory. In all of these situations it is assumed
that the agents are aware of their own limitations, and
that they can quantify their ignorance. Across all of these
decision problems, knowing more means doing beter.
Chess is a fascinating paradigm for decision making in
complex environments precisely because, as in most real
life situations, it is a setting in which we cannot accu-
rately quantify our ignorance. We should therefore not
be surprised if some natural decision-making routines do
not have the property that they perform better when they
are given more information. As we shall see, the Shan-
non algorithm is particularly vulnerable to this problem
since it makes no attempt to compensate for its own
fallibility.

A straightforward example in which leaming more
may be harmful is when there is “roundoff error,” so that
after sufficiently many calculations, the small errors in-
evitably made at each step accumulate and the final
answer is almost certainly wrong. One sometimes sees
this in chess, when a commentator on some game de-
clares that a move is good (or bad), giving as proofa 15-
move variation with “best” play by both sides. Although
the evaluation of the final positon in his variation may
be unambiguous, and there may be no obvious blunder
in the given line of play, the possibility that at each step
there might have been a slightly better move leaves the
conclusion still very much in doubt. (The Shannon algo-
rithm searches exhaustively every possible move up to a
certain depth, so it is not necessarily subject to this kind
of error.)

In order to compensate for one’s ignorance, it would
seem necessary to quantify it, but how does one do that
in a real-life setting like chess? In our project we propose
to solve this dilemma by following a two-step plan: First
we build a precise model in which the ignorance is
quantified, and we derive mathemarically the correct

decision-making algo- R

rithm. Second, keep- B
ing in mind that such
a model cannot be a
faithful portrait of re-
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ality, we look for prin-
ciples of decision
making that are inde-
pendent of the way in which we quantfy ignorance.

A Simple Example

We illustrate some of the main ideas with an ex-
ample. Imagine a person who must choose a course of
action. The choice is to be made in two phases or moves,
with two altematives available at each move. Thus there
are altogether four possible decision paths. Suppose that
only one of the four paths is desirable. We depict the
situation in Figure 1.

The black dots in the picture represent different
points, or positions, that can be arrived at in the decision-
making process. Positions on a treg of this sort are also
called “nodes.” The node labeled R is the starting point,
or “root” of the decision tree. The two alternatives at the
first move are labeled A and B. There are two further
alternatives stemming from each of the nodes A and B.
Of these, only one represents the desirable end result.
This correct “terminal node” is labeled with a 1, and the
remaining terminal nodes are labeled with —1's. We think
of these numbers as the payoff to the decision maker for
arriving at the corresponding positions. To achieve the
payoff of 1, the person must first choose A, and then take
the lower branch stemming from A. Any other path
results in a payoff of -1. (A payoff of —1 means that the
player loses 1.)

Note that once alternative B is chosen, it is not
possible to reach any payoff higher than —1. Thus we
may reasonably assign the value -1 to node B. On the
other hand, it is possible to reach the payoff 1 from node
A, so we assign the value 1 t0 node A. The values that we
have assigned A and B are the highest possible values
that can be reached from those nodes. Working back
further, we may similarly assign the value 1 to the root
node R.

We have illustrated a special case of a procedure,
called “backward induction,” by which we can systemati-
cally assign values to the nodes of any finite one-person
decision tree, provided all of the terminal nodes have been
assigned values. In general, to find the value of any node
whose successors have already been assigned values,
simply take the maximum of the values of its successors.

Figure 1: A two-stage decision tree.




Continuing in this fashion, we can assign values, one level
at a time, to all of the nodes, starting from the end of the
tree and eventually reaching the root node.

Once we specify who moves ateachnode of the tree,
backward induction also works for two-person decision
trees in which the twopersons (tradidonally called “White”
and “Black™) compete against one another. Such a situa-
tion is often called a “game” (or more precisely, a “zero-
sum game™). To find the value (to White) of any node
whose successors have already been assigned values, take
the maximum of the values of the successors if the node
represents a position in which it is White’s move, and if
Black is on the move, take the ninimum of the values of
the successors. This is the so-cailed “min-max” proce-
dure. Both it and the simpler “max” procedure used for the
one-person situation work equally well when the terminal
nodes have been assigned values other than 1’s and -1’s.

Once backward inducton has been carried out, it is
often useful to talk about decision paths along which the
“best” choices are made by the people involved. To find
such apath, start at the root node, and then choose ateach
successive node what is best for the player on the move;
that is, choose the node that has been assigned the best
valuye for that player. (If there is a tie, choose arbitrarily
among the best nodes.) This procedure results in a se-
quence of nodes that we call an “intended path” or “in-
tended line of play.” In the computer chess literature, an
intended path is also known as a “principal continuation.”

Fora finite game, suchaschess, in which the outcome
or payoff depends solely on the final positon, backward
induction implies that the strength of any intermediate
position is entirely determined by the strengths of the
positions that can be reached from it. This insight led the
logician Zermelo in 1912 to prove that for chess, every
position, including the starting position, must have a value
(win for White, win for Black, or draw), representing the
outcome that would inevitably result from best play by
both players.

This kind of argument was implicitly familiar to the
leading chess players of the 19th century. The concept of
backward valuation had also been introduced into eco-
nomics by the great Austrian economist Karl Menger in
the 1870s. (He imputed value to productive machinery
from the value of the consumption goods produced.)
Wilhelm Steinitz, the first universally acclaimed world
chess champion and the acknowledged father of posi-
tional chess, who incidentally lived in Vienna at the same
time as Menger, took the argument one step further. He
reasoned that the valuation of a position could sometimes
be obtained from general principles, without any further
calculation. To the extent that positional considerations
lead tocorrect valuations, they must agre€ with the results

of backward induction. As Emmanual Lasker, the math-
ematician who defeated Steinitz for the world tite, put it,
Steinitz’s insight led to the death of the romantic school of
chess. If it can be seen on purely positional grounds that
White hasatleastadraw, thereis no pointin Black making
long calculations to find a brilliant winning move. Until
Black can see that White has made a mistake, no such
move will be available.

Let us now return to our simple one-person, two-
move example. Think of the tree in Figure 1 as the inital
part of a much larger decision tree, with the values being
the ones that would be arrived at by backward induction
from the final nodes of the larger wwee, if suck calculation
were possible. But suppose that such calculadon is not
possible. Instead, the decision maker is only capable of
guessing at the values of each of the nodes in the smaller
tree, basing his guesses on “positional principles.” This is
essentially the situation faced by the chess-playing com-
puter. In the 1950s, the information theory pioneer Claude
Shannon suggested an algorithm, combining the ideas of
Zermelo and Steinitz, for how a choice should be made
between A and B. According to Shannon, the decision
maker should assume that his guesses for the values of the
four terminal nodes of the tree 1n Figure 1 are the acrual
values of these nodes, assign values to A and B accord-
ingly by backward induction, and then use those valuesto
choose between A and B.

This is the Shannon algorithm with two-move look-
ahead. Of course Shannon realized that the guesses being
made are likely t0 be wrong at least some of the time, and
he suggested two ways in which the procedure could be
improved. One way is to program more sophisticated
positional principles into the computer, so that it canmake
better guesses. The second way is for the computer to look
further ahead. In practice almost ail of the improvement
has apparently come from the second approach.

Our question is why this should help at all, at least
when the later positions are as hard to evaluate as the
earlier ones. In our example, let us assume that there is
some probability p that the decision maker correctly
guesses the value of a given position, so that with prob-
ability ¢ =1 - p, he guesses the wrong value. We also
assume that the errors in these guesses are independent of
one another. (By making these assumptions, we are im-
plicitly eliminating the possibility that decisionsare easier
deeperin the tree.) Now comes a surprise: it tums out that,
no matter what the terminal values, and no matter what the
value of p for 1/2 < p < 1, the decision maker would do
better to look only one move ahead! (There is no point in
considering values of p smaller than 1/2, since even a
random guesser gets the value right half of the time).



As stated earlier, there are others who have noticed
that the Shannon algorithm’s ability to make a correct
move diminishes with deeper search depth, at least when
the error probability is the same for all positions. In a book
called Hewristics, by Judea Pearl, there is a chapter de-
voted to this phenomenon, called the “search-depth pa-
thology,” in which it is proved that if the error probability
is constant, then the Shannon algorithm degrades to com-
plete randomness as the depth of search depth goes to
infinity. There are also some resultsthatattempt toexplain
the empirical fact that the Shannon algorithm is neverthe-
less quite successful. But there is no rigorous discussion
of how the Shannon algorithm might be modified to
overcome the search-depth pathology.

What goes wrong with the Shannon algorithm? First,
since it does not recognize that its guesses may be mis-
taken, it does not use the available information optimally.
If, for instance, the guesses for the terminal nodes were
1,1,1,-1, from top to bottom, then it would seem obvious
that A isabetter choice than B, butin this case the Shannon
algorithm treats A and B indifferently. Second, the Shan-
non algorithm does not attempt to determine which of the
nodes should be most profitably examined, but instead
always examines the deepest nodes it can reach. Deeper
search means looking at more nodes, but if one then
restricts one’s attention to only the deepest nodes in the
tree, searching deeper is no longer synonymous with
using more information.

A Little Mathematics

We wish to resolve our puzzle about foresight and
calculation by mathematical proof, and so without being
overly technical, we describe here the theoretical frame-
work in which we are carrying out our investigations. We
begin with an arbitrary tree of nodes, at each of which we
assign a player to move. The Zermelo values of the nodes
are unknown to the players, but they can guess the value
ata node (and perhaps other things) by observing it. In this
context we can give mathematcal formulas for the opti-
mal choice of move, given any set of observatons, and
also the formula prescribing the best node to examine first.
Recall that this constitutes the first step in our methodol-
ogy. Afterward, we will describe the progress we have
made with the second step, which is to extract general
principles from the mathematics, Of crucial importance to
the second step is that in the first step, we consider only
those models in which spurious statistical correlations do
not prevent sensible decision making. For example, in
general some apparently irrelevant node might be per-
fectly correlated with the decision a player should make.
We will not attempt to create a theory to handle such

sitwations. By assuming the “Markov property,” as ex-
plained below, we rule out such anomalies. As we will
see, the Markov property is a reasonable description of
many decision-making contexts.

To make our analysis mathematical, we must first
come up with a rule for assigning values to the terminal
nodes of the tree. For example, one often-used method is
to assign valuesto terminal nodes randomly and indepen-
dently. Thisapproach has the feature that trees are " grown”
backwards, namely from the terminal nodes to the roots,
leading to results that are quite unnatural. We grow the
trees from the root upward, using the Markov property.

To do this in a realistic manner, we suppose that
positions come in several types. The type of a position
tells us its true value along with several other things,
which might include information about how difficult the
true value is to guess and what types of positions it is
likely to lead to. This is in accordance with the way good
chess players tend to think about positions. They might,
for example, look at a position and say something like:
“this position is difficult to evaluate, but it seems clear
that White’s chances lie in a Kingside attack, while Black
must seek counterplay in the center,” or “this type of
position tends to lead to very dull play in which neither
side can gain an advantage.”

We typically make the following assumption: once
we know the type of a position x, our beliefs about the
types of the successors of x are not affected by any
knowledge about the types of any nodes that are not
successors of x. This kind of assumption is often called
the “Markov property.” It is a reasonable approximation
to what happens in games like chess, where once you
observe all you can about a position, your predictions
about the successors of that position should not be af-
fected by knowledge orlack of knowledge about the types
of positions you reached along the way, or by the types of
positions you could have reached if you or your opponent
had made 2 different earlier move.

Since even experts sometimes read a siniation incor-
rectly, we want to include in our model some way in
which errors occur, that is, to “quantify our ignorance.”
We assume that for any given set of position types, the
probability that we will guess that the immediate succes-
sors of some position x have those types depends on two
things: the actual types of the immediate successors of x,
and the guess that we made for x itself (if sucha guess was
made). This assumption is similar to the Markovian
assumption made earlier. It includes as an interesting
special case the possibility that all guesses are made
independently of one another, as in the example illus-
trated in the Figure 1.



Some General Principles
We will give here five principles that can be deduced
from our mathemaricai formulas. Afterwards, we will talk
about how the Shannon algonthm fares with respect to
these principles, and we will mention several guidelines
used by human decision makers that seem to be in agree-
ment with our principles.
1. The proximity principle. Think about the immediate
consequences of youractions first! More precisely, if
y and y’ are both successors of x. and if y“is also a
successor of y, then yis more informative aboutx than
is y/ The relationship can sometimes be reversed if
we are sufficiently certain of our guesses about y’
and/or sufficiently uncertain of our guesses about y.
In such a case, the “clear sight principle” comes into
play, as explained below.

2. The relevance principle. Examine the most promis-
ing alternatves first! Or, in the context of games,
continue your investigations first along the apparent
intended lines of play. In particular, if you want to
leam about x by looking at one of the immediate
successorsof x, look at the node y that is a priori most
likely to be chosen by the player moving at x.

If y and y“both succeed x, and y”is deeper in the tree
than y, but does not succeed y, it might seem that we
should first examine y. But this will not be true if
along the path from x to y, the moves along the path
to y are more or less “forced” (i.e., the alternatives at
eachnode on the path are obviously bad for the player
moving at that node,) and if y “seems like it might be
a good position for the player who is currently trying
to make the decision.

3. The family principle. Make decisions that lead to
many good options, rather than relying on one excel-
lent possibility. Having many successors nodes with
reasonably good prospects is better than having a few
successors with great prospects. Formulating this
principlein precise mathematical terms leads to some
interesting questions of statistics that, to our knowl-
edge, have never been addressed. Namely, suppose
youobserve two sets (or “families™) of numbers, and
want to choose the set that contains the largest num-
ber (the “bestchild™). If your observations are subject
to error, how should you choose? The family prin-
ciple says that you need to consider the apparent
combined strengths of all the children in a family,
rather than just thatof the apparently best child. There
are two distinctreasons for this. The firstis that forthe
family that has a greater number of “promising”
children, it is more likely that one of them will
actually be much better than your observations led
you to believe. The second is that for a family with
one very promising child and many mediocre chil-
dren, the fact that you observed many mediocre

children makes it more likely that your estmation of
the apparently outstanding child is too high.

4. The srability principle. Consistency ncreases confi-
dence. If our guesses were accurate, we would guess
values along the intended path that changed very
little. Thus, if there is.a terminal node whose prede-
cessor nodes look consistently good from beginning
to end, we should prefer that over a terminal node
whose predecessornodes appear to fluctuate in value,
which in turn is preferable to a terminal node with
consistently bad predecessors. If there is a lot of
fluctuation in the values along the path to a terminal
node in our search, we may want (o increase our
confidence in its evaluadon by searching deeper.

5. The clear sight principle. If possible, base your
decisions on clear-cut results. Qur formulas show
that observations with the lowest error probability
typically receive the most weight. In the extreme
case, when all of the error probabilities are very
small, the Shannon algorithm might work well. We
must emphasize the “very small” here, because this
principle is essentially in conflict with the previous
principles, and it doesn’t take much in the way of
observation errors to make them dominate. Judea
Pearl shows in his book, under certain special as-
sumptions on the decision tree, the most important of
which is independence of the values of the terminal
nodes, that if the proportion of absolutely clear posi-
tions in.the tree goes to 1 as the tree gets deeper, then
the search-depth pathology goes away, and basing
your decision on the values of the terminal nodes is a
good idea. This principle is the reason he gives for the
successes of the Shannon algorithm. The Shannon
algorithm should be modified toinclude some assess-
ment of the size of the error probability for each node
that it looks at.

Not surprisingly, there are several folk maxims that
sound like the principles just given. For example, the
proximity and stability principles both are related to the
phrase “the end never justifies the means,” while the
family principle sounds like “don’t putall youreggsinone
basket.” This last phrase is also a warning about reliance
on the clear sight principle in cases where we think our
guessing errors are too unlikely to worry about (*T ve got
asure thing in the fifthrace...”). “Follow yournose” could
be interpreted as the proximity principle, and “go with a
winner” is clearly a form of the relevance principle. “A
bird in the hand is worth two in the bush” is a version of
the clear sight principle. The mathematics confirms, but
also gives precision, to the proverbs of everyday experi-
ence.

Good chess players also seem to be aware of the
principles we have given. Grandmasters typically do not
choose a move based on looking far ahead. Instead, they



usually choose one or two plausible moves based on
looking only one move ahead (the proximity principle),
and then investigate those moves further by following
whatlook likethe most likely continuations (the relevance
principle). In certain circumstances, they do look ahead to
try to find positions whose value is obvious (theclear sight
principle), so that they can avoid making blunders or
falling into traps, or so that they can possibly find forcing
moves that lead to a clearly won position. They have a
keen sense of what types of positions will make available
many good continuatons for them (the family principle),
and they are suspicious of lines that seem to end well, but
are reached by way of positions that appear unsafe (the
stability principle).

Evidence from the Chess Worid

Since the Shannon algorithm is unaware of its own
“bounded rationality,” it ignores the principles just enun-
ciated. As far as we know, in the 40 years since Shannon
first introduced his method, there have been only three
modifications that attempt to compensate for these limita-
tions. All three of them have dramatically improved the
play of computer chess. The firstone, introduced early on,
allows the positional evaluator to assign a whole range of
values to positions, even though there are only three
possible true values for any position (win, lose, or draw).
The effect of this procedure is that positions which are
clear wins or losses are given extra weight (because they
are given very high or low values respectively) in the
Shannon algorithm. This is in keeping with the clear sight
principle.

The second innovation is a limited kind of stability
analysis. Itis typically used in chess when a piece capture,
say, White queen takes Black knight, occurs at the end of
a path in the tree of moves being searched. Immediately
after this capture, the value of the position appears 1o
suddenly have changed, in favor of White, since Black is
missing a knight. But it is often the case that in such
circumstances, White’s queen can be taken by Black on
the very next play. Since queens are usually worth more
than knights, the position is, in fact, good for Black. This
phenomenon is known as the “horizon effect,” and is
avoided by searching deeper in thoss positions where
pieces (suchas the White queen) are “hanging,” or vulner-
able to being captured. Note how this is a special case of
applying the stability principle.

The third modification is known as “singular exten-
sion,” and was first introduced by the Deep Thought team
in 1987. It noticeably improved the play of Deep Thought,
and is now used by all of the top chess-playing programs.
Briefly, the idea behind singular extension is that when-
ever the program finds a move that is vastly better than all
of its alternatives, it looks deeper to check itself. Singular
extension can be understood directly from the relevance
principle. If a move to y following x is dramatically

superior to 1ts altemanves, then the relevance of succes-
sors of y will consequently also be high, and thus worthy
of further investigation.

All of the modifications described here were moti-
vated more by ad hoc practical considerations than by any
deep understanding of general principles. There has been
no attempt at all to be systematic, yet the three most
important improvements in the Shannon algorithm can all
be understood on the basis of our general principles. We
hope that our work will lead to further improvements.

Where Do We Go From Here?

We have derived a set of general principles for
optimal decision-making in complex environments. As a
concrete application we investigated the game of chess,
and we have tried to show that our principlesexplain all of
the major improvements in computer chess programs
(aside from those connected with computing speed). We
further suggest that they roughly correspond to principles
used by good human players.

We also believe that the practical application of our
principles to chess play has not yet been exhausted. The
clear sight principle and the relevance principle have
indeed been partly embodied in the strongest programs.
But the stability principle is used only in a very attenuated
form, as a reason for further search-depth when the
material is unstable. The application could be enormously
enhanced by looking ahead after any position whose
positional evaluation is unstable along the path leading up
to it. The principle could be applied even without further
searchdepth, by using the guessed values of the predeces-
sors of a position to alter our guessed value for the position
itself. The proximity principle guarantees that unless the
positions are getting easier to evaluate, early evaluations
are more reliable anyway. The family principle suggests
that we should let our evaluation of a position depend
somewhat on the guesses we make for its neighbors. The
precise mathematical form of this will depend on the kind
of ignorance thatis present, Furthermore, implementation
of a procedure based on the family principle is probably
less compatible with the Shannon algorithm than any of
the other suggestions we have made. But we believe that
after much research, there may be something of practical
value here as well.

As far asthe world outside of chess goes, it seems that
people have been at least vaguely aware of our principles
all along. But by giving them a somewhat more precise
formulaton, we have illustrated how mathematics can
refine and clarify, and even improve, the way in which we
make day-to-day decisions.

—John Geanakoplos and Larry Gray
June 27, 1991
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