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1. Introduction

People, no matter how rational they are, usually act on the basis of incomplete
information. If they are rational they recognize their own ignorance and reflect
carefully on what they know and what they do not know, before choosing how
to act. Furthermorc, when rational agents interact, they think about what the
others know and do not know, and what the others know about what they know,
before choosing how to act. Failing to do so can be disastrous. When the notorious
evil genius Professor Moriarty confronts Sherlock Holmes for the first time he
shows his ability to think interactively by remarking, “All I have to say has already
crossed your mind.” Holmes, even more adept at that kind of thinking, responds,
“Then possibly my answer has crossed yours.” Later, Moriarty’s limited mastery
of interactive epistemology allowed Holmes and Watson to escape from the train
at Canterbury, a mistake which ultimately led to Moriarity’s death, because he
went on to Paris after calculating that Holmes would normally go on to Paris,
failing to deduce that Holmes had deduced that he would deduce what Holmes
would normally do and in this circumstance get off earlier.

Knowledge and interactive knowledge are central elements in economic theory.
Any prospective stock buyer who has information suggesting the price will go up
must consider that the scller might have information indicating that the price will
go down. If the buyer further considers that the seller is willing to sell the stock,
having also taken into account that the buyer is willing to purchase the stock, the
prospective buyer must ask whether buying is still a good idca.

Can rational agents agrec to disagree? In this question connccted to whether
rational agents will speculate in the stock market? How might the degree of
rationality of the agents, or the length of time they talk, influence the answer to
this question?

The notion of common knowledge plays a crucial role in the analysis of these
questions. An event is common knowledge among a group of agents if each one
knows it, each one knows that the others know it, each one knows that each one
knows that the others know it, and so on. Thus, common knowledge is the limit
of a potentially infinite chain of reasoning about knowledge. This definition of
common knowledge was suggested by the philosopher D. Lewis in 1969. A formal
definition of common knowledge was introduced into the ecconomics literature by
Robert Aumann in 1976,

Public events are thc most obvious candidates for common knowledge. But
events that the agents crcate themselves, like the rules of a game or contract, can
also plausibly be seen as common knowledge. Certain beliefs about human nature
might also be taken to be common knowledge. Economists are especially interested,
for example, in the conscquences of the hypothesis that it is common knowledge
that all agents are optimizers. Finally, it often occurs that after lengthy conversations
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or observations, what people are going to do is common knowledge, though the
reasons for their actions may be difficult to discntangle.

The purpose of this chapter is to survey some of the implications for economic
behavior of the hypotheses that events are common knowledge, that actions are
common knowledgc, that optimization is common knowledge, and that rationality
is common knowledge. The main conclusion is that an apparently innocuous
assumption of common knowledge rules out speculation, betting, and agreeing to
disagree. To try to restore the conventional understandings of these phenomena
we allow for infinite state spaces, approximate common knowledge of various kinds
including knowledge about knowledge only upto levcl i, and bounded rationality.
We begin this survey with several puzzics that illustrate the strength of the common
knowlcdge hypothesis.

2. Puzzles about reasoning based on the reasoning of others

The most famous example illustrating the ideas of reasoning about common
knowledge can be told in many equivalent ways. The earliest version that 1 could
find appears in Littlewood’s Miscellania, (edited by Bollobas) published in 1953,
although he noted that it was already well-known and had caused a sensation in
Europe some years before. The colonial version of the story begins with many
cannibals married to unfaithful wives, and of course a missionary. I shall be content
to offer a more prosaic version, involving a group of logical children wearing hats. !

Imagine three girls sitting in a circle, each wearing either a red hat or a whitc hat.
Suppose that all the hats are red. When the teacher asks if any student can identify
the color of her own hat, the answer is always negative, sincc nobody can sce her
own hat. But if the teacher happens to remark that there is at least one red hat
in the room, a fact which is well-known to every child (who can see two red hats
in the room) then the answers change. The first student who is asked cannot tell,
nor can the second. But the third will be able to answer with confidence that she
is indeed wearing a red hat.

How? By following this chain of logic. If the hats on the heads of both children
two and three were white, then the teacher’s remark would allow the first child to
answer with confidence that her hat was red. But she cannot tell, which reveals to
children two and three that at least one of them is wearing a red hat. The third
child watches the second also admit that she cannot tell her hat color, and then
reasons as follows: “If my hat had been white, then the sccond girl would have

'These versions are so well-known that it is difficult to find out who told them first. The hats version
appeared in Martin Gardner’s collection (1984). Tt had already been presented by Gamow and Stern
(1958) as the puzzle of the cheating wives. It was discussed in the economics literature by Geanakoplos—
Polemarchakis (1982). It appeared in the computer science literature in Halpern: Moses (1984).
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answered that she was wearing a red hat, since we both know that at least onc of
us 1s wearing a red hat. But the second girl could not answer. Therefore, I must
be wearing a red hat.” The story is surprising because aside from the apparently
innocuous remark of the teacher, the students appear to learn from nothing except
their own ignorance. Indeed this 1s precisely the case.

The story contains several crucial elements: it is common knowledge that every-
body can see two hats; the pronouncements of ignorance are public; each child
knows the reasoning used by the others. Each student knew the apparently
innocuous fact related by the teacher — that there was at least one red hat in the
room — but the fact was not common knowledge between them. When it became
common knowledge, the second and third children could draw inferences from
the answer of the first child, eventually enabling the third child to deduce her hat
color.

Consider a second example, also described by Littlewood, involving betting. An
honest but mischievous father tells his two sons that he has placed 10" dollars in
one envetope, and 10"*! dollars in the other envelope, where n is chosen with
equal probability among the integers between 1 and 6. The sons completely believe
their father. He randomly hands each son an envelope. The first son looks inside
his envelope and finds $10000. Disappointed at the meager amount, he calculates
that the odds are fifty—fifty that he has the smaller amount in his envelope. Since
the other envelope contains either $1000 or $ 100000 with equal probability, the
first son realizes that the expected amount in the other envelope is $50 500, The
second son finds only $1000 in his envelope. Based on his information, he expects
to find either $100 or S10000 in the first son’s envelope, which at equal odds
comes to an expectation of $5050. The father privately asks each son whether he
would be willing to pay $1 to switch envelopes, in effect betting that the other
envelope has more money. Both sons say ves. The father then tells each son what
his brother said and repeats the question. Again both sons say yes. The father
retays the brothers’ answers and asks each a third time whether he is willing to
pay S1 to switch envelopes. Again both say yes. But if the father relays their
answers and asks cach a fourth time, the son with $1 000 will say yes, but the son
with $10000 will say no.

It is interesting to consider a shght variation of this story. Suppose now that
the very first time the father tells each of his sons that he can pay $1 to switch
cnvelopes it is understood that if the other son refuses, the deal is off and the
father keeps the dollar. What would they do? Both would say no, as we shall explain
In a later section.

A third puzzle is more rccent.” Consider two detectives trained at the same
police academy. Their instruction consists of a well-defined rule specifying who to

2This story is originally due to Bacharach, perhaps somewhat embellished by Aumann, from whom
1 lcarned it. It illustrates the analysis in Aumann (1976), Geanakoplos and Polemarchakis (1982), and
Cave (1983).
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arrest given the clues that have been discovered. Suppose now that a murder
occurs, and the two detectives are ordered to conduct indcpendent investigations.
They promise not 1o share any data gathered from their research, and begin their
sleuthing in different corners of the town. Suddenly the detectives are asked to
appear and announce who they plan to arrest. Neither has had the time to complete
a full investigation, so they each have gathered different clues. They meet on the
way to the station. Recalling their plcdges, they do not tcll each other a single
discovery, or even a singlc reason why they were led to their respective conclusions.
But they do tell each other who they plan to arrest. Hearing the other’s opinion,
each detective may change his mind and give another opinion. This may cause a
further change in opinion.

If they talk tong enough, however, then we can be sure that both detectives wilt
announce the same suspect at the station! This is so even though if asked to
explain their choices, they may each produce entirely different motives, weapons,
scenarios, and so on. And if they had shared their clucs, they might well have
agrecd on an entirely different suspect!

It is commonplace in economics nowadays to say that many actions of
optimizing, interacting agents can be naturally explained only on the basis of
asymmetric information. But in the riddic of the detectives common knowledge
of each agent’s action (what suspect is chosen, given the decision rules) negates
asymmetric information about events (what information was actually gathered).
At the end, the detectives arc necessarily led to a decision which can be explained
by a common set of clues, although in fact their clues might have been different,
even allowing for the deductions each made from hearing the opinions expressed
in the conversation. The lesson we shall draw is that asymmetric information is
important only if it leads to uncertainty about the action plans of the other agents.

3. Interactive epistemology

To cxamine the role of common knowledge, both in these three puzzles and in
economics more generally, the fundamental conceptual tool we shall use is the
state of the world. Leibnitz first introduced this idea; 1t has since been refined by
Kripke, Savage, Harsanyl. and Aumann, among others. A “state of the world” is
very detailed. It specifies the physical universe, past, present, and future; it describes
what every agent knows, and what every agent knows about what every agent
knows, and so on; it specifies what every agent does, and what every agent thinks
about what every agent does, and what every agent thinks about what every agent
thinks about what every agent does, and so on; it specifics the utility to every
agent of every action, not only of those that are taken in that state of nature, but
also those that hypothetically might have been taken, and it specifies what
everybody thinks about the utility to cverybody else of every possible action, and
so on; it specifics not only what agents know. but what probability they assign to
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every event, and what probability they assign to every other agent assigning some
probability to each event, and so on.

Let £2 be the set of all possible worlds, defined in this all-embracing sensc. We
model limited knowledge by analogy with a far-off observer who from his distance
cannot quite distinguish some objects from others. For instance, the obscrver might
be able to tell the sex of anyone he sees, but not who the person is. The agent’s
knowledge will be formally described throughout most of this survey by a collection
of mutually disjoint and exhaustive classes of states of thc world called eclls that
partition £2. If two states of nature arc in the same cell, then the agent cannot
distinguish them. For each we 2, we define P(w) < 2 as all states that agent i
cannot distinguish from .

Any subset E contained in £2 1s called an event. If the truc state of the world
is w, and if weE, then we say that E occurs or is true. If every state that i thinks
is possible (given that @ is the true state) entails E, which we write as Pw) < E,
then wc say that agent i knows E. Note that at some , i may know E, while at
other w, i may not. If whenever £ occurs i knows E, that is, if P;(w)< E for all
states w in E, then we say that E is self-evident to i. Such an event E cannot happen
unlcss | knows it.

So far we have described the knowledge of agent i by what he would think is
possible in each state of nature. There is an equivalent way of representing the
knowledge of agent i at some state o, simply by cnumerating all the events which
the information he has at @ guarantees must occur. The crispest notation to capture
this idea is a knowledge operator K, taking any event FE into the set of all states
at which i is sure that E has occurred: K, (£) = {wef2: P(w)< E}. At w, agent i
has cnough information to guarantee that event E has occurred iff meK(E). A
self-evident event can now be described as any subset E of €2 satisfying K (E) = E,
i.e., the self-evident cvents are the fixed points of the K; operator.

As long as the possibility correspondence P; is a partition, the knowledge
operator applicd to any event E is the union of all the partition cells that are
completely contained in E. It can easily be checked that the knowledge operator
K, derived from the partition possibility correspondence P; satisfies the following
five axioms: for all events 4 and B contained in 2,

(1) K,;(£2)=£2. It is self evident to agent i that there are no states of the world
outside of €.

(2) K{A)nK(B)=K,;(AnB). Knowing 4 and knowing B is the same thing as
knowing 4 and B.

(3) K;(A) contained in A. If i knows A, then A is true,

4) K;K(A4A)=K;(A). If i knows 4, then he knows that he knows 4.

(5) — K, (A)=K,(— K,{A4)). If i does not know A, then he knows that he does not
know A.

Kripke (1963) called any system of knowledge satisfying the above five axioms
S5. We shall later encounter descriptions of knowledge which permit less rationality.
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In particular, the last axiom, which requires agents to be just as alert about things
that do not happen as about things that do, is the most demanding. Dropping it
has interesting consequences for economic theory, as we shall see later. Note that
axiom (5) implies axiom (4); K(K;A)=K,(—(— K;4))=K,(—(K;(—(K;4)))=
~ K=K, A= —(— K, A) =K A.

The most interesting events in the knowledge opcrator approach are the fixed
point events E that satisfy K,(E)= E. From axiom (4), these events make up the
range of the K,;2%— 2% operator. Axioms (1)-(4) are analogous to the familiar
properties of the “interior operator™ defined on topological spaces, where Int E 13
the union of all open sets contained in E. To verify that (£2, Range K;) is a
topological space, we must check that €2 itself is in Range K, [which follows from
axiom (1)], that the intersection of any two elements of Range K, is in Range K,
[which follows from axiom (2)], and that the arbitrary union E = | )., E, of scts
E,in Range K;is itself in Range K. To see this, observe that by axiom (2), for all e/,

E,=Ki(E) = Ki(E.n E) = K(E,)n Ki{(E) = K{(E)

hence E = { J,;E, = K{(E), and therefore by axiom (3), E = K(E). Thus we have
confirmed that (£2, Range K;) is a topological space, and that for any event
A< £, K,(A) is the union of all elements of Range K, that are contained in 4.

Axiom (5) gives us a very special topological space because it maintains that if
E is a fixed point of K, then so is — E. The space Range K, is a complete field,
that 1s, closed under complecments and arbitrary intersections. Thus the topological
space (£2, Range K,) satisfies the property that every open set is also closed, and
vice versa. In particular, this proves that an arbitrary interscction of fixed point
events of K, is itself a fixed point cvent of K,. Hence the minimal fixed point events
of K, form a partition of 2.

The partition approach to knowledgc is completely equivalent to the knowledge
operator approach satisfying S5. Given a sct £2 of states of the world and a
knowledge operator K, satisfying S5, we can define a unique partition of £2 that
would generate K. For all we (2, define Pi{w) as the interscction of all fixed point
events of the operator K that contain w. By our analysis of the topology of fixed
point events, P,(w) is the smallest fixed point event of the K, operator that contains
w. It follows that the sets P;(w), wef2, form a partition of £2. We must now
check that P; gencrates K;, that is we must show that for any A< £, K,(4)=
{weA: P{w) = A}. Since K;(A) is the union of all fixed point events contained in A,
we K;(A) if and only if there is a fixed point event E with weE < A. Since P (w)
1s the smallest fixed point event containing w, we are done.

We can model an agent’s lcarning by analogy to an observer getting closer 1o
what he is looking at. Things which he could not previously distinguish, such as
for example whether the people he is watching have brown hair or black hair,
become discernible. In our framework, such an agent’s partition becomes fincr
when he learns, perhaps containing four cells { {female/brown hair}, {female/black
hair}, {male/brown hair}, {male/black hair}} instcad of two, {{female}, {male}}.
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Naturally, we can define the partitions of several agents, say i and j, simulta-
neously on the same state space. There is no reason that the two agents should
have the same partitions. Indeed different people typically have different vantage
points, and it is precisely this asymmetric information that makes the question of
common knowledge interesting.

Suppose now that agent i knows the partition of j, i.e, suppose that i knows
what j is able to know, and vice versa. (This does not mean that i knows what j
knows; i may know that j knows her hair color without knowing it himself)) Since
the possibility correspondences are functions of the state of nature, each state of
nature o specifies not only the physical universe, but also what each agent knows
about the physical universe, and what each agent knows each agent knows about
the physical universe and so on.

4. The puzzles reconsidered

With this framework, let us reconsider the puzzle of the three girls with red and
white hats. A state of nature o corresponds to the color of each child’s hat. The
table hists the eight possible states of nature.

STATES OF THE WORLD

a b c d e [y h
R R R R W
PLAYER ] wew w
2 R R W W R R W W
3

R W R W R W R W

In the notation we have introduced, the set of all possible states of nature £ can
be summarized as {a,b,c.d,e f,g.h}, with a letter designating each state. Then,
the partitions of the threc agents are given by: P, = {{a, e}, {b, f}, {¢, g}, (d, h}},
Py={{a,c}, {b.d}, ({e.g}. {fih}), Py={{a, b}, {c,d}, {e, [}, {g.h} ).

These partitions give a faithful representation of what the agents could know
at the outset. Each can observc four cells, based on the hats the others are wearing:
both red, both white, or two combinations of one of each. None can observe her
own hat, which is why the cells come in groups of two states. For example, if the
true state of the world is all red hats - that is w=a= RRR then agent | is
informed of P (a) = {a, e}, and thus knows that the true state is either « = RRR,
or ¢ = WRR. In the puzzle, agent i “knows” her hat color only if the color is the
samc in all states of nature @ which agent i regards as possible.

In using this model of knowledge to explain the puzzle of the hats, it helps to
represent the state space as the vertices of a cube, as in Diagram 1a.®> Think of R

*This has been pointed out by Fagin, Halpern, Moses, and Vardi (1988) in unpublished notes.
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RWW

RWW RWR A » RWR
RRW RRR RRW RRR
. ) S
WWW / WHR ’ s WWR
WRW WRR / WRW WRR
2 2
Diagram la Diagram 1b
1 1
RWW
RWW RWR
RRW RRR
I ) ’
WWW WWR
WRW WRR
2
Diagram lc Diagram 1d

as 1 and W as 0. Then cvery corner of a cube has three coordinates which are
either 1 or 0. Let the ith coordinate denote the hat color of the ith agent. For
cach agent i, connect two vertices with an edge if they lie in the same information
cell in agent i’s partition. These edges should be denoted by different colors to
distinguish the agents, but no confusion should result even if all the edges are
given by the same color. The edges corresponding to agent i are all parallel to the
ith axis, so that if the vertical axis is designated as 1, the four vertical sides of the
cube correspond to the four cells in agent 1's partition.

An agent i knows her hat color at a state if and only if the statc is not connected
by onc of i’s cdges to another state in which i has a different hat color. In the
original situation sketched above, no agent knows her hat color in any state.

Note that every two vertices arc connected by at Icast one path. Consider for
example the statc RRR and the state W W W. At statc RRR, agent 1 thinks WRR
1s possible. But at W RR, agent 2 thinks W WR is possible. And at WW R agent
3 thinks WW W is possible. In short, at RRR agent 1 thinks that agent 2 might
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think that agent 3 might think that WW W is possible. In other words, WW W is
reachable from RRR. This chain of thinking is indicated in the diagram by the
path marked by arrows.

We now describe the evolution of knowledge resulting from the teacher’s
announcement and the responses of the children. The analysis proceeds indepen-
dent of the actual state, since it describes what the children would know at every
time period for each state of the world. When the teacher announces that there is
at least one red hat in the room, that is tantamount to declaring that the actual
state 1S not WW W. This can be captured pictorially by dropping all the edges
leading out of the state WW W, as seen in Diagram 1b. (Implicitly, we are assuming
that had all the hats been white, the teacher would havc said so.) Each of the girls
now has a finer partition than bcforc, that is, somc states that were indistinguish-
able before have now become distinguishable. There arc now two connected com-
ponents to thc graph: onc consisting of the statc WW W on its own, and thc rest
of the states.

If, after hearing the teachet’s announcement, the first student announces she
docs not know hcer hat color, she reveals that the state could not be RW W, since
if it were, she would also be able to deduce the state from her own information
and the teacher’s announcement and therefore would have known her hat color.
We can capturc the cffect of the first student’s announcement on every other agent’s
information by severing all the connections between the set { WW W, RW W} and
its complement. Diagram 1c now has three different components, and agents 2
and 3 have finer partitions,

The announcement by student 2 that she still does not know her hat color
reveals that the state cannot be any of {WW W, RWW, RRW, WRW }, since these
are the states in which the above diagram indicates student 2 would have the
information (acquired in deductions from the tcachcr’s announcement and the first
student’s announcement) to unambiguously know her hat color. Conversely, if 2
knows her hat color, then she reveals that the state must bc among thosc in
{WWW, RWW, RRW, WRW}. We represent thc conscquences of student 2’s
announcement on thc other student’s information partitions by severing all
connections between the set {WWW, RWW, RRW, WRW} and its complement,
producing Diagram 1d. Notice now that the diagram has four scparatc components.

In this final situation, after hearing the tcacher’s announcement, and each of
student 1 and student 2’s announcements, student 3 knows her hat color at all
the states. Thus no more information is revealed, even when student 3 says she
knows her hat color is red.

If, after student 3 says yes, student | is asked the color of her hat again, she
will still say no, she cannot tell. So will student 2. The answers will repeat indefinitely
as the question for students | and 2 and 3 is repeated over and over. Eventually,
their responses will be “common knowledge™: every student will know what every
other student is going to say, and each student will know that each other student
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knows what each student is going to say, and so on. By logic alone the students
come to a common understanding of what must happen in the future. Note also
that at the final stage of information, the three girls have different information.

The formal treatment of Littlewood’s puzzle has confirmed his heuristic analysts.
But it has also led to some further results which were not immediately obvious.
For example, the analysis shows that for any initial hat colors (such as RWR)
that involve a red hat for student 3, the same no, no, yes sequence will repeat
indefinitely. For initial hat colors RRW or W RW, the responses will be no, yes,
yes repeated indefinitely. Finally, if the state is either WIWW or RWW, then after
the teacher speaks cvery child will be able to identify the color of her hat. In fact,
we will argue later that one student must eventually realize her hat color, no
matter which state the teacher begins by confirming or denying, and no matter
how many students there are, and no matter what order they answer in, including
possibly answering simultaneously.

The second puzzle, about the envelopes, can be explored along similar lines, as
a special case of the analysis in Scbenius and Geanakoplos (1983); it is closely
related to Milgrom—Stokey (1982). For that story, take the set of all possible worlds
2 to be the set of ordered pairs (m, n) with m and n integers between 1 and 7; m
and n differ by one, but either could be the larger. At state (m, n), agent | has
10™ dollars in his envelope, and agent 2 has 10" dollars in his envelope.

We graph the state space and partitions for this example below. The dots
correspond to states with coordinates giving the numbers of agent 1 and 2, respec-
tively. Agent | cannot distinguish states lying in the same row, and agent 2 cannot
distinguish states lying in the same column.

The partitions divide the state space into two components, namely those states
reachable from (2,1) and those states rcachabic from (1,2). In one connected
component of mutually reachabie states, agent 1 has an even number and 2 has
an odd number, and this is “common knowledge™ — that is, | knows it and 2 knows
itand [ knows that 2 knows it. and so on. For example, the state (4, 3) is reachable
from the state (2, 1), because at (2, 1), agent [ thinks the state (2, 3) is possible, and
at (2, 3) agent 2 would think the state (4, 3} is possible. This component of the state
space 1s highlighted by the staircase wherce each step connects two states that agent
I cannot distinguish, and cach rising connects two states that agent 2 cannot
distinguish. In.the other component of mutually reachable states, the even/odd is
reversed, and again that is common knowledge. At states (1, 2) and (7. 6) agent |
knows the state, and in states (2, 1) and (6, 7) 2 knows the state. In every state in
which an agent i does not know the state for sure, he can narrow down the possi-
bilitics to two states. Both players starl by believing that all states are cqually
likely. Thus, at @ =(4,3) each son quite rightly calculates that it is preferabie to
switch envelopes when first approached by his father. The sons began from a
symmetric position, but they each have an incentive 1o take opposite sides of a
bet because they have different information.
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a1

m

~N O R W N =

When their father tells each of them the other’s previous answer, however, the
situation changes. Neither son would bet if he had the maximum $10 million in
his envelope, so when the sons lcarn that the other is willing to bet, it becomes
“common knowledge” that neither number is 7. The state space is now divided
into four pieces, with the end states (6,7) and (7,6) each on their own. But a
moment later neither son would allow the bet to stand if he had $1 million in his
envelope, since he would realize that he would be giving up 31 million for only
$100000. Hence if the bet still stands after the second instant, both sons conciude
that the state does not involve a 6, and the statc space is broken into two more
pieces; now (5,6) and (6, 5) stand on their own. If after one more instant the bet
is stili not rejected by one of the sons, they both conclude that neither has $100 000
in his envelope. But at this moment the son with $10000 in his envelope recognizes
that he must lose, and the next time his father asks him, he voids the bet.

If in choosing to bet the sons had to antc a dollar knowing that the bet would
be cancelled and the dollar lost if the other son refused to bet in the same round,
then both of them would say that they did not want the bet on the very first
round. We explain this later.

Here is a third example, reminiscent of the detective story. Suppose, following
Aumann (1976) and Geankoplos and Polemarchakis (1982), that two agents arc
discussing their opinions about the probability of some event, or more generally,
of the expectation of a random variable. Suppose furthermore that the agents do
not teli cach other why they came to their conclusions, but only what their opinions
are.

For example, let the set of all possible worlds be 2 = {1,2,...,9}, and lct both
agents have identicat priors which put uniform weight 1/9 on each state, and let
P, ={{1.2,3}, {4,5.6}, {7,8,9}} and P,={{1,2,3,4}, {5,6.7,8}. {9}}. Suppose
that a random variable x takes on the following values as a function of the state:

1 2 3 4 5 6 7 g8 9
7 -7 -7 =7 17 =7 =7 =7 17

We can represent the information of both agents in the following graph, where
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heavy lines connect states that agent 1 cannot distinguish, and dotted lines conncet
states that agent 2 cannot distinguish.

1752770347 5756....7787 9

Suppose that w = 1. Agent | calculates his opinion about the expectation of x
by averaging the values of x over the three states, 1,2, 3 that he thinks are possible,
and equally likely. When agent 1 declares that his opinion of the expected value of
x is 1, he reveals nothing, since no matter what the real state of the world, his
partition would have led him to the same conclusion. But when agent 2 responds
with his opinion, he is indced revealing information. For if he thinks that {1,2, 3,4}
are possible, and equally likely, his opinion about the expected value of x is —1.
Similarly, if he thought that {5.6,7,8} were possible and equally likely, he would
say — I, while if he knew only {9} was possible, then he would say 17. Hence when
agent 2 answers, if he says — 1, then he reveals that the state must be between |
and 8, whereas if he says 17 then he is revealing that the state of the world is 9.
After his announcement, the partitions take the following form:

1 7227°3....47 57767728 9

If agent 1 now gives his opinion again, he will reveal new information, even if
he repeats the same number he gave the last time. For | is the appropriate answer
if the state is 1 through 6, but if the state were 7 or 8 he would say —7, and if
the state were 9 he would say 17. Thus after 1’s second announcement, the partitions
take the following form:

177277°3....47 57060 7589

If agent 2 now gives his opinion again he will also reveal more information,
even if he repeats the same opinion of — 1 that he gave the first time. Depending
on whether he says — 1, 5, or —7, agent [ will learn something different, and so
the partitions become:

17277730 4 5776 778 09

Similarly if 1 responds a third time, he will yet again reveal more information,
even if his opinion is the same as it was the first two times he spoke. The evolution
of the partitions after 2 speaks a second time, and 1 speaks a third time are given
below:

17273 4 5776 78 9

Finally there is no more information to be revealed. But notice that 2 must now
have the same opinion as 1! If the actual state of naturc is w = 1, then the responses
of agents 1 and 2 would have been (1, —1), (1, = 1), (1, 1).

Although this example suggests that the partitions of the agents will converge,
this is not necessarily true — all that must happen is that the opinions about
expectations converge. Consider the state space below, and suppose that agents
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assign probability 1/4 to each state. As usual, 1 cannot distinguish states in the
same row and 2 cannot distinguish states in the same column.

a b
¢ d
Let x(a) = x(d) =1, and x(b) = x(c)= — 1. Then at w = a, both agents will say that

their expectation of x is 0, and agrecement is reached. But the information of the
two agents is different. If asked why they think the expected value of x is O, they
would give different explanations, and if they shared their reasons, they would end
up agreeing that the expectation should be 1, not 0.

As pointed out in Geanakoplos and Sebenius (1983), if instead of giving their
opinions of the expectation of x, the agents in the last two examples were called
upon to agree 10 bet, or more precisely, they were asked only if the expectation
of x 1s positive or negative, exactly the same information would have been revealed,
and at the same speed. In the end the agents would have agreed on whether the
expectation of x is positive or negative, just as in the envelopes probiem. This
convergence is a general phenomenon. In general, however, the announcements
of the precise value of the expectation of a random variable conveys much more
information than the announcement of its sign, and so the two processes of betting
and opining are quite different. When there are thrce agents, a bet can be
represented by a vector x(w) = (x,(w), x,(w), x3(w)), denoting the payoffs to cach
agent, such that x;(o) + x,(w) + x;(w) < 0. If each agent i is asked in turn whether
the expectation of x; is positive, one agent will eventually say no. Thus eventually
the agents will give different answers to different questions, as in the hats example.
Nevertheless, in the next three sections we shall show how to understand all these
examples in terms of a general process of convergence to “agreement.”

5. Characterizing common knowledge of events and actions

To this point, the exampies and discussion have used the term common knowledge
rather loosely, as simply meaning a fact that everyone knows, that everyone knows
that everyonc knows, and so on. An example may help to give the rcader a better
grip on the idea.




Ch. 40: Common Knowledge 1451

The whole interval (0, 1] represent 2. The upper subintervals with endpoints
{0,a.d, f, h, 1} represent agent I’s partition. The lower subintervais with endpoints
{0, b,c.d,e, g, 1} represent agent 2’s partition. At w, 1 thinks (0,«] is possible; 1
thinks 2 thinks (0, b] 1s possibie; | thinks 2 thinks 1 might think (0, 4] is possibic
or (a,d] is possible. But nobody need think outside (0,d ]. Note that (0,d ] is the
smalilest event containing o that is both the union of partition cells of agent 1
(and hence self-evident to 1) and also the union of partition celis of player 2 (and
hence sclf-evident to 2).

How can we formally capture the idea of i reasoning about the reasoning of j?
For any event F, denote by P;(F) the set of all states that j might think are possible
i the true state of the world were somewhere in F. That is, P(F) =, P{(®’).
Note that F is self-evident to j if and only if P;(F) = F. Recall that for any w. P;(w)
is simply a set of states, that is it is itself an event. Hence we can write formaily
that at w, i knows that j knows that the event G occurs iff P,(P(w)) < G. The set
P(w) contains all worlds @’ that i believes are possible when the true world is w,
so i cannot be sure at w that j knows that G occurs unless P,(P{w)) <= G.

The framework of £ and the partitions (P;) for the agents iel also permits us
to formalize the idea that at w, i knows that j knows that k knows that some event
G occurs by the formula P(P;(P{w))) = G. (If k =i, then we say that i knows that
J knows that i knows that G occurs). Clearly there is no limit to the number of levels
of reasoning about each others” knowledge that our framework permits by itcrating
the P; correspondences. In this framework we say that the state o is reachable from
w iff there is a sequence of agents i, j,..., k such that &'eP,---(P;(P;(®))), and we
interpret that to mean that i thinks that j may think that ...k may think that o’
1s possible.

Definition. The event E < £2 is common knowledge among agentsi=1,..., Tatwif
and only if for any »n and any sequence (iy,...,i,), P, (P, _,-(P,(w)cE, or
cquivalently, we K, (K, (K, (E))).

This formal definition of common knowledge was introduced by R. Aumann (1976).
Note that an infinite number of conditions must be checked to verify that E is
common knowledge. Yet when (2 is finite, Aumann (1976) showed that there is
an equivalent definition of common knowledge that is easy to verify in a finite
number of steps [sce also Milgrom (1981)]. Recall that an event E is seif-evident
to i iff P(E)=E, and hence iff E is the union of some of i’s partition cells. Since
there are comparatively few such unions, the collection of self-cvident events to a
particular agent i is small. An event that is simultaneously self-evident to aii agents
iin I is called a public event. The collection of public events is much smaller still.

Characterizing common knowledge Theorem. Let P, icl, be possibility corre-
spondences representing the (partition) knowledge of individuals i=1,..., 1 defined
over a common state space £2. Then the event E is common knowledge at w if and
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only if M{w) < E, where M(w) is set of all states reachable from w. Moreover, M(w)
can be described as the smallest set containing w that is simultaneously self-evident
to every agent ic 1. In short, E is common knowledge at w if and only if there is a public
event occurring at w that entails E.

Proof. Let M(w)=1,1J;, . P; P, - P, (), where the union is taken over all
strings i,,....i,6/ of arbitrary length. Clearly E i1s common knowledge at w if and
only if M(w)< E. But notice that for ail iel, P, (M(w))= P, U, . P, Py
P, (@)= Ui i PP P P ()= M(w). so M(w) is self-evident for

eachi. (0

Before leaving the characterization of common knowledge we define the meet
M of the partitions (P;,iel) as the finest partition that is coarser than every P,
(M is coarser than P;if P,(w) c M(w) for all we£2; M is finer if the reverse inclusion
holds.) To see that the meel exists and is unique, let us define the complete fieid
F associated with any partition Q as the collection of all self-evident cvents, that
is, the collection of all unions of the cells in Q. [A complete ficld is a collection
of subsets of £ that is closed under (arbitrary) intersections and complements.]
Every compiete field # defines a partition Q where Q(w) is the interscction of ail the
sets in % that include w. Given the partitions (P;, i€ I), let the associated complete
fields be (#,, icl), and define # = [),.,.%; as the collection of public events. Since
the intersection of complete fields is a complete field, & is a complete field and
associated with # is the meet M of the partition (P, il). Clearly M(w) is the
smallest public event containing w. Hence we have another way of saying that the
event E is common knowledge at w: at o the agent whose knowledge is the meet
M of the partitions (P;,iel) knows E.

Since self-evident sets are easy to find, it is easy to check whether the event E is
common knowledge at w. In our three puzzles, the public event M(w) appears as the
connected component of the graph that contains w. Anevent E is common knowledge
at o iff it contains M(w).

A state of nature so far has described the prevailing physical situation; it also
describes what everybody knows, and what everybody knows about what everybody
knows etc. We now allow each state to describe what everybody does. Indeed, in
the three puzzles given so far, each state did specify at each time what each agent
does. Consider the opinion puzzle. For all w between 1 and 8, at first agent 2
was ready to announce the expectation of x was — 1, while at w =9, he was ready
to announce the expectation of x was 17. By the last time period, he was ready
to announce at w between 1 and 3, the expectation of x was 1, at w =4 it was
—7 and so on. We now make the dependence of action on the state explicit. Let
A; be a set of possible actions for each agent i. Each w thus specifies an action
a;= [{w) in A; for each agent i in L

Having associated actions with states, it makes sense for us to rigorously describe
whether at w i knows what action j is taking. Let a; be in A;, and let E be the set
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of statcs at which agent j takes the action a;. Then at w, i knows that j is taking
the action q; iff at @, i knows that E occurs. Similarly, we say that at w it is common
knowledge that j is taking the action a; iff the cvent E is common knowledge at .

Let us close this section by noting that we can think of the actions an agent i takes
as deriving from an external action rule ;:2%/¢ — A, that prescribes what to do
as a function of any information situation he might be in. The first girl could not
identify her hat color because she thought both RRR and WRR were possible
states. Had she thought that only the state RRR was possible, she would have
known her hat color. The second detective expected x to be — 1 because that was
the average value x took on the states {1,2,3,4} that he thought were possibie.
Later, when he thought only {1,2,3} were possible, his expectation of x became
1. Both the girl and the detective could have answered according to their action
rule for any sct of possible states.

6. Common knowledge of actions negates asymmetric information
about events

The external action rules in our three puzzles all satisfy the surc-thing principle,
which runs hke this for the opinion game: If the expectation of a random variablc is
equal to “a” conditionai on the state of nature lying in E, and similarly if the
expectation of the same random variable is also “a” conditional on the state lying
F, and if £ and F are disjoint, then the expectation of the random variable
conditional on EUF is also “a”. Similarly, if the expectation of a random variable
is positive conditional on E, and it is also positive conditional on a disjoint set
F, then it is positive conditional on Ew F.* In the hat example, the sure-thing
principle sounds like this: An agent who cannot tell his hat color if he is told only
that the true state of nature is in £, and similarly if he is told it is in F, will stilt
not know if he is told only that the true state is in Eu F. Similarly if he could
deduce from the fact that the state lies in E that his hat color 1s red, and if he
could deduce the same thing from the knowledge that the states is in F, then he
could also deduce this fact from the knowledge that the state is in EUF. (Note
that we did not use the fact that E intersection F is empty).

An Agreement Theorem follows from this analysis, that common knowledge of
actions negates asymmetric information about events. If agents follow action rules
satisfying the sure-thing principle, and if with asymmetric information the agents

4Qrin other terms, wc say that an cxternal action rule y: 29/¢ — 4 satisfics the sure-thing principle iff
Y{A) = y(B)=a, An B = ¢ implies y{4 U B) =a. If 2 is infinile wc require that ll/(U,! E,}=a whencver
the K, are disjoint, and Y(E,) =« for all o in an arbitrary index set. The sure-thing principle could
have this interpretation in the detectives example: if a detective would have arrested the butler if the
blood type turned out to be A, given his other clues, and if he also would have arrested the butler if
the blood type turned out to be O, given those other clues, then he should arrest the butler as soon
as he finds out the blood type must be 4 or O, given thosc other clues.
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i are taking actions a,, then if those actions are common knowledge, there is
symmetric information that would lead to the same actions. Furthermore, if all
the action rules are the same, then the agents must be taking the same actions,
a;=a for all i.

Theorem. Let (2,(P;, A;, f.)i;) be given, where 2 is a set of states of the world,
P; is a partition on 2, A; is an action set, and f;: £ — A; specifies the action agent
i takes at each weQ2, for all iel. Suppose that f; is generated by an action rule
W 29— A; satisfying the sure-thing-principle. [ Thus [{)=y(P{w)) for all we,
iel.] If for each i it is common knowledge at w that f; takes on the value a;, then
there is some single event E such that y(E) = a; for every icl.®

Corollary. Under the conditions of the theorem, iffr; = for all i, then a; = a for alli.

Proof. Let E = M(w). Since it is common knowiedge that f; takes on the value
a; at o, Y (P;(w)) = fi(w')=aq, for all w'eE. Since E is self-evident to each i, it is
the disjoint union of cells on which i, takes the same action a;. Hence by the
sure-thing principle, y,(E) =g, for all iel. [J

To illustrate the theorem, consider the previous diagram in which at @ the
information of agent 1, (0,a], is different from the information of agent 2, (0,b].
This difference in information might be thought to explain why agent 1 is taking
the action a, whereas agent 2 is taking action a,. But if it is common knowledge
that agent 1 is taking action a, at w, then that agent must also be taking action
a, at (a,d]. Hence by the sure-thing principle he would take action a; on (0,d].
Similarly, if it is common knowledge at w that agent 2 is taking action a, at w,
then not only does that agent do a, on (0,b6], but also on (b, ¢] and (e, d]. Hence
by the sure-thing principle, he would have taken action «, had he been informed
of (0, d]. So the symmetric information (0,d ] explains both actions. Furthermore,
if the action rules of the two agents are the same, then with the same information
(0, d7], they must take the same actions, hence a; = a,.

The agreement theorem has the very surprising consequence that whenever
logically sophisticated agents come to common knowledge (agreement) about what
each shali do, the joint outcome does not use in any way the differential information
about events they each possess. This theorem shows that it cannot be common
knowledge that two or more players with common priors want to bet with cach
other, even though they have different information. Choosing to bet (which

® A special casc of the theorem was proved by Aumann (1976), for the case where the decision rules
¥; = ¥ = the postertor probability of a fixed event A. The logic of Aumann’s proof was extended by
Cave [1983] to all “union consistent” decision rules. Bacharach (1985) identified union consistency
with the sure-thing principle. Both authors emphasized the agreement reached when ¢, = . However
the aspect which I emphasize here is that even when the ¢, are diffcrent, and the actions are different,
they can all be explained by the same information E.
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amounts to deciding that a random variable has positive expectation) satisfies the
sure-thing principle, as we saw previously. Players with common priors and the
same information would not bet against each other. The agreement theorem then
assures us that even with asymmetric information it cannot be common knowledge
that they want to bet [Milgrom and Stokey (1982)7.

Similarly, agents who have the same priors will not agree to disagree about the
expectation of a random variable. Conditional expectations satisfy the sure-thing
principle. Agents with identical priors and the same information would have the
same opinion. Hence the agreement theorem holds that they must have the same
opinion, even with different information, if those opinions are common knowledge
[Aumann (1986)7].

7. A dynamic state space

We now come to the question of how agents reach common knowledge of actions.
Recall that each of our three puzzle illustrated what could happen when agents
learn over the course of time from the actions of the others. These examples are
special cases of a getring to common knowledge theorem, which we state loosely as
follows. Suppose that the state space £2 is finite, and that there are a finite number
of agents whose knowledge is defined over 2, but suppose that time goes on
indefinitely. If all the agents see all the actions, then at some finite time period t*
it will be common knowledge at every w what all the agents are going to do in
the future.

The logic of the getting to common knowledge theorem 1s illustrated by our
examples. Over time the partitions of the agents evolve, getting finer and finer as
they learn more. But if £ is finite, there is an upper bound on the cardinahty of
the partitions (they cannot have more cells than there are states of nature). Hence
after a finite time the learning must stop.

Apply this argument to be betting scenario. Suppose that at every date ¢ each
agent declares, on the basis of the information that he has then, whether he would
like to bet, assuming that if he says yes the bet will take place (no matter what
the other agents say). Then eventually one agent will say no. From the convergence
to common knowledge theorem, at some date t* it becomes common knowledge
what all the agents are going to say. From the theorem that common knowkedge
of actions negates asymmetric information, at that point the two agents would do
the same thing with symmetric information, provided it were chosen properly. But
no choice of symmetric information can get agents to bet against each other, if
they have the same priors. Hence eventually someone must say no [Sebenius and
Geanakoplos (1983)].

The same argument can be applied to the detectives’ conversation, or to people
expressing their opinions about the probability of some event [Geanakoplos and
Polemarchakis (1982)]. Eventually it becomes common knowledge what everyone
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is going to say. At that point they must all say the same thing, since opining is
an action rule which satisfies the sure-thing principle.

Lect us show that the convergence to common knowledge theorem also clarifies
the puzzle about the hats. Suppose RRR is the actual state and that it is common
knowledge (after the teacher speaks) that the state is not WWW. Let the children
speak in any order, perhaps several at a time, and suppose that each speaks at
least every third period, and every girl is heard by everyone else. Then it must be
the casc that eventually one of the girls knows her hat color. For if not, then by
the above theorem it would become common knowledge at RRR by some time
t* that no girl was ever going to know her hat color. This means that at every
state @ reachable from RRR with the partitions that the agents have at t*, no girl
knows her hat color at w. But since 1 does not know her hat color at RRR, she
must think WRR is possible. Hence WRR is reachable from RRR. Since 2 does
not know her hat color at any state reachable from RRR, in particular she does
not know her hat color at WRR, and so she must think W W R is possible there.
But then WW R is reachable from RRR. But then 3 must not know her hat color
at WWR, hence she must think WWW is possible there. But this implies that
WW W is rcachable from RRR with the partitions the agents have at time ¥,
which contradicts the fact that it is common knowledge at RRR that WWW is
not the real state.

The hypothesis that the state space is finite, even though time is infinite, is very
strong, and often not justified. But without that hypothesis, the theorem that
convergence to common knowledge will eventually occur s clearly false. We shall
discuss the implications of an infinite state space in the next section, and then
again later.

It is useful to describe the dynamic state space formally. Let T be a discrete set
of consecutive integers, possibly infinite, denoting calendar dates. We shall now
consider an expanded state space 2= x T. A state of nature w in £ prescribes
what has happened, what is happening, and what will happen at every date ¢ in
T. An event E contained in £ now specifies what happens at various dates. The
simplest events are called dated events and they take the form E =E x {1} for
some calendar time y, where E is contained in £2.

Knowledge of agent i can be represented in the dynamic state space precisely
as it was in the static state space as a partition P, of 2. We shall always suppose
that agent i is aware of the time, i.e., we suppose that if (w', ') is in P/{w, f), then
t' =t. It follows that at each date t we can define a partition P;, of £ corresponding
to what agent i knows at date t about £, i.c., P,(w) = {w'ef2: (o', 1)e Pi(w, 1)}. The
snapshot at time ¢ is exactly analogous to the static model described carlier. Over
time the agent’s partition of £ evolves.

In the dynamic state space we can formalize the idea that agent i knows at time
t about what will happen later at time t', perhaps by applying the laws of physics
to the rotation of the planets for example. We say at that at some (w, t), agent {
knows that a (dated) event E = E x {t'} will occur at time ¢' >t if P,(w)c E. We
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say that it is common knowledge among a group of agents i in [ at time ¢ that
the event E occurs at time ¢’ iff E={w: (w,t')eE} is common knowledge with
respect to the information partitions Py, i in 1.

We now dcscribe how actions and knowledge co-evolve over time. Let A; be
the action space of agent i, for each iel. Let §; be the signal space of agent i, for
each i in I. Each player iel receives a signal at cach time te 7T, depending on all
the actions taken at timc ¢t and the state of nature, given by the function
G Ay X - x A x £2-S,. At one extreme o, might be a constant, if i does not
obscrve any action. At the other extreme, where o, (ay,...,a;, @)= (a,....a;), i
obscrves every action. If some action is observed by all the players at evcry state,
then we say the action is public. If a;, depcnds on the last term w, without depending
at all on the actions, then agent i does not observe the actions, but he docs learn
something about the state of the world. If each agent whispers something to the
person on his left, then o,(a,,....q;,, ®)=a,,, (take I+ 1 =1).

Agents take actions f;: £2 — A4; depending on thc state of nature. The actions
give rise to signals which the agents use to refine their information. On the other
hand, an agent must take the same action in two different statcs that he cannot
distinguish.

We say that (2.(A4,,S), (6, Py, f:))5] is a dynamically consistent model of

iel

action and knowledge (DCMAK) iff for all 1T, iel

(D) [Pi(w)= P (e)] = [fulw) = fiulw)] and
2) [w'ePy s (@I=[{oa(f @) ... frlw), »)
=g, (f1dw), ..., fi(e), o)} and w'eP, (w)].

Condition (1) says that an agent can takc action only on the basis of his current
stock of knowlcdge. Condition (2) says that an agent puts together what he knows
at time ¢ and the signal he obscrves at time ¢ to generate his knowledgc at time s + 1.

We can describe condition (2) somewhat differently. Let ¢: 2 — S, where ¢ is
any function and S any set. Then we say that g generates the partition G of 2
defined by w'eG(w) iff g(w') = g(w). Furthcrmore, given partitions Q and G of £2,
we dcfine their join Q v G by

(O v Gl(w)=Q(m) N G(w).

If we have a family of partitions (Q,, iel), we define their join J = V., 0; by

Jw) =1 V{ Q@) =) Qi)
ie iel
provided that £2 is finite. Note that J is a finer partition than each Q; in the sense
that J(w) < Q;(w) for all i and . But any partition R that is also finer than each
Q; must be finer than J; so J is the coarsest common rcfinement of the Q,.
Let X, be the partition generated by the function @ -, (f( (®),..., [1,(©), »).
Then condition (2) becomes

Pir+1:Pi(V2ir'
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Notice that over time the partitions grow finer, that is, cach cell of P;, is the
disjoint union of cells in P, if r <.

We now state a rigorous version of the getting to common knowledge theorem.
Let #P;; denote the number of cells in the first partition P,

Theorem. Let (22,(A;, S), (0 P FVEF be a dynamically consistent model of
action and knowledge. Let T* =3, (#P;; — 1). Suppose T* is finite und suppose
T > T*. Suppose for all iel and teT, g, does not depend on w. Then there is some
t < T* gt which it is common knowledge at every wef2 that every agent i knows the
signal he will observe in period t. If T is infinite, then there is some finite period t*
at which it is common knowledge at every weQ that each agent already knows all the
signals he will receive for all t 2 t*. In particular, if some agent’s actions are always
public, and T is infinite, then at some time t* it will already be common knowledge
what action that agent will take for all t = t*.

8. Generalizations of agreeing to disagree

To conclusion that agents with common priors who talk long enough will
eventually agrce can be generalized to infinite state spaces in which the opinions
may never become common knowledge. Moreover, the convergence does not
depend on every agent hearing every opinion.

Let n be a probability measure on £2, and let x: 2 - R be a random variable.
For convenience, lct us temporarily assumc that £ is finite and that n(w) > 0 for
all we. Given any partition P on (2, we define the random variable /= E(x|P)
by f(w) = [1/n(P(w)}]1 2, cpy X(@)m(w"). Notice that if F is the partition generated
by f, then E(f|Q)= f if and only if Q is finer than F. If so, then we say f is
measurable wrt Q. If Q is finer than P, then E(E(x|P)|Q)= E(x|P)= E(E(x|Q)| P).

A martingale (f,, P),t = 1,2,...1is a sequence of random variables and partitions
such that f, is measurable wrt P, for all ¢, and P, is finer than P, for all ¢, and
such that for all r,

E(fr+1|Pr):fr'

The martingale convergence theorem guarantces that thc martingale functions
must converge, f,(w)— f{w) for all w, for some function f. The classic case of a
martingale occurs when x and the increasingly finer partitions P, are given, and
S, is defined by E(x|P,). In that case f,— f= E(x|P,) where P is the join of
the partitions (P,,t =1,2,...). Furthermore, if (f,, P,) is a martingalc and if F, is
the partition generated by (f,...,f,), then (f,, F,) is also a martingale.

The foregoing definitions of conditional expectation, and the martingale conver-
gece theorcm, can be extended without change in notation to infinite state spaces
2 provided that we think of partitions as o-fields, and convergence f,— f as
convergence m-almost everywhere, f(w)— f(w) for all wed with n(4)=1. (We
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must also assume that the f, are all uniformly bounded, | f,(w)| < M for all £, and
n-almost all w.) The join of a family of o-fields, #,, i, is the smallest o-field
containing the union of all the #,. We presume the readcr is familiar with o-ficlds.
Otherwise he can continue to assume £2 is finite.

We can reformulate the opinion dialogue described in Geanakoplos and
Polemarchakis (1982) in terms of martingales, as Nielsen (1984) showed. Let the
DCMAK (2, (A, S, (64, Pips f:))iE7 =" be defined so that for some random variable
x: 2 — R and probability «,

fil =E(X‘P“),
A;=85,=R,
o la,...,a,w)=a,,....a;).

It is clcar that (fy, P,) is a martingale for each iel. Hence we can be surc that
each agent’s opinion converges, f;(w)— fi.(w) = E[x| P, ] where P;, = V. Py,

Lct F, be the o-field generated by the functions f,, for t<¢. Then ([, Fy) is
also a martingale, and [, = E(x|F;,,) where F;, = V .y F;,. If agent j hears agent
i’s opinion at each time ¢, then for 7> 1, P}, is finer than F,. Hence for 1 >1,

E(fjr!Fit) = E(E(xlpjr)lFit): E(x|Fy)= fu

Letting t — o0, we get that E(f,, | Fi,.) = fi, from which it follows that the variance
Var(f},)> Var(f,) unless f,, = f;, (n-almost everywherc). But since i hears j’s
opinion at cach period t, the same logic shows also that Var(f,,) > Var(f;,) unless
fix =[x We conclude that for all pairs, f;, = f;,.. Thus we have an alternative
proof of the convergence theorem in Geanakoplos- Polemarchakis, which also
generalizes the result to infinite state spacc £2.

The proof we have just given does not require that the announcemcnts of
opinions be public.

Following Parikh and Krasucki (1990), consider I < oc agents sitting in a circle.
Lct each agent whisper his opinion (i.e., his conditional expectation of x) in turn
to the agent on his left. By our getting to common knowledge theorem if £2 is
finite, then after going around the circle cnough times, it will become common
knowledge that each agent knows the opinion of the agent to his immediate right.
(Even if £ is infinite, the martingale property shows that each agent’s own opinion
converges.) It seems quite possible, however, that an agent might not know the
opinion of somebody two places to his right, or indeed of the agent on his left to
whom he does all his speaking but from whom he hears absolutely nothing. Yet
all the opinions must eventually be the same, and hence eventually cvery agent
does in fact know everybody else’s opinion.

To see this, obscrve that if in the previous proof we supposed a;{a,,...,a;, )=
d; 4 1,, then we could still deduce that E( fi | Fit 1 ) = fi+ 1.2, and hence Var(f;,) >
Var(fi, ) unless fi, = fis1.,- But working around the circle, taking I+ 1 =1,
we get that Var(f,,)> -+ > Var(f,,) unless all the f,, are the same.
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The reader may wonder whether the convergence holds when the conversation
proceeds privately around a circle if the actions £}, are not conditional expectations,
but are derivable from external action rules y;: 29— A; satisfying the sure-thing
principle. Parikh and Krasucki show that the answer is no, even with a finite state
space. When (2 1s finite, then convergence obtains if the action rule satisfies 4, = R
and if EnF=¢, Yy {EUF)= Ay (E)+ (1 — Dy{F) for some 0 < 1 < 1.

Following McKelvey and Pagc (1986), suppose that instead of whispering his
opinion to the agent on his left, each agent whispers his opinion to a poll-taker
who wails to hear from everybody and then publicly reveals the average opinion
of the I agents. (Assume as before that all the agents have the same prior over
£2.) After hearing this polister’s announcement, the agents think some more and
once again whisper their opinions to the pollster who again announces thc average
opinion, ctc. From the convergence to common knowledge theorem, if the state
space is finite, then eventually it will be common knowledge what the average
opinion is even before the pollster announces it. But it is not obvious that any
agent i will know what the opinion of any other agent j is, much less that they
should be cqual. But in fact it can be shown that evcryone must eventually agree
with the pollster, and so the opinions are eventually common knowledge and equal.

We can scc why by reviewing the proof given in Nielscn et al. (1990). Continuing
with our martingale framework, let o;(ay,...,a, ®)= (/)Y a;. Let f(w)=
(/D) 2ier fiel).

From the getting to common knowledge theorem for finite £2, or the martingale
convergence theorem for infinite £2, we know that E(x|P,) —,f;,. = E(x|P;,) for
all iel, m-almost everywhere. Hence f,— [, =(1/)Y,., f;., m-almost everywhcre.
Note that f, is measurable with P, , hence P, = V2, P, is finer than thc
partition .# generated by f_ for all iel. Then

E((x = f ) (i = FINF)
= E(E((X*fm)(fw. _fsc)‘Pon?)
:E((/‘Uc_fx)zly)zos

with equality holding only if f;, = f m-almost everywherc.
It follows that

1
OS} Z E((x_fau)(fi:n —fao)l’?)

iel

= E((X_‘f:r) <} Z (j‘(\x _.fao)) | 'F)

=0,

where equality holds only if f;, = /. n-almost everywhere for each iel. But that
is exactly what we wanted to prove.
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9. Bayesian games

The analysis so far has considered action rules which depend on what the agent
knows, but not on what he expects the other agents to do. This framework was
sufficient to analyze the puzzlcs about the hat color, and the cxpectation of thc
random variable x, and also for betting when each son assumed that the bet
would be taken (perhaps by the father) as long as he himself gave the OK. But in
the envelopes puzzle when the first son realizes that the bet will be taken only if
the other son also accepts it, hc must try to anticipate the other son’s action before
deciding on his own action, or else risk that the bet comes off only when he loses.
To take this into account we now extend our model of interactive cpistemology
to include payofls to each agent depending on any hypothetical action choices by
all the agents.

So far the states of nature describe the physical universe, the knowledge of the
agents, and thc actions of the agents. Implicitly in our examples the statcs of nature
also described the payoffs to the agents of their actions, for this is the motivation
for why they took their actions. We now make this motivation more explicit. At
each w, lct us associate with cvery vector of actions (a,,...,a;) of all the I players
a payoff to each agent i. In short, each  defincs a game I'(w) among the [ agents.
Since the playcrs do not know the state o, we must say more before we can expect
them to decide which action to take. We suppose, in accordance with the Bayesian
tradition, that each agent has a prior probability on the states of nature in £2, and
that at ¢ the agent updates his prior to a posterior by conditioning on the
information that w is in P,(w). This defincs a Bayesian game. The agents then
choosc at each w the actions which maximizes their expccted utility with respect
to these posterior probabilities, taking the action rules of the others as given. If
the mapping of states to actions satisfics this optimizing condition, then we refer
to the entire framework of states, knowledge, actions, payoffs, and priors as a
Baycsian Nash equilibrium.

Formally, a (Bayesian) game is a vector I' = (I, 2,(P;, m;, A;, 4;);e;) wherc I =
{1,...1} is the set of players, £2 is the set of states of the world, P; is a partition
of £2, m; is a prior probability on £, 4, is the set of possible actions for player i,
and u; A x 2~ R, where A= A4, x --- x A, is the payoff to player i. For any pro-
duct Y=Y, x --- x Y,, the notation Y_, means ¥, x -+ x Y;_; X ¥; | x -+ x Y.

A (Bayesian) Nash equilibrium for the game I” is a vector f = (f,,..., f;) where
Vi, fi: 2— A; and

(1) [Piw)=P()]->[filw)= filo)], i=1,....Iand
(2) Vi, VaeA;,, VYwef,
Y w(filw) fodo), o) m(@) = Y uda f (@), o).

w'ePi{w) w'ePi(w)

Condition (1) mcans that if player i cannot distinguish o’ from w, then he must
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choose the same action f;(w) = f;(«') in both states. Condition (2) (called ex post
optimality) means that at each « to which agent i assigns positive probability
agent i prefers the action fi(w) to any other action aeA4,, given his information
P,(w) and given the action rule f_, of the other agents. [ Condition (2) is deliberately
vacuous when #;(P;(®)) = 0.] Implicit in the definition is the idea that each player
i knows the decision functions f_; of all the other players. Without f_, it would
be impossible to define the payoff to agent i, since u;, depends on the choices of
the other players, as well as the state and agent i’s choice. This is not the placc
to explain how BNE arises, and hence how player i comes to know f_,.

For example, in the last version of the envelopes puzzle the payoffs to the sons
depend on what they both do. Below we list the payoffs to each son at a state
w = (m, n), depending on whether cach decides to bet (B) or to stick with his own
envelope and not bet (N). Note also the dependence of I (w) on .

B N
B 10"—1, 10" —1 10" —1, 107
N 0™, 10" — 1 10", 10"

We consider two morc examples of Bayesian games in which I'(w) does not
depend on . The first is based on the payoff matrix G, called Matching Pennies,
given below:

Left Right
Top 1, -1 -1,1
Bottom -1,1 I, —1

We know that there is a unique mixcd stratcgy Nash equilibrium to G in which
each player randomizes with cqual probability over both of his strategies. This
Nash equilibrium, likc all others, is a special kind of Bayesian Nash equilibrium.
Consider a statc space £2 with four elements arranged in a 2 x 2 matrix. The first
player has a partition of the statc space consisting of the two rows of £2. Similarly
the second player has a partition of £2 given by the two columns of £2. Both players
have prior 1/4 on each statc. Let I'(w) = G for all w = 2. This defines the Bayesian
gamc of Matching Pcnnics. The Bayesian Nash equilibrium for Matching Pennies
is for each player to play the move corresponding to what he sees: if player 1 sees
Top, he plays Top, etc.

When the gamcs I'(w) = G are independent of the state, and there is a common
prior == m; on £2 given by a product of individual priors, then a Bayesian Nash
equilibrium for I" gives a slightly different interpretation to behavior from the
usual mixed strategy Nash equilibrium for G. In a mixed strategy Nash equilibrium
each playcr is flipping a coin to decide how to play. In Bayesian Nash equilibrium,
there is one actual state. Thus each player is making a unique choice of (purc)
move, namely the one assigncd by that state. But the other player does not know
which move that is, so to him the choice seems random. This reinterpretation of
mixed strategy Nash equilibrium in terms of Bayesian Nash equilibrium is duc to
Ambruster and Boge (1979).
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When there is a common prior © = 7;, and the games I (w) = G are independent
of the state but the conditional distribution of opponent’s actions is allowed to
depend on the state, then Bayesian Nash equilibrium reduces to what has been
called a correlated cquilibrium of G. The notion of correlated equilibrium was
invented by Aumann in 1974, An elementary but important example of a correlated
equilibrium is a traffic light, which provides our third example of Bayesian Nash
equilibrium.

Each of two agents sees the color of his own light. There arc four states:
(green, green). (green, red), (red, green), and (red,red). Both players assign prior
probability 1/2 to (green, red) and to (red, green) and probability zero to the other
two states. In every state the choices (stop and go) and the payoffs are the same:

Stop Go
Stop (1, 1) (1,2)
Go (2,1 (0,0)

This describes the Bayesian Nash game. The Bayesian Nash equilibrium actions
foreach state arc symmetric for each player: Stop if he secs red, Go if he sees green.

In a Bayesian Nash equilibrium it is tautological (and hence common knowledge
at every state o) that each agent’s knowledge is described by a partition, and that
each agent has a prior probability over the states of the world. I refer to the
partition/individual prior representation of knowledge as Bayesian rationality. In
a Bayesian Nash equilibrium agents are always optimizing, that is choosing their
actions to maximize their conditional expected utility, hence this must be common
knowledge. In short, we may describe the situation of Bayesian Nash equilibrium
as common knowledge of Bayesian rationality, and of optimization. The Harsanyi
doctrine asserts that all agents must have the same prior. (We briefly discuss the
merits of this doctrine in a later section.) Accepting the Harsanyi doctrine, let us
suppose that the game I'(w) = G is the same for all wef2. Then, as Aumann (1987)
pointed out, common knowledge of rationality and optimization is tantamount to
correlated equilibrium.

At this point it is worth emphasizing that the structurc of Bayesian Nash
equilibrium extcnds the framework of interactive epistemology that we dcveloped
earlicr. For example, we can turn the hats puzzle into a Bayesian game by specifying
that the payoff to player i if she corrcctly guesscs her hat color is 1, and if she
says she does not know hcr payoff is 0, and if she guesses the wrong hat color
her payoff is -infinity. Similarly, in the opinion gamc (in which the random variable
x that the players are guessing about is given) wc can define the payoff at o to
any player i if he chooses the action a to be — [a — x(w)]% It is well-known from
elementary statistical decision theory that a player minimizes the expected squared
error by guessing the conditional expectation of the random variable. Hence these
payoffs motivate the players in the opinion game to behave as we have described
them in our previous analysis.

Nowadays it is conventional wisdom to assert that many phenomena can only
be explained via asymmetric information. A buyer and seller of a house may make
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peculiar sceming bids and offers, it is suggested, because they have different private
information: each knows what the house is worth to him, but not to the other.
But our analysis shows that this wisdom depends on there being uncertainty about
the actions of the players. If their actions were common knowledge (for examplc
if the bid and offer werc common knowledge) then asymmetric information would
have no explanatory power. Bayesian optimal decisions (i.e., maximizing cxpected
utility) satisfy the surc-thing principle. Hence an argument similar to that given
in the section on common knowledge of actions proves the following agrccment
theorem for Bayesian games: Suppose that in Bayesian Nash equilibrium it is
common knowledge at some « what actions the players are each taking. Then we
can replace the partitions of the agents so that at w all the agents have the same
information, without changing anything else including the payoffs and the actions
of the agents at every state, and still be at a Bayesian Nash equilibrium. In
particular, any vector of actions that can be common knowledgc and played as
part of a Bayesian Nash equilibrium with asymmetric information can also bc
played as part of a Bayesian Nash equilibrium with symmetric information.

Theorem. Let (f,,..., f;) be a Bayesian Nash equilibrium for the Bayesian game
I =(1,82,(P;, m;, A;, U)ie;)- Suppose at w it is common knowledge that (f,..., f;) =
(ay,...,a;). Then there are partitions P, of £2 such that ﬁi((u) = ﬁj(w) for all i, jel
and such that (f,..., f;) is a Bayesian Nash equilibrium for the Bayesian game
I'=(I4, (ﬁia Ty Apli)ier):

This theorem is surprising and it explains the puzzles discussed earlicr. Of course,
its application to Bayesian games is limited by the fact that the actions need not
be common knowledge in a Bayesian Nash equilibrium (and in these games
asymmctric information does have explanatory powcr. We return to this question
later when we discuss games in extensive form). Consider again the Bayesian Nash
game with the envelopes. One common knowledge component of the state space
£2 consists of all (m,n) with m even and »n odd. (The other common knowledge
component reverses the parity.) Hencc the agreement theorem for Bayesian Nash
equilibrium assures us that there cannot be a Bayesian Nash equilibrium in which
both brothers always choose to bet when m is even and n odd, for if there werc,
then the brothers would bet against each other with the same information, which
is impossible. (Looked at from the point of view of identical information, both
would agree that one brother had an expected payment at least as high as the
other, so that taking into account the one dollar betting fee, one brother would not
want to bet.) On the other hand, this is a trivial result, since we know at a glance
that if the second brother sees that he has the maximum number of dollars in his
envelope, he will not bet. A much stronger result would be that there is only one
Bayesian Nash equilibrium. Since there is one Bayesian Nash equilibrium in which
each brother chooscs not to bet at every state of the world, this would rule out
any Bayesian Nash cquilibrium of the envelopcs game in which both brothers bet
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in even one state. Such a result indeed is true, and we shall prove it later when
we discuss speculation. But it cannot be directly derived from thc agreemcnt
theorem, which itself depends only on thc sure-thing principle. It must be derived
from another property of Bayesian optimal decisions, namely that more infor-
mation cannot hurt.

10. Speculation

The cause of financial speculation and gambling has long been put down to
differences of opinion. Since the simplest explanation for differences of opinion is
differences in information, it was natural to conclude that such differences could
explain gambling and speculation. Yet, we now see that such a conclusion was
premature.

To understand why, begin by distinguishing speculation from investing. With
an investment, there are gains to trade for all parties that can be perceived by all
sides when thcy have the same information. An agent who buys a stock from
another will win if the stock price rises dramatically, while the seller will lose. This
appears to be a bet. But another reason for trading the stock could be that the
seller’s marginal utility for money at the moment of the transaction is relatively
high (perhaps because children are starting college), whereas the buyer’s marginal
utility for money is relatively highcr in the future when the stock is scheduled to
pay dividends. Even with symmetric information, both parties might think they
are benefiting from the trade. This is not speculation. It appears, however, that
only a small proportion of the trades on the stock market can be explained by
such savings/investment reasons. Similarly if one agent trades out of dollars into
yen, while another agent is trading yen for dollars, it might be because the first
agent plans to travel to Japan and the second agent needs dollars to buy American
goods, But since the volume of tradc on the currency markets is orders of magnitude
greater than the money purchases of goods and services, it would seem that
speculation and not transactions demand explains much of this activity.

In this discussion, speculation will mean actions taken purely on account of
differences of information. To formalize this idea, suppose that each agent has a
status quo action, which does not take any knowledge to implement, and which
guarantees him a utility independent of what actions the others choose. Suppose
also that if every agent pursued the status quo action in evcry state, the resulting
utilities would bc Pareto optimal. In other words, suppose that it is common
knowledge that the status quo is Pareto optimal. At a Pareto optimum there can
be no further trade, if agents have symmetric information. A typical Pareto optimal
situation might arisc as follows. Risk averse agents (possibly with different priors)
trade a complete set of Arrow-Debreu state contingent claims for money, one
agent promising to deliver in some states and receive money in others, and so on.
At the moment the contracts are signed, thc agents do not know which state 1s
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going to occur, although they will recognize the state once it occurs in ordcr to
carry out the payments. After the signing of all the contracts for delivery, but
beforc the state has been revealed, the status quo action of rcfusing all other
contracts 1s well known to be Pareto optimal.

But now suppose that each agent receives additional information revealing
somcthing about which state will occur. If differcnt agents get different information,
that would appear to create opportunities for beiting, or speculative trade.

Hcre we must distinguish between two kinds of speculation. One involves two
agents who agree on some contingent transfer of money, perhaps using a handshake
or a contract to give some sign that the arrangement is common knowledge bectween
them, and that the payoffs do not depend on their own futurc actions. The other
kind of speculation occurs between many agents, say on the stock market or at
a horse race or a gambling casino, where an agent may commit to risk money
before knowing what the odds may bc (as at a horse race) or whether anyone will
take him up on the bet (as in submitting a buy order to a stockbroker). In the
second kind of speculation, the payoffs depend partly on thc actions of the
speculators, and what the agents are doing is not common knowledge. We reserve
the term betting for (the first kind of) common knowledge speculation.

If it is common knowledge that the agents want to trade, as occurs when agents
bet against each othcr, then our thcorem that common knowlcdge of actions
negatcs asymmetric information about cvents implies that the trades must be zero.
But even if the actions are not common knowledge, there will be no more trade.
Since the actions are not common knowledge, what is? Only the facts that the
agents are rational, 1e., their knowledgc is given by partitions, and that they are
optimizing, and that the status quo is Pareto optimal.

Nonspeculation theorem. Common knowledge of rationality und of optimization eli-
minates speculation. Let I = (I, Q, (P, 7;, A;,u;);c;) be a Bayesian game. Suppose each
player i in I has an action z;€ A; such that for all (fy,...,f1), Zeeoti(Z;, [ - {(w),
w)rn(w) = u;. Furthermore, suppose that (z,...,z;) yields a Pareto optimal outcome
in the sense that if any (f,..., fy) satisfies ¥ .. ou:( f(w), @)n{w) = @&; for all iel,
then fi(w)=z; for all wef2, jel. Then I has a unique Bayesian Nash equilibrium
(JE.... ) and fHw)=2z, for all wel, icl.

Proof. The following lemma needs no proof. We emphasize, howevcr, that it
relies on the properties of partitions. [J

Lemma (Knowledge never hurts a Bayesian optimizer). Consider two single-player
Bayesian Nash games I ;=1 =1{i}, 2, P, m;, A u) and I'yg=(I ={i}, 2,0, x,
A;, u;) that differ only in that P, is finer than Q,. Let f; be a Bayesian Nash equilibrium
Jor I, and let g; be a Bayesian Nash equilibrium for I'y. Then

Z ul fi(w), w)mi(w) = Z ug;(w), w)m(w).

we 2 we 2
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Indeed the above inequality holds for any g satisfying [ P;(w) = P{(w')] - [g{w) =
gi@)] for all v, w'eQ.

Proof of nonspeculation theorem. Let (f,...., ;) be a Bayesian Nash equilibrium
for I". Fix f},j # i, and look at the one-person Bayesian gamc this induces for
player i. Clearly f; must be a Bayesian Nash équilibrium for this one-person game,
From the fact that knowledge never hurts a Bayesian optimizer we conclude that
i could not do better by ignoring his information and playing f¥(w) = z; for all
wef2. Hence

Z u( f (), o)mw) = Z (2, f - 1 (@), wmi(w) = 4.

we 2 we N2
But this holds true for all ic/. Hence by the Pareto optimality hypothesis, f; = [}
for all iel. O

In the envelopes example the action z, corresponds to not betting N. (We are
assuming for now that the agents are risk ncutral.) The sum of the payoffs to the
players in any state is uniquely maximized by the action choice (N, N} for both
players. A bet wastes at least a dollar, and only transfcrs money from the loser
to the winner. It follows that the sum of the two players’ ex ante expected payoffs
is uniquely maximized when the two players (N, N) at every state. Hence by the non-
speculation theorem, the unique Bayesian Nash equilibrium of the envelope game
involves no betting (N, N) at every state,

11. Market trade and speculation

We define an economy E=(I,R%, 2,(P,U,, 7, e);) by a set of agents I, a
commodity space R%, a set £ of states of nature, endowments ¢;e R and utilities
U:R, xQ2->Rfori=1,...,I, and partitions P; and measures 7; for each agent
i=1,...,1. We suppose each U, is strictly monotonic, and strictly concave.

Definition. A rational expectations equilibrium (REE) (p,(x;)i;) for E=(I,RY,
(P, Unmie;),.,) is a function p: 2—RE | such that for each iel, x,eR}? and if
z;=Xx; — ¢;, then

(i) 21, z,=0.
() p(w)z(w)=0,foralli=1,...,1I, and all we.
(i) [Pi{w)= P(’) and p(w) = p(w)] = [z;(w) = z;(w")] for all i=1,...,1, and
all w, ' efd.
(iv) Let Q(p) = {w: p(w)=p}. Then Ywe2, and all i, ife;(w") + yeRY, Yo'e Piw)n
Q(p(e)), and p(w)y =0, then

Ui(x(@), o )mi(w’) 2 > Uiledw') + y, 0)m(@’).
@' eP () Q(plo w’ePi(w)N Q(p(w))
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The reference to rational in REE comcs from the fact that agents use the subtle
information conveyed by prices in making their decision. That is, they not only
usc the prices to calculate their budgets, they also use their knowledge of the
function p to learn more about the state of nature. If we modified (iv) above to

(iV’) Zm’ei’g(m) L["(X‘I(U)’)’ (1)’)7[1{(1)’) = Z(:}’EF.((:)) Lri(ei((’)’) + Ys (U’)TE{((U') foralli= 17' v Ie
for all we and all yeRL with p(w)y =0 and e;(w’) + y = 0 Vo' e Py(w)

then we would have the conventional definition of competitive equilibrium (CE).
The following nonspeculation theorcm holds for REE, but note for CE. For an
example with partition information in which agents do not learn from prices, and
50 specculate, see Dubey, Geanakoplos and Shubik (1987). We say that there arc
only speculative reasons to trade in E if in the absence of asymmetric information
therc would be no perceived gains to trade. This occurs when the initial endowment
allocation is ex ante Pareto optimal, that is if Y/_ | yi(@) < X_ | e/(w) for all we,
and if for each i=1,...,1. ¥ _,u(yi(o) o)m(w) =X . ule(w), w)m(w), then
yi=e foralli=1,...,1

Theorem (Nonspeculation in REE). Let E=(I,RL, Q,(P,. U, 7, €.)e;) be an
economy, and suppose the initial endowment allocation is ex ante Pareto optimal.
Let (p, (x,)ic;) be arational expectations equilibrium. Then, x; = ¢; foralli=1,..., I

This theorem can be proved in two ways. A proof based on the sure-thing
principle was given by Milgrom and Stokey (1982). Proofs bascd on the principle
that more knowledge cannot hurt were given Kreps (1977), Tirole (1982), Dubey,
Gceanakoplos and Shubik (1987).

First proof. Let A;={B,N}, and define w(B,B,...,B, w)="U, (x/(w),w), and
uila, w) = U,(ew), w) for a #(B, B, ..., B). This gives a Bayesian Nash game I" =
(I, 2, (P;, m;, A;,U;);c;) Which must have a Nash equilibrium in which f(w) = B Viel,
wef2. Since each f;= B is common knowledge, by the agrcement theorem each
player would be willing to play B even if they all had the same information, namely
knowing only that we2. But that means each agent (wcakly) prefers x; ex ante
to e, which by the Pareto optimality hypothesis is impossible unless x; = ¢;.

A second proof based on the principle that knowledge cannot hurt is given by
ignoring the fact that the actions arc common knowledge, and noting that by
playing N at each w, without any information agent i could have guarantced
himsell ¢;(cv). Hence by the lemma that knowledge never hurts a Bayesian optimizer,
x; 1s ex ante at least as good as e, to cach agent i, and again the theorem follows
from the Pareto optimality hypothesis on the ¢, O

It is intercsting to consider what can be said if we drop thc hypothesis that the
endowments are ex ante Pareto optimal. The following theorem is casily derived
from the theorcm that common knowledge of actions negates asymmetric infor-
mation about events.
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Theorem. Let E=(I,R%L, 2, (P, U,, n;, ;)i.1) be an economy, and suppose (p,{X;)ic;)
is a rational expectations equilibrium. Suppose at some o that the net trade vector
z(w) = x;(0) — e;(w) is common knowledge for each i. Then P; can be replaced by

P, for eachisuchthat P(w)= ﬁj(a)) foralli, jel, without disturbing the equilibrium.

When it is common knowledgc that agents are rational and optimizing,
differences of information not only fail to generate a reason for trade on their own,
but even worsc, they inhibit trade which would have taken place had therc been
symmetric information. For example, take the two sons with their envelopes.
However, suppose now that the sons are risk averse, instead of risk neutral. Then
before the sons open their envelopes each has an incentive to bet — not the whole
amount of his envelope against the wholc amount of the other envelope — but to
bet half his envelope against half of the other envelope. In that way, each son
guarantees himsclf the average of the two envelopes, which is a utility improvement
for sufficiently risk averse bettors, despite the $1 transaction cost. Once each son
opens his envelope, however, the incentive to trade disappears, precisely because
of the differencc in information! Each son must ask himself what the other son
knows that he does not.

More generally, consider the envclopes problem where the sons may be risk
neutral, but thcy have different priors on £2. In the absence of information, many
bets could be arranged between the two sons. But it can easily be argued that no
matter what the priors, as long as cach state got positive probability, after the
sons look at their envelopes they will not be able to agrce on a bet. The reason
is that the sons act only on the basis of their conditional probabilities, and given
any pair of priors with the given information structure it is possible to find a single
prior, the same for both sons, that gives rise to the conditional probabilities each
son has at each state of nature. The original (distinct) priors are then called consistent
with respect to the information structure. Again, the message is that adding
asymmetric information tends to suppress speculation, rather than encouraging
it, when it is common knowledge that agents are rational. [See Morris (1991).]

12. Dynamic Bayesian games

We have seen that when actions are common knowledge in (one-shot) Bayesian
Nash equilibrium, asymmetric information becomes irrelevant. Recall that a
dynamically consistent model of action and knowledge (€2, (4, S,), (0., Pivs fu)Vie]
specifies what each agent wiil do and know at every time period, in every state of
nature. Over time the players will learn. From our getting to common knowledge
theorem for DCMAK we know that if £ is finite and the time horizon is long
enough, there will be somc period t* at which it is common knowledge what the
players will do that period. If the time period is infinite, then there will be a finitc
time period t* when it will become common knowledge what cach player will do
atl every future time period . One might therefore suppose that in a Bayesian
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Nash equilibrium of a multiperiod (dynamic) game with a finite state space,
asymmetric information would eventually become irrelevant. But unlike DCMAK,
dynamic Bayesian Nash equilibrium must recognize the importance of contingent
actions, or action plans as we shall call them. Even if the immediately occurring
actions bccome common knowledge, or even if all the future actions become
common knowledge, the action plans may not become common knowledge sincc
an action plan must specify what a player will do if one of the other players
deviates from the equilibrium path. Moreover, in dynamic Bayesian games it is
common knowledge of action plans, not common knowledge of actions, that
negates asymmetric information.® The reason is that a dynamic Bayesian game
can always be converted into a Bayesian game whose action space consists of the
action plans of the original dynamic Bayesian game.

We indicate the refinement to DCMAK needed to describe dynamic Bayesian
games and equilibrium. An action plan is a sequence of functions o; = (x,
iz ..., %;,...) such that o;,€4;, and for all t > 1, a;: X {218, - A;. At time ¢, agent
i chooses his action on the basis of all the information he receives before period
t. Denote by &/, the space of action plans for agent iel.

Action plans (x;, iel) generate signals s(w)e(S; x -+ x S;)7 and actions a(w)e
(A, x --- x A;)" for each we2 that can be defined recursively as follows.

Let a;,(w) = 2;,, and let s;;(w) = 0, (@, (w),. .., a;,(w), w) for we?, iel.

For t > 1, let a;{(w) = a;,(s;,(w),...,s;_(w)) and s;(w) =0, (a,(w),...,a;,(w), w)
for weQ2, iel.

Define payoffs u; that depend on any sequence of realized actions and the state
of the world: u;: (4, x --- x 4;)T x 2> R. We say that the payoffs are additively
separable if there are functions v,: A4; x --- x 4; x 2R such that for any
ac(A, x - x A7,

uda, )=y vilay,...,a,, o).
teT

A strategy is a function &;: 2 — .o/, such that [ P;(w) = P;,(w')] implies [&;(w) =
%(w')]. We may write o?,-e,s;/,- = g/ Ranee Pu

Given a probability =, on £, the strategies (d,,...,%,) give rise to payoffs
Udys..., %) =3 wequila(w), w)m;(w) where a(w) is the outcome stemming from the
action plans (..., o} = (&, (w),..., & (@)

A dynamic Bayesian game is given by a vector I” = (I, T, 2, (P;y, m;, A, 4y, 0)ies)
A (dynamic) Bayesian Nash equilibrium is a tuple of strategies (&,,...,d,) such
that for each iel, &cArgMax, 5 Ud,,.... 0 ....%) Clcarly any (dynamic)
Bayesian Nash equilibrium gives rise to a dynamically consistent model of action
and knowledge. In particular, P;, for t > 1 can be derived from the agent’s action
plans and the signals o;,, as explained in the scction on dynamic states of nature.

6Yoram Moses, among others, has made this point.
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Any dynamic Bayesian game I” and any Bayesian Nash equilibrium & = (&,,..., &)
for I defines for each ¢ the truncated dynamic Bayesian game I, = (I, T,, £2, (P, =,
A;, 1;,0,);;) where T, begins at ¢ and the P, are derived from the Bayesian
Nash equilibrium. The payoffs i, (A4, x --- x 4;)"*> R are dcfined on any be
(A x - x A" by

(b, w) =u,(a,(w)-..,q,. (w),b, w),

where a,(®),...,a,_ ,(w) are the Bayesian Nash equilibrium actions played at o
that arise from the Bayesian Nash equilibrium &.

We say that a dynamic Bayesian Nash equilibrium of a Bayesian game " docs
not depend on asymmetric information at w if we can preserve the BNE and
replace each P;; with P,, in such a way that P,y (w) is the same for all iel. (We
say the same thing about I, if P, () is the same for all icl.)

One can imagine an extensive form Bayesian game which has a Bayesian Nash
equilibrium in which it is common knowledge at some date ¢ what all the players
are going to do in that period, and yet it is not common knowledge at ¢ what the
players will do at some subsequent date. In such a game one should not expect to
be able to explain the behavior at date ¢ on the basis of symmetric information. The
classic example is the repeated Prisoner’s Dilemma with a little bit of irrationality,
first formulated by Kreps et al. (1982).

The two players have two possible moves at every state, and in each time period,
called cooperate (C) and defect (D). The payoffs are additively separable, and the
one-shot payoffs to thesc choices are given by

C D
C 55 0,6
D 6,0 11

Let us suppose that the game is repcated T times. An action plan for an agent
consists of a designation at each t between 1 and T of which move to take, as a
function of all the moves that were played in the past. One example of an action
plan, called grim, is to defect at all times, no matter what. Tit for tat is to play C
at t=1 and for t > 1 to play what the other player did at r— 1. Trigger is the
action plan in which a player plays C until the other player has defected, and then
plays D for ever after. Other actions plans typically involve more complicated
history dependence in the choices.

It is well-known that the only Nash equilibrium for the T-repeated Prisoner’s
Dilemma is defection in every period.

Consider again the Prisoner’s Dilemma, but now let there be four states of
exogenous uncertainty, SS, SN, NS, NN. S refers to an agent being sane, and N
to him not being sane. Thus NS means agent 1 is not sane, but agent 2 is sane.
Each agent knows whether he is sane or not, but he never finds out about the
other agent. Each agent is sane with probability 4/5, and insane with probability
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1/5, and these types are independent across agents, so for example the chance of
NS is 4/25. The payoff to 4 sane agent is as before, but the payoff to an insanc
agent is 1 if his actions for 1 <t < T are consistent with the action plan trigger,
and 0O othcrwise. A strategy must associate an action plan to each partition cell.
Let each agent play trigger when insanc, and play trigger until time T, when he
defects for sure, when sane. The reader can verify that this is a Bayesian Nash equili-
brium. For example, let @ = SS. In the sccond to last period agent 1 can defect,
instead of playing C as his strategy indicates, gaining in payoff from 5 to 6. But
with probability 1/5 he was facing N who would have dumbty played C in the
last period, allowing | to get a payoff of 6 by playing D in the last period, whereas
by playing D in the second to last period 1 gets only 1 in the last period cven
against N. Hence by defecting in the seccond to last period, agent 1 would gain 1
immediately, then lose 5 with probability 1/5 in the last period, which is a wash.

The getting to common knowledge theorem assures us that so long as T >
(#P, — D+ (#P,—1)=(2—-1)+(2—-1)=2, in any Bayesian Nash equilibrium
there must be periods ¢t at which it is common knowledge what the agents are
going to do. Observe that in this Bayesian Nash equilibrium it is already common
knowledge at t = | what the players are going to do for all t < T — 1, but not at
date T. Yet as we have noted, we could not explain cooperative behavior at period
1 in state $S on the basis of symmetric information. If both players know the state
is S§, then we are back in the standard repeated Prisoner’s Dilemma which has
a unique Nash cquilibrium — defect in each period. If neither playcr knows the
state, then in the last period by defecting a player can gain 1 with probability 4/5,
and lose at most 1 with probability 1/5. Working backwards we see again there
can be no cooperation in equilibrium. Thus we have a game where asymmetric
information matters, because some future actions of the players do not become
common knowledge before they occur.

By adding the chance of crazy bchavior in the last period alone (the only period
N’s actions differ from S’s actions), plus asymmetric information, we get the sane
agents to cooperate all the way until the last period, and the common sense view
that repetition encourages coopcration seems to be borne out. Note that in the
above example we could not reduce the probability of N below 1/5, for if we did,
it would no longer be optimal for S to coopcrate in the second to last period.
Kreps, Milgrom, Roberts, and Wilson (1982) showed that if the insane agent is
given a strategy that differs from thc sane agent’s strategy for periods 1 less than
T, then it is possible 10 support cooperation between the optimizing agents while
letting the probability of N go to 0 as T goes to infinity. However, as the probability
of irrationality goes to zero, the number of periods of nonoptimizing (when N and
S differ) behavior must go to infinity.

In the Prisoner’s Dilemma game a nontrivial threat is required to induce the
optimizing agents not to defect, and this is what bounds the irrationality just
described from below. A stronger result can be dcrived when the strategy spaces
of the agents are continuous. In Chou and Geanakoplos (1988) it is shown that
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for generic continuous games, like the Cournot game where agents choose the
quantity to produce, an arbitrarily small probability of nonoptimizing behavior
in the last round alone suffices to enforce cooperation, The “altruistic” behavior
in the last round can give the agents an incentive for a tiny bit of cooperation in
the second to last round. The last two rounds together give agents the incentive
for a little bit more cooperation in the third to last round, and so on. By the time
one is removed sufficiently far from the end, there is a tremendous incentive to
cooperate, otherwise all the gains from cooperation in all the succeeding periods
will be lost. The nonoptimizing behavior in the last period may be intcrpreted as a
promise or threat made by one of the players at the beginning of the game. Thus
we see the tremendous power in the ability to commit oneself to an action in the
distant futurc, even with a small probability, One man, like a Gandhi, who credibly
committed himself to starvation, might change the behavior of an entirc nation.

Even if it is common knowledge at t = 1 what thc agents will do at cvery time
period 1 <t < T, asymmetric information may still be indispensable to explaining
the behavior, if T > 1. Suppose for example that player 1 chooses in the first period
which game he and player 2 will play in the second period. Player 1 may avoid
a choice because player 2 knows too much about that game, thereby sclecting a
sequence of forcing moves that renders the actions of both playcrs common
knowledge. The explanation for I's choice, howcver, depends on asymmetric
information. Consider the Match game. Let 2 = {1,..., 100} where each we (2 has
equal probability. Suppose at ¢t =1, agent i miust chose L or R or D. If i chooses
L, then in period 2 player j must pick a number ne 2. If player j matchcs and
n = w, then player j gets 1 and player i gets — 1. Othcrwise, if n # w, then player
j gets —1 and player i gets 1. If i chooses R, then again player j must choose
nef2, giving payoff n — 100 to j, and 100 — r to agent i, for all w. If i chooses D,
then in period 2 i must choose ne2; if n=w, then i gets 2 and j gets —1, while
if n+#w, thenigets —1 and j gets 1.

Suppose finally that P;; = {2}, while j knows the states, P;; = {{w}, weR}. A
Bayesian Nash equilibrium is for i to play R, and for player j to choosc n= 100
if R, and to choose n= w if L. There can be no other outcome in Bayesian Nash
equilibrium. Note that it is common knowledge at each state w before the first
move what actions all the agents will take at t =1 and t = 2. But i does not know
the action plan of agent j. Without knowing thc state, i cannot predict what j
would do if i played L.

Asymmetric information is crucial to this cxample. If agent j were similarly
uninformed, P;, = {2}, then i would choose L and get an cxpected payoff of
98/100. If both partics were completely informed, i would choose D and get an
expected payoff of 2. Symmetric information could not induce i to choose R.

Dcspite these examples to the contrary, there are at least two important classes
of Bayesian games in extensive form wherc common knowlcdge of actions (rather
than action plans) negates asymmetric information about events: nonatomic games
and separable two-person zero-sum games,
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Suppose the action plans of the agents are independent of the history of moves
of any single agent. For example, the action plans may be entirely history
independent. Or they may depend on a summary statistic that is insensitive to
any single agent’s action. This latter situation holds when there is a continuum of
agents and the signal is an integral of their actions. In any BNE, once it becomes
common knowledge at some date t* what all the agents will do thereafter, the
partitions P, can be replaced by a common, coarser partition P, = P, and each
player will still have enough information to make the same responses to the signals
he expects to see along the equilibrium path. However, he may no longer have
the information to respond according to the BNE off the equilibrium path. But
in the continuum of agents situations, no single agent can, by deviating, generate
an off-equilibrium signal anyway. Hence if there was no incentive to deviate from
the original equilibrium, by the sure-thing principle there can be no advantage in
deviating once the information of all the agents is reduced to what is common
knowledge. Without going into the details of defining nonatomic (i.e., continuum)
games, these remarks can serve as an informal proof of the following informal
theorem:

Theorem (Informal). For nonatomic Bayesian games in extensive form where the
State space is finite, if the time horizon is infinite, there will be a time period t* such
that the whole future of the equilibrium path can be explained on the basis of symmetric
information. If the time horizon is finite but long enough, and if the payoffs are
additively separable between time periods, then there will be a finite period t* whose
equilibrium actions can be explained on the basis of symmetric information in a
one-period game.

The three puzzles with which we began this paper can all be recast as nonatomic
games with additively separable payoffs. We can simply replace each agent by a
continuum of identical copies. The report that each agent gives will be taken and
averaged with the report all his replicas give, and only this average will be trans-
mitted to the others. Thus in the opinion game, each of the type 1 replicas will
realize that what is transmitted is not his own opinion of the expectation of x,
but the average opinion of all the replicas of type 1. Since a single replica can
have no effect on this average, he will have no strategic reason not to maximize
the one-shot payoff in each period separately. Similarly we can replace each girl
in the hats puzzle with a continuum of identical copies. We put one copy of each
of the original three girls in a separate room (so that copies of the same girl cannot
see each other). Each girl realizes that when she says “yes, I know my hat color”
or “no, I do not know may hat color,” her message is not directly transmitted to
the other girls. Instead the proportion of girls of her type who say yes is transmitted
to the other girls. A similar story could be told about the boys who say yes or no
about whether they will bet with their fathers (or with each other).

All three puzzles can be converted into nonatomic games in which the Bayesian
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Nash equilibrium generates exactly the behavior we described. The reason this is
possiblc for these three puzzles, but not for the repeated Prisoner’s Dilemma or
the Match game, is that the behavior of the agents in the puzzles was interpersonally
myopic; no agent calculated how changes in his actions at period t might affect
the behavior of others in future periods. This interpersonal myopia is preciscly
what is cnsured by the nonatomic hypothesis. By contrast, the repeated Prisoner’s
Dilemma with a little bit of irrationality hinges entirely on the sane player’s
realization that his behavior in early periods influences the behavior of his opponent
in later periods. In contrast to the puzzies, in the repeated Prisoner’s Dilcmma
game and in the Match game, asymmetric information played an indispcnsable
role even after the actions of the players became common knowledge.

Consider now a sequence of two-person zero-sum games in which the payoff
to each of the players consists of the (separable, discounted) sum of the payoffs in
the individual games. The game at cach time ¢t may depend on the state of nature,
and possibly also t. The players may have different information about the state
of nature. We call this the class of repeated zero-sum Bayesian games. In the
literature on repeated games, the game played at time ¢ is usually taken to be
mdependent of t. We have the same basic theorem as in the nonatomic case:

Theorem. Consider a (pure strategy) Bayesian Nash equilibrium of a repeated
zero-sum Bayesian game with a finite set of states of the world. If the time horizon
T is infinite, there will be a time period t* such that the whole future of the equilibrium
path can be explained on the basis of symmetric information. If the time horizon T
is finite but T>T* =#P, — 1 + #P, — 1, then there must be some period t < T*
whose actions can be explained on the basis of symmetric information.

Proof. In any Bayesian cquilibrium the equilibrium strategies define a Bayesian
Nash cquilibrium for the truncated Bayesian game obtained by considcring the
time periods from r 4 1 onward beginning with the equilibrium partitions P;, ;.
Since the games are zero-sum, and the payofls are additively separable, the fact
that player 2 cannot improve his payoff from period t+1 onward if 1 sticks to
his equilibrium strategy means that player 1 can guarantee his payoff from pecriod
t+1 onward by sticking to his equilibrium strategy no matter what he docs in
period t, provided that he does not reveal additional information to player 2.
Hence we deduce from the fact that we began with a Bayesian Nash equilibrium,
that player 1 cannot find an action function h(w) at any time ¢ that improves his
expected payoff at time ¢ and that uses (and hence reveals) only information that
both players already had at time ¢. (The reader should note that therc could be
actions that agent | can take on the basis of his own information at time t that
would improve his time t payoff that he will not undertake, because those actions
would reveal information to player 2 that could be used against player 1 in
subsequent periods.)

From our getting to common knowledge theorem we know that there must be
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some time ¢ < T* such that the actions of the players are common knowledge
before they occur, at every state of the world. We can thus find a partition P of
the state space that is coarser than the partition P;, of each of the agents at time
t, such that the action functions a;,(w) at time t of each of the players i is measurablc
with respect to P.

It follows from the last two paragraphs that there is some time t < T* and an
information partition P such that if all the agents had the same information P,
their actions a,, would form a Bayesian Nash cquilibrium for the onc-shot game
defined at time t. This proves the sccond part of the theorem.

If the gamc is infinitely repeated, then there must be a ¢* such that at +* all the
currcent and future equilibrium actions are common knowledge. Hence restricting
both the players’ actions to some common partition P for all periods t* and
onward will not disturb the equilibrium. [

Aumann and Maschler (1966} considered infinite repeated zero-sum games in
which agent / has a finer partition P, than agent j’s partition P;,. They supposed
that o,,(a;, a;, ) = (a;, a;), for all ke{1,2}, t€T, and (a;,a;,w)eA; x A; x Q. They
took as the payofls the limit of the average of the one-shot payoffs, which has the
consequence that payoffs in any finite set of time periods do not influence the final
payoff.

Consider a (pure strategy) Bayesian Nash equilibrium of an Aumann—Maschier
gamc. At each 1, P, = P;;, while P, is intermediate between P;; and P;,. Once t*
is reached at which all subsequent moves are common knowlcdge, P;, = P« for
all t > t* From the foregoing theorem, we know that if we replaced P, with P,
we would not affect the equilibrium. In fact, since t* is finite, this equilibrium gives
the same payoffs as the game in which 15“ = ﬁjl = P, In cffect, playcr i chooses
how much information P;. to give player j, and then thec two of them play the
symmetric information game with partitions P ;..

13. Infinite state spaces and knowledge about knowledge to level NV

If we allow for random (exogenous) events at each date te T, such as the possibility
that a message (or signal) might fail to be transmitted, and if the states of the
world are meant to be complete descriptions of everything that might happen,
then there must be at least as many states as there are time periods. If we allow
for an arbitrarily large number of faulty messages, then we need an infinite state
space.

The assumption that the state space 2 is finite played a crucial role in the
theorem that common knowledge of actions must eventually be reached. With an
infinite state space, common knowledge of actions may never be reached, and one
wonders whether that calls into question our conclusions about agreement, betting,
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and speculation. The answer is that it does not. We have already secn via martingale
theory that when agents are discussing the expectation of a random variable, their
opinions must converge even with an infinite state space. We now turn to betting.

Consider the envclopes problem, but with no upper bound to the amount of
money the father might put in an envelope. More precisely, suppose that the father
chooses m > 0 with probability 1/2™, and puts $10” in one envelope and $10™*!
in the other, and randomly hands thcm to his sons. Then no matter what amount
hc sees in his own envelope, each son caiculates the odds are at least 1/3 that he
has the lowest envelope, and that therefore in expected terms he can gain from
switching. This will remain the case no matter how long the father talks to him
and his brother. At first glance this seems to reversc our previous findings. But in
fact it has nothing to do with the state space being infinite. Rather it results because
the cxpected numbcr of dollars in each envelope [namely the infinite sum of
(1/2™)(10™)] is infinite. On close examination, the same proof we gave before shows
that with an infinite state space, evcn if the maximum amount of money in each
envelope is unbounded, as long as the expected number of dollars is finite, betting
cannot occur.

However, one consequence of a large state space is that it permits states of the
world at which a fact is known by everybody, and it is known by all that the fact
is known by all, and it is known by all that it is known by all that the fact is
known by all, up to N times, without the fact being common knowledge. When
the state space is infinite, there could be for each N a (different) state at which the
fact was known to bc known N times, without being common knowledge.

The remarkable thing is that iterated knowledge up to level N does not guarantee
behavior that is anything like that guaranteed by common knowledge, no matter
how large N is. The agreement theorem assures us that if actions are common
knowledge, then they could have arisen from symmetric information. But this is
far from true for actions that are N-times known, wherc N is finite. For example,
in the opinion puzzle taken from Geanakoplos—-Polemarchakis, at state w =1,
agent | thinks the cxpectation of x is 1, while agent 2 thinks it is —1. Both know
that these are their opinions, and they know that they know these are their opinions,
so there is iterated knowledge up to level 2, and yet these opinions could not be
common knowledge because they are different. Indeed they are not common
knowledge, since the agents do not know that they know that they know that
these are their respective opinions.

Recall the infinite state space version of the envelopes example just described,
where the maximum dollar amount is unbounded. At any state (m, n) with m > 1
and n > 1, agent 1 believes the probability is 1/3 that he has the lower envelope,
and agent 2 believes that the probability is 2/3 that agent 1 has the lower envelope!
(If m =1, then agent 1 knows he has the lower envelope, and if n=1, agent 2
knows that agent 1 does not have the lower envelope) If m> N+ 1,and n > N + 1,
then it is iterated knowlcdge at least N times that the agents have these different
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opinions. Thus, for every N there is a state at which it is iterated knowledge N
times that the agents disagree about the probability of the event that [ has the
lower dollar amount in his envelope. Moreover, not even the size of the disagreement
depends on N. But of course for no state can this be common knowledge.

Similarly, in our original finite state envelopes puzzle, at the state (4, 3) each son
wants to bet, and cach son knows that the othcr wants to bet, and each knows
that the other knows that they cach want to bct, so their desires are iterated
knowledge up to level 2. But since they would lcad to betting, these desires cannot
be common knowledge, and indeed they are not, since the statc (6,7) is reachablc
from (4, 3), and there the sccond son does not want to bet. It is easy to see that
by expanding the state space and letting the maximum envelope contain $10°*,
instead of $107, we could build a state space in which there is iterated knowledge
to level N that both agents want to bet at the state (4,3).

Another cxample illustrates the difficulty in coordinating logically sophisticated
reasoners. Consider two airplane fighter pilots, and suppose that the first pilot
radios a mcssage to the second pilot telling him they should attack. If there is a
probability (1 —p) that any message between pilots is lost, then cven if the second
pilot reccives the message, he will know they should attack, but the first pilot will
not know that the second pilot knows they should attack, since the first pilot cannot
be surc that the message arrived. If the first pilot proceeds with the plan of attacking,
then with probability p the attack is coordinated, but with probability (1 —p) he
flies in with no protection. Alternatively, thce first pilot could ask the second pilot
for an acknowledgement of his message. If the acknowledgement comes back, then
both pilots know they should attack, and both pilots know that the other knows
they should attack, but the second pilot does not know that the first pilot knows
that the second pilot knows they should attack. The potential level of iterated
knowledge has increased, but has the degree of coordination improved? We must
analyze the dynamic Bayesian game.

Suppose the pilots are self-interested, so each will attack if and only if he knows
they should attack and the odds are at least even that the other pilot will be
attacking. Suppose furthermore that the first pilot alone is able to observe whether
they should attack. In these circumstances there is a trivial Bayesian Nash equili-
brium where ncither pilot ever attacks because each believes the other will not
attack. If it werc common knowledge whether they should attack, then there would
be another BNE in which thcy would both attack when they should, and not
when they should not. Unfortunately for the pilots, it can never be common
knowledgc that they should attack. The only other Bayesian Nash equilibrium is
where each pilot attacks if and only if every possible message he might havc gotten
telling him to attack is received.

The sccond pilot clearly will not attack if he gets no message, for without the
message he could not know that they should attack. At best, he will attack if he
gets the message, and not otherwise. He will indeed be willing to do that if he
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expects the first pilot to attack if he gets the second pilot’s acknowledgement
(assuming that p > 1/2). Given the second pilot’s strategy, the first pilot will indeed
be willing to attack if he gets the acknowledgement, since he will then be sure the
second pilot is attacking. Thus there is a BNE in which the pilots attack if every
message is successfully transmitted. Notice that the first pilot will not attack if he
does not get the acknowledgement, since, based on that fact (which is all he has
to go on), the odds are more likely [namely (1 —p) versus (1 — p)p] that it was his
original message that got lost, rather than the acknowledgement. The chances are
now p? that thc attack is coordinated, and (1— p)p that the second pilot attacks
on his own, and there is probability (I — p) that neither pilot attacks. (If a message
is not received, then no acknowledgement is sent.)

Compared to the original plan of sending one message there is no improvement.
In the original plan the first pilot could simply have flipped a coin and with
probability (1 — p) sent no message at all, and not attacked, and with probability
p sent the original message without demanding an acknowledgement. That would
have produced precisely the same chances for coordination and one-pilot attack
as the two-message plan. (Of course the vulnerable pilot in the two-message plan
is the second pilot, whereas the vulnerable pilot in the one-message plan is the
first pilot, but from the social point of view, that is immaterial. It may explain
however why tourists who write to hotels for reservations demand acknowledgements
about their reservations before going.)

Increasing the number of required acknowledgements does not help the situation.
Aside from the trivial BNE, thcre is a unique Bayesian Nash equilibrium, in which
each pilot attacks at the designated spot if and only if he has received every
scheduled message. To see this, note that if to the contrary one pilot were required
to attack with a threshold of messages received well below the other pilot’s
threshold, then there would be cases where he would know that he was supposed
to attack and that the other pilot was not going to attack, and he would refuse
to follow the plan. There i1s also a difficulty with a plan in which each pilot is
supposed to attack once some number k less than the maximum number of
scheduled messages (but equal for both pilots) is received. For if the second pilot
gets k messages but not the (k+ 1)st, he would reason to himself that it was more
likely that his acknowledgement that he received k messages got lost and that
therefore the first pilot only got (k— 1) messages, rather than that the first pilot’s
reply to his acknowledgement got lost. Hence in case he got exactly k messages,
the second pilot would calculate that the odds were better than even that the first
pilot got only k— 1 messages and would not be attacking, and he would therefore
refusc to attack. This confirms that there is a unique non-trivial Bayesian Nash
equilibrium. In that equilibrium, the attack is coordinated only if all the scheduled
messages get through. One pilot flies in alone if all but the last scheduled message
get through. If there is an intcrruption anywhere earlier, neither pilot attacks. The
outcome is the same as the one message scenario where the first pilot sometimes
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withholds the message, except to change the identity of the vulnerable pilot. The
chances for coordinated attack declinc exponentially in the number of scheduled
acknowledgements.

The most extreme plan is where the two pilots agrec to send acknowlcdgements
back and forth indefinitely. The unique non-trivial Bayesian Nash equilibrium is
for each pilot to attack in the designated area only if he has gotten all the messages.
But since with probability one, somc message will eventually get lost, it follows
that ncither pilot will attack. This is exactly like thc situation wherc only one
messagc is ever expected, but the first pilot chooses with probability one not to
send it.

Note that in the plan with infinite messages [studied in Rubinstein (1989)], for
each N there is a state in which it is iterated knowlcdge up to levcl N that both
pilots should attack, and yet they will not attack, whereas if it were common
knowledge that they should attack, they would indeed attack. This example is
reminiscent of the example in which the two brothers disagreed about the probability
of the first brother having the lowest envelope. Indeed, the two examples are
isomorphic. In the pilots examplc, the states of the world can be specified by
ordered integer pairs (m, n), with n=m or n=m — 1, and n = 0. The first entry m
designates the numbcr of messages the first pilot received from the second pilot,
plus one if they should attack. The second entry n designates the number of
messages the second pilot received from the first pilot. Thus if (m, n) = (0,0), there
should be no attack, and the second pilot receives no message. If m=n >0, thcn
they should attack, and the nth acknowledgement from the second pilot was lost.
If m=n+12>0, then they should attack, and the nth message from the first pilot
was lost. Let Prob(0,0) = 1/2, and for m > 1, Prob(m, n)=p™*"~!(1 — p). Each
pilot knows the number of messages he received, but cannot tell which of two
numbers the other pilot received, giving the same staircase structure to the states
of the world we saw in the earlicr example.

The upshot is that when coordinating actions, there is no advantage in sending
acknowledgements unless one side feels more vulncrable, or unless the acknowledge-
ment has a higher probability of successful transmission than the previous message.
Pilots acknowledgc cach other oncc, with the word “roger,” prcsumably because
a one word message has a much higher chance of successful transmission than a
command, and because the acknowledgement puts the commanding officer in the
less vulnerable position.

14. Approximate common knowledge

Since knowledge up to level N, no matter how large N is, does not guarantee
behavior that even approximates behavior under common knowledge, we are left
to wonder what is approximate common knowledge?

Consider a Bayesian game " = (1, Q, (P;, A;, 7;, u;);), and some event £ 2
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and some wef2. If m(w) > 0, then we say that i p-believes E at w iff the conditional
probability [n,(Pi(w)nE)]/[n{P{w))] = p, and wc write weBP(E). Monderer and
Samet (1989) called an cvent E p-self-evident to i iff for all wekE, i p-bclieves E; an
event E is p-public iff it is p-self-evident to every agent iel. Monderer and Samet
called an event C p-common knowledge at  iff there is some p-public event E with
wek ﬂiE, Br(C).

We can illustrate this notion with a diagram.

The only public events are ¢ and £2. But [0, 5) is p-public where p = Prob[a, b)/
Probla,c). Any event C containing [0, b) is p-common knowledge at w.

In our first theorem we show that if in a Bayesian game with asymmetric
information the players’ actions arc p-common knowledge at w, then we can definc
alternative partitions for the playcrs such that the information at w is symmetric,
and such that with respect to this alternative information, the same action function
for each player is “nearly” optimal at “nearly” every state o, including at @' = o,
provided that p is nearly equal to 1.

Theorem. Let (f,...,f,) be a Bayesian Nash equilibrium for the Bayesian game
I= ([s Qv (Pia Ai’ s ui)is[)' Suppose SUD;es supu,u‘eA Supw.(u‘sn[ui(a9 (J))— L‘i(al’ wl)] < M.
Suppose n{w) >0 for all iel, and suppose that at w it is p-common knowledge that
(fir-- s f1)=(ar.....a;). Then there is a Bayesian game I = (I, £, (P, AT U)ier)
with symmetric information at o, P{w)=E for all iel, and sets weE 2, = Q with
n($2,) = p such that for all /e 2; with n,(«w') >0, and all b;e 4;,

m(Pw) . no NYir g =%/ i = — M
775,-(1 i(w’)) sePi(e’) ;(f(@) S) u (b f (S) S)]Tc (5) > p

Proof. Lct Ebca p-public event withweE = (), BP(F) = F = {w'e: f(w') = a}.
Define

E, ifw'ek,
—EnPiw), ifo'¢E.

Then P,(w) = EViel. Note that since fi(s)=a; for all seE, f; is a feasible action
function given the information P,.
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Consider any «' such that P,(w’)nE=¢. Then Piw)=P(w), so fi(e) is
optimal for i. Consider w'eE. Then since (f,,..., f;) is a BNE,
Z [ f(5), 8) — uy(by, 2 4(5), 5)]m;(s)

sePi(w’)E

e Z [u(f(5),8) — ui(by, £~ i(5)s ) Tmi(s)

sePi(@N\E

Z — Mn,(P{w')\E)

SO
R[(IE) s[z_;;_ Luf(s),s)— ui(bi,f_;(S), s)]my(s)
— Mm(P(ENE) _ — M(1—p)
T anEm o,

where Py(E) = | ) er Pil@).
Finally, the set P,(E)\ E on which i may not be optimizing even approximately
has 7; probability at most 1 —p. So let 2,=EU(Q2\P(E)). O

As an immcdiate corollary we deduce a proposition in Monderer and Samet
(1989) that if it is p-common knowledge that two agents with the same priors believe

the probabilities of an event G are g;, respectively, then |g; — g;| < 2./(1 —p)/p. To
sec this, note that the optimal action for i at w in I' is to choose r = n(G N E)/a(E).
Since with the loss function u,(a;, a_;, w)= — [a, — y5(@)]?, M = 1, we know that
g; cannot do worse than r by any more than (1 — p)/p. Hence (q; — )* < (1 — p)/p,
hence |g; — g g?.\//(l —p)/p. Thus as p— 1, the agents must nearly agree. This
result stands in contrast to the cxample in the last section wherc the opinions 2/3
and 1/3 stayed bounded away from each othcr no matter how many levels of
knowlcdge about knowledge were reached.

An alternative definition of approximate common knowledge which allows for
more p-public events suggests itself. We could say that an event E with m,(E) >0
is weakly p-self-evident to agent i iff

I T, (P(w)NE)

TC[(E) w'eE Tfi(P,-(U)I))

(') = p.

Instead of requiring at every w'eE that agent i should think that the probability
of E is at least p, this requires the same thing only on averagc. In the previous
diagram thcevent [0, ¢) is weakly p-self-evident to each player, but not p-self-evident
to the first agent. Notice that under this more generous definition of weakly p-self-
evident (and hence weakly p-public and weakly p-common knowledge) exactly the
same proof can be used to prove the preceding thcorem.

The preceding theorem can be generalized in a second way. Suppose that the
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action spaces 4; are compact metric spaces, and that the utilities u; are continuous
in A. Then we can replace the hypothesis that (it is weakly p-common knowledge
that) the actions arc (a,,...,a,) with the hypothesis that it is wcakly p-common
knowledge that the actions are within ¢ of (a,,...,a;). This explains why different
agents’ opinions must converge to each other in an infinite state space even though
the opinions do not become common knowlcdge in finite time, but for brevity we
omit the details.

The preceding theorem says that any BNE at which the actions are weakly
p-common knowledge is an approximate BNE with symmetric information about
cvents. The converse is also of interest. The following theorcm [adapted from
Monderer and Samct (1989) ] shows that any conventional Nash equilibrium (which
by definition can be achieved with symmetric information that the game is G) can
bc approximately achieved whenever it is p-common knowledge that the game
18 G.

Let M be as in the previous theorem, the maximum payoff differencc for any
player at any w. Suppose now that the action spaces 4; arc convex and compact,
and that y; is continuous in ¢, and concave in a; for any fixed a_; and w.

Theorem. Let (f,,..., f;) be a BNE for the Bayesian game I =(I, £, Po Ay
Suppose that at some weQ, with n(w)>0 for all iel, ﬁi('u)) =FE for all iel, and
(@)= G forall w eE. Suppose that in the Bayesian game I = (1, Q, (P, A;, T, 4)ie))
E is p-common knowledge at . Then there exists (f,..., f;) such that f(o')=a;=
Fidw) for weE and all icl, and such that for all ' e, b;e A;,

1 .
(P SEPIZ(:{DI) L fi (5), f = ils) 8) — wilby, - i(s) 9) I mi(s) 2 — M (1 — p).

Proof. Define f,(w') = a,if P(0w')nE # ¢. Having fixed these actions, the Baycsian
game [ with these actions fixed defines a restricted Bayesian Game I'*. By our
hypothesis on A4; and u;, [ * must have a BNE (f,,...., f;). Observe that for &
with P(w)nE = ¢, f(w') is optimal in I". For @’ with P(ow')nE # ¢,

1

X [ui(a;, f-i(s), 8) — u(by, f - i(s), sh]m;(s)
Tci(Pi(a)’)) SEI’,—Z(m‘)
1
Z o o Z Luda,s) — u(ba_;, s)]m(s) + — M(1 —p)
(@) sepi(orn E

>0+ —M(—p. O

The two theorems explain the coordinated attack problem. Suppose p is close
to 1, so messages are quite reliable. Recalling our description from the last section,
let E={(m.n):m=1}. For (m,n) =1, 1).{n(EnP(m,n)}/{n(Pm,n))}=1 Only
in the very unlikely state (1,0)e £ where the first message to the second pilot failed
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to arrivc can it be true that it is appropriate to attack but pilot 2 does not know
it. Henee E is weakly p-public, but not p-public. We conclude first that the BNE
of never attacking, in which the actions are common knowledge but thcre is
asymmetric information, can be (approximately) achieved when there is symmetric
information and Pw)=E for all iel and weE. And indeed, not attacking is a
(Pareto inferior) Nash equilibrium of the coordinated attack problem when
Pi(w)=E for all i. On the othcr hand, although attacking is a (Parcto superior)
Nash equilibrium of the common information game where P, (w)=E for all i,
because in the asymmetric information attack game E is only weakly p-common
knowledge, attacking is not even an approximate BNE in the asymmctric infor-
matio game.

15. Hierarchies of belief: Is common knowledge of the
partitions tautological?

Our description of reasoning about the reasoning of others (and ultimately of
common knowledge) is quite remarkable in one respect which has been emphasized
by Harsanyi (1968), in a Bayesian context. We have been able to express a whole
infinite hierarchy of beliefs (of the form i knows that j knows that m knows, etc))
with a finite number of primitivc states we(2 and correspondences P;. One might
have been tempted to think that each higher level of knowledge is independent of
the lower levels, and hencc would require another primitive element.

The explanation of this riddle is that our definition of i’s knowledge about j’s
knowledge presupposes that i knows how j thinks; more precisely, i knows P;.
Our definition that i knows that j knows that m knows that 4 is true at w, pre-
supposes that i knows P;, j knows P,, and i knows that j knows P,. Thus the
model does include an infinite number of additional primitive assumptions, if not
an infinite number of states. We refer to these additional assumptions collectively
as the hypothesis of mutual rationality.

In order to rigorously express the idea that an event is common knowledge we
apparently must assume mutual rationality and take as primitive the idea that the
information partitions are “common knowledge.” This raises two related questions.
Are there real (or actually important) situations for which mutual rationality is
plausible? Is mutual rationality an inevitable consequcnce of universal individual
rationality?

As for the first question, the puzzles we began with are clear situations where
it is appropriate to assume common knowledge of knowledge operators. Each
child can readily see that the others know his hat color, and that each of them
knows that the rest of them know his hat color and so on. In a poker game it is
also quite appropriate to suppose that players know their opponents’ sources of
information about the cards. But what about the even slightly more realistic
settings, like horse races? Surely it is not sensible to suppose that every bettor
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knows what facts each other bettor has access to? This brings us to the second
question. '

One influential view, propounded first by Aumann (1976) along lines suggested
by Harsanyi (1968), is that mutual rationality is a tautological consequence of
individual rationality once one accepts the idea of a largc enough state space. One
could easily imagine that i does not know which of sevcral partitions j has. This
realistic fcature could be incorporated into our framework by expanding the state
space, so that each new state specifies the original state and also thc kind of
partition that j has over the original state space. By dcfining i’s partition over
this expanded state spacc, we allow i not only to be uncertain about what the
original state is, but also about what j’s partition over the original state space is.
(Thc same device also can be used if i is uncertain about what prior j has over
the original state space). Of course it may be the case that j is uncertain about
which partition i has over this expanded state space, in which case we could expand
the state space once more. We could easily be forced to do this an infinite number
of times, One wonders whether the process would ever stop. The Harsanyi-Aumann
doctrine asserts that it docs. Howcver, if it does, the states become descriptions
of partition cells of the state space, which would scem to be an incvitable sclf-
referential paradox requiring the identification of a set with all its subsets.

Armbruster and Boge (1979), Boge and Eisele (1979), and Mertens and Zamir
(1985) werc the first to squarely confront these issues. They focused on the
analogous problem of probabilities. For each player i, each state is supposed to
dctermine a conditional probability over all states, and over all conditional
probabilities of player j, ctc, again suggesting an infinite rcgress. Following
Armbruster and Boge, Boge and Eisele and Mertens and Zamir, a large literature
has developed attempting to show that thesc paradoxcs can bc dealt with. [See
for example, Tan and Werlang (1985), Brandcnburger and Dekel (1987), Gilboa
(1988), Kaneko (1987), Shin (1993), Aumann (1989), and Fagin ct al. (1992).]

The most straightforward analysis of the Harsanyi-Aumann doctrine (which
owes much to Mertens and Zamir) is to return to the original problem of constructing
the (infinite) hierarchy of partition knowledgc to see whether at some level the
information partitions are “common knowlcdge” at every w, that is defincd
tautologically by the states themselvcs.

To be more precise, if £2, = {a, b} is the set of payoff relevant statcs, we might
be reluctant to suppose that any player i # j knows j's partition of £,, that is
whether j can distinguish a from b. So let us set 2' =02, x {y, n,} x {y, n,}.
The first sct {y,, n,} refers to when player t can distinguish a from b (at y,), and
when he cannot (n). The second set {y,, n,} refers to the second player. Thus the
“extended state”™ (a, (¥, n,)) means that the payoff relevant state is a, that player
1 knows this, y(a) = {a}, but player 2 does not, n,(a) = {a, b}. More generally, let
2, be any finite set of primitive elements, which will dcfine the payoff relevant
univcrse. An clement w42, might for example specify what the moves and payoffs
to some game might bc. For any set A, let P(A4) be the set of partitions of 4, that
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isP(A)={P: 42" |weP(w)forallwed and [ P(w)= P(w')] or [P(w)n P(w'}] = ¢
for all w, w'e A}. Foreachplaycri=1,...,I,let 2, =P(Qy)andlet 2, = x[_, 2,
Then we might regard 2' = 2, x 2, as the new state space.

The trouble of course is that we must describe each player’s partition of 21, If
for each player i therc was a unique conceivable partition of £2*, then we would
say that the state spacc £2' tautologically defined the players’ partitions. However,
since £2' has greater cardinality than £, it would seem that there arc more
conceivable partitions of 2! than there were of 2. But notice that each player’s
rationality restricts his possible partitions. In the example, if @' = (a, (y,, n,)) then
player 1 should recognizc that he can distinguish a from b. In particular, if P is
player 1’s partition of £, then (c, (24, 2,))€ P(a, (¥, n,)) should imply z, = y, and
¢ =a. (Since player 1 might not know 2’s partition, z, could be either y, or n,.)
Letting Proj denote projection, we can write this more formally as

Proj o, Pla, (y, ny)) = {}’1} and Proj o, P(a, (¥, 1)) = y(a).

In general, suppose we have defined £2,, and 2,=4,, x - x 2, for all
0< k <n. This implicitly defines 2" = X y<;<,£2;, and for cach k<n, Q*=
X o<y<x 2, Define 2, = {P,.eP(Q7):¥(wg,...,w,... 2", Vk <n,

(1) Projg,, Pulwe, ..., @y, ) = {wyi},

(2) Projor Pi(we, - 0y ) = {04 1 (o, s )}

Condition (1) says that i knows his partitions at lower levels, and condition (2)
says that he uses his information at lower levels to refine his partition at higher
levcls.

Let 2,= X . 82, By induction £, is defined for all integers n. In fact, by
transfinite induction, £2, is defined for all finite and transfinite ordinals.

The Harsanyi-Aumann qucstion can now be put rigorously as follows, Is there
any n, finite or infinite, such that the state space £2" dcfines the partitions of itsclf
tautologically, i.e., such that £2,; contains a unique element P,; for each iel?

The most likely candidate would seem to be n = &, where « is the smallest infinite
ordinal. In that case 2% = 2, x £2, x £, x ---. However, as shown in Fagin et al.
(1992), following the previous work in Fagin et al. (1991), the cardinality of £2,; is
not only greater than one, it is infinite for all infinite ordinals n, including.n = o
This shows that the Harsanyi-Aumann doctrine is false. Properly expanded, the
state space does not tautologically define the partitions.

To see why, reconsider our simple example with two payoff relevant states. Since
the cardinality of £, is 2, the number of partitions of €, is also 2, and so the
cardinality of £2' is 2 x (2 x 2) = 8. Taking into account the restrictions imposed
by player 1’s own rationality, the number of possiblc partitions player 1 could
have of 2! is equal to the number of partitions of the four elements {a, b, y,, n,},
namely 15. Hence the cardinality of 22 is 8 x (15 x 15) = 1800.



Ch. 40: Common Knowledge 1487

As we go up the hierarchy, the restrictions from individual rationality become
more biting, but the cardinality of the base of states grows larger. Indeed it is
cvident from the analysis just given that if the cardinality of ,; 1s at least two,
then the cardinality of £2,,,; is at least two. It follows that the cardinality of
071 must be at least 2 times the cardinality of Q¥ for all finite k =0, if #1 = 2.
It would be astonishing if there were only one partition of 2% consistent with
player i’s rationality.

The fact that there may be at least two partitions P, # @, in £,,, that is partitions
of 2% that are consistent with the rationality of agent i, raises an important
question: how different can P, and Q; be? To answer this question we introduce
a topology on 2% Note that for each finite k, £2, is a finite set, hence it is natural
to think of using the discrete topology on £2,. Since 2% = X 2, 2,, it is also
natural to take the product topology on 0%, With this topology we can state the
following theorem adapted from Fagin et al. (1992).

Theorem. Let Q, be finite. Then the Harsanyi- Aumann expanded state space Q%
allows for each agent il one and only one partition P,e£2,; of 2 such that every
partition cell P(w), weQ*, is a closed subset of Q.

If we are willing to restrict our attention to partitions with closed cells, then this
theorem can be considered a vindication of the Harsanyi-Aumann doctrine. The
proof of the theorem is not difficult. Let P, and Q, be in £2,;, and suppose P,(w)
and Q,(w) are closed subsets of 2. From conditions (1) and (2), we know that
for each finite k,

Proj or Pi(w) = wy. l,i(wl, -, wy) = Proj g Qi (w).

But since P;(w) and @,(w) are closed in the product topology, this implies that
Pi(w) = Q(w), and the theorem follows.

We can state an analogous theorem [from Fagin et al. (1992)] that may also
give the reader a sense of how close to true one might consider the Harsanyi—
Aumann doctrine.

Theorem. Let(P,,....PYand(Q,,...,Q;)bein Q,, thatis let P;and Q, be partitions
of the expanded state space Q% that are consistent with i’s rationality, for each icl.
Let weR®, and let Ec Q% be closed. Then i knows E at w with respect to
P, P(w) < E,ifand only if i knows E at w withrespect to Q;, Q,(w) < E. Furthermore,
E is common knowledge at w with respect to the partitions (P,,..., P;) if and only
if E is common knowledge at w with respect to the partitions (Q4,...,Q,).

Note that any event E which depends only on a finite number of levels of the
hierarchy is necessarily closed. These elementary events are probably of the most
interest to noncooperative game theory. They include for example any description
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of the payoff relevant states, or what the players know about the payoff relevant
states, and so on.

Here is an example of an event E that is not necessarily closed. Let 4 be a
description of some payoff relevant states. Then E is defined as the set of w at
which i knows that it is not common knowledge between j and k that A happens.

In conclusion, we can say that the Harsanyi~Aumann doctrine can be partially
vindicated by a rigorous construction of a knowledge hierarchy. If the partitions
of the expanded state space 2% are restricted to have closed cells, then the state
space 2% tautologically (uniquely) defines each agent’s partition. A similar
(positive) result was obtained by Mertens and Zamir (1985). If the state space is
sufficiently enlarged, and if attention is restricted to countably additive Borel
probabilities, then each state uniquely defines a conditional probability for each
player. However, if more general (finitely additive) probabilities were allowed, then
there would be many conditional probabilities consistent with a player’s rationality.

Using our restrictions on potential partitions and probabilities, the knowledge
of the players can always be described as in the first sections of this paper
(£2%, P,,..., P;), in which each player’s knowledge pertains only to the state space
0% (and not to each other), and the partitions P; are “common knowledge.” As
before, the universal state space 2% is the disjoint union of common knowledge
components. In some of these there are a finite number of states, in others an
infinite (uncountable) number. In some common knowledge components the
players’ conditional beliefs can all be explained as coming from a common prior;
in others they cannot.

The restrictions to common priors, and finite £ are nontrivial.” The “Harsanyi
doctrine” asserts that it is reasonable that all agents should have the same prior,
and many would agree. But the hierarchical argument we have just given does
not provide any justification for this second doctrine.

16. Bounded rationality: Irrationality at some level

Common knowledge of rationality and optimization (interpreted as Bayesian Nash
equilibrium) has surprisingly strong consequences. It implies that agents cannot
agree to disagree; it implies that they cannot bet; and most surprising of all, it
banishes speculation. (Here speculation is distinguished from betting because it
may not be common knowledge that the deal i1s agreed, as for example, the moment
at which a stock market investor places a buy order.) Yet casual empiricism suggests
that all of these are frequently observed phenomena. This section explores the
possibility that it is not really common knowledge that agents optimize, though
in fact they do.

"Mertens and Zamir (1985) show that any common knowledge component of 2% that is infinite
can be “approximated” by a finite common knowledge component.
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We have already seen that if actions are iterated knowledge to some large but
finite level N, then we may observe behavior which is very different from that
which could be seen if the actions were common knowledge. In particular, agents
could disagree. We hesitate to say that agents would bet, since in agreeing to the
wager it might become common knowledge that they are betting. The significance
of common knowledge, however, is lost on all but the most sophisticated reasoncr,
who would have to calculate that “he wants to bet, he wants to bet knowing that
I am betting against him, he wants to bet knowing that I want to bet knowing
that he wants to bet against me knowing that I want to bet etc.” Most agents do
not have the computing power, or logical powers, to make this calculation. To
allow for this limitation, we suppose that somewhere in the calculation agents no
longer can deduce any significance from the fact the other fellow is betting, which
is to say that they no longer restrict attention to cases where the other fellow is
optimizing. Suppose that at the actual state of the world w, agents optimize, and
know that they optimize, and know that they know that they optimize, but only
a finite number of times rather than the infinity required by common knowledge.
That is, suppose that it is common knowledge what the agents are doing, but only
iterated knowledge to level N that they are optimizing. Then what the agents wish
to do at w might not be the same as when the actions and optimality are common
knowledge.

As an example, reconsider the first version of the envelopes puzzle. Imagine that
the two sons have $10000 and $1000 in their envelopes respectively. Suppose it
were common knowledge that had son 2 seen $10000000 in his envelope, then
he would bet (even though he could only lose in that case). Then the sons would
be willing to bet against each other at state (4, 3), and in every other state (with
m even and n odd). At state (4,3), it is common knowledge that they are betting.
Both sons are acting optimally given their information, both sons know that they
are acting optimally, and they each know that the other knows that each is acting
optimally. Of course it is not common knowledge that they are optimizing, since
the state (6,7) is reachable from (4, 3), and there the second son is not optimizing.
The ex ante probability of nonoptimization here is only /12, and by extending
the maximum amount in the envelopes we can make the probability of nonoptimal
behavior arbitrarily small, and still guarantee that the sons bet against each other
at (4, 3). (The astute reader will realize that although the prior probability of error
can be made as small as possible in the envelopes example, the size of the blunder
grows bigger and bigger. Indeed the expected error cannot vanish.) The same logic,
of course, applies to the question of agreeing to disagree. [For more on this, see
Aumann (1992).]

The possibility of nonoptimal behavior can also have dramatic consequences
for dynamic Bayesian games. We have already seen in the N-repeated Prisoner’s
Dilemma that cven when both players are optimizing, the possibility that the other
is not can induce two optimizing agents to cooperate in the early periods, even
though they never would if it were common knowledge that they were optimizing.



1490 John Geanakoplos

Simply by letting the time horizon N be uncertain, Neyman (in unpublished work)
has shown that the two agents can each be optimizing, can each know that they
are optimizing, and so on up to m < N times, yet still cooperate in the first period.
Of course this 1s analogous to the envelopes example just discussed.

Games in extensive form sometimes give rise to a backward induction paradox
noted by Binmore (1987), Reny (1992), and Bicchieri (1988), among others. Consider
the following extensive form game:

I 1T I (0,100)

(1,0) ©,1) (2,0)

In the unique dynamic Bayesian equilibrium, I plays down immediately. We usually
explain this by suggesting that 1 figures that if he played across instead, then 11
would play down in order to avoid putting I on the move again. But if T 1s
“irrational” enough to play across on his first move, why should not II deduce
that I is irrational enough to play across on his second move? It would appear,
according to these authors, that to interpret fully a dynamic Bayecsian game one
needs a theory of “irrationality,” or counterfactual reasoning. The beginning of
such a theory is provided by Selten’s (1975) notion of the trembling hand, which
is discussed at length in other chapters of this volume.

17. Bounded rationality: Mistakes in information processing

When agents are shaking hands to bet, it seems implausible that the bet is not
common knowledge. It might seem even less plausible that the agents do not fully
realize that they are all trying to win, 1.e., it seems plausible to suppose that it is
also common knowledge they are optimizing. In the last part of this section we
return to the assumption that it is common knowledge that agents optimize, but
we continue to examine the implications of common knowledge by weakening the
maintained hypothesis that agents proccss information perfectly, which has been
subsumed so far in the assumption that knowledge has exclusively been described
by a partition. We seek to answer the question: How much irrationality must be
permitted before speculation, betting, and agreements to disagree emerge..in
equilibrium?®

There are a number of errors that are typically made by decision makers that
suggest that we go beyond the orthodox Bayesian paradigm. Agents often forget,
or ignore unplecasant information, or grasp only the superficial content of signals.

8Much of this section is taken from Geanakoplos (1989), which offers a fuller description of possible
types of irrationality and derives a number of theorems about how they will affect behavior in a number
of games.
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Many of these mistakes turn on the idea that agents often do not know that they
do not know. For example, in the story of Silver Blaze, Sherlock Holmes draws
the attention of the inspector to “the curious incident of the dog in the night-time.”
“The dog did nothing in the night-time,” protested the inspector, to which Holmes
replied “That was the curious incident.” Indeed, the puzzle of the hats was surprising
because it relied on the girls being so rational that they learned from each other’s
ignorance, which we do not normally expect. As another example, it might be that
there are only two states of nature: either the ozone layer is disintegrating or it is
not, One can easily imagine a scenario in which a decaying ozone layer would
emit gumma rays. Scientists, surprised by the new gamma rays would investigate
their cause, and deduce that the ozone was disintegrating. If there were no gamma
rays, scientists would not notice their absence, since they might never have thought
to look for them, and so might incorrectly be in doubt as to the condition of the
ozone.

We can model some aspects of non-Bayesian methods of information processing
by generalizing the notion of information partition. We begin as usual with the
set £2 of states of nature, and a possibility correspondence P mapping each element
o 1n 2 into a subset of £2. As before, we interpret P(w) to be the set of states the
agent considers possible at w. But now P may not be derived from a partition.
For instance, following the ozone example we could imagine 2 = {a, b} and P(a) =
{a} while P(h) = {a, b}. A perfectly rational agent who noticed what he did not know
would realize when he got the signal {a, b} that he had not gotten the signal {a}
that comes whenever a is the actual state of the world, and hence he would deduce
that the state must be b. But in some contexts it is more realistic to suppose that
the agent is not so clever, and that he takes his signal at face value.

We can describe the knowledge operator generated by the possibility corre-
spondece P just as we did for partitions: K(E) = {we2: P(w) < E} for all events E.
In the ozone example, K({a})= {a}, K({b}) = ¢, and K({a,b}) = {a, b}. The rcader
can verify that K satisfies the first four axioms of S5 described earlier, but it fails
the fifth: ~K({a}) = {b} # ¢ = K ~ K({a}). Non-partitional information has been
discussed by Shin (1993), Samet (1990), Geanakoplos (1989), and Brandenburger
et al. (1992).

The definitions of Bayesian game and Bayesian Nash equilibrium do not rely
on partitions. If we substitute possibility correspondences for the partitions, we
can retain the definitions word for word. At a Bayesian Nash equilibrium, for each
state el agents use their information P,(w) to update their priors, and then they
take what appears to them to be the optimal action. Nothing in this definition
formally requires that there be a relationship between P,(w) and P;(w’) for different
w and w’. Moreover, the definitions of self-evident and public also do not rely on
any properties of the correspondences P;. We can therefore investigate our agree-
ment theorems and nonspeculation theorems when agents have nonpartitional
information.

Imagine a doctor Q who initially assigns equal probability to all the four states
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Diagram 2a Diagram 2b Diagram 2¢

describing whether each of two antibodies is in his patient’s blood (which is good)
or not in the blood (which is bad). If both antibodies are in the blood, ie., if the
state i1s GG, the operation he is contemplating will succeed and the payoff will be
3. But if either is missing, i.e., if the state is any of GB, BG, or BB, the operation
will fail and be will lose 2. Suppose that in his laboratories his assistants are
looking for the antibodies in blood samples. The doctor does not realize that if
an antibody is present, the lab will find it, whereas if it is missing, the lab will
never conclusively discover that it is not there, The possibility correspondence of
doctor Q is therefore described by Diagram 2a. The laboratory never makes an
error, always reporting correct information. However, though the doctor does not
realize it, the way his laboratory and he process information is tantamount to
recognizing good news, and ignoring unpleasant information.

A lab technician comes to the doctor and says that he has found the first antibody
in the blood, and his proof is impeccable. Should the doctor proceed with the
operation? Since doctor Q takes his information at face value, he will assign equal
probability to GG and GB, and decide to go ahead. Indeed for each of the signals
that the doctor could reccive from the actual states GG, GB, BG the superficial
content of the doctor’s information would induce him to go ahead with the
operation. (If the actual state of the world 1s BB, doctor Q will get no information
from his lab and will decide not to do the operation). Yet a doctor R® who had
no lab and knew nothing about which state was going to occur, would never
choose to do the operation. Nor would doctor R, who can recognize whether or
not both antibodies are missing. Doctor R’s information is given by the partition
in Diagram 2b. From an ex ante perspective, both doctors R® and R do better
than doctor . We see from this example that when agents do not process
information completely rationally, more knowledge may be harmful. Furthermore,
@ does not satisfy the sure-thing principle. At each w in the self-evident set M =
{GG, GB, BG}, doctor Q would choose to operate, given his information Q(w). Yet
if told only weM, he would choose not to operate.

Doctor @ does not know what he does not know; the knowledge operator K,
derived from his possibility correspondence @ does not satisfy ~K, =K, ~ K.
But like the ozone scientist P, doctor Q does satisfy the first four S5 axioms. In
particular, doctor Q knows what he knows. He can recognize at GB that the first
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antibody is present, and whenever that condition obtains, he recognizes it.
Formally, the possibility correspondence P, gives rise to a knowledge operator K,
satisfying the “know that you know” (KTYK) axiom iff for all w, w'e, w'eP(w)
implies P;(w') < P/(w). Doctor Q’s error is that he sometimes overlooks the
condition of the first antibody while recognizing the condition of the second
antibody, and at other states he does the reverse. If he paid attention to the
antibodies in the same order, his knowledge would satisfy the “nested” property.
Formally, a possibility correspondence satisfies the memory property called nested
if for all w and o with Pj(w)n P(w') # ¢, either Pi(w) < Pi(w’) or Piw') P, (w).

Theorem. Consider the one-person Bayesian games (02, (P;, A;, m,, u;)) and (Q,(Q,,
Ay, o uy)) where Q, is a partition and P, is finer than Q,, but is not necessarily a
partition. Let f be a BNE in the first game, and g in the second. Then if P, is non-
deluded (wePi(w) for all w), and sarisfies knowing that you know and nested, then
> weols (f(w), o)) =3 cow(glw), w)rw). Conversely, if P, fails any one of
these properties, then there exist A;, u;, m;, and BNE [ and g such rhat the above
inequality fails.

We could also give nccessary and sufficient conditions (nondeluded plus a
property called positively balanced, which is implied by nested) for a nonpartitional
decisionmaker (o satisfy the sure-thing principle. Doctor @’s information processing
leads to decisions that violate both the principle that more information is better
and the sure-thing principle. By contrast, ozone scientist P will satisfy both the
sure-thing principle and the principle that more information is better, despite not
being perfectly rational. It turns out that more rationality is required for the
principle that information is good than for the sure-thing principle.

Imagine now another doctor S, contemplating the same operation, but with a
different laboratory. Doctor S’s lab reveals whether or not the first antibody is in
the blood of his patient, except when both antibodies are present or when both
are absent, in which cases the experiment fails and reveals nothing at all. If doctor
S takes his laboratory results at face value, then his information 1s described by
Diagram 2c¢. The superficial content of doctor S’s information is also impeccable.
But if taken at face value, it would lead him to undertake the operation if the
state were GB (in which case the operation would actually fail), but not in any
other state.

Doctor § is thus worse off ex ante with more information. Note that S fails
KTYK. But S satisfics nested and therefore positively balanced, which implies that
S’s behavior will satisfy the sure-thing principle.

Since Bayesian games are formally well-defined with nonpartitional information,
we can put the doctors together and see whether they would speculate, or bet, or
agree to disagree. In general, as we saw in the last section, we would bave to
expand the state space to take into account each doctor’s uncertainty about the
other doctor’s information. But for illustration, let us suppose that the state space
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22 of four states already takes this into account. Again, this formally makes sense
because in BNE each player thinks about the states and actions, not directly about
the other players. Once we assign actions for all players to each state, we are back
in that framework.

Furthermore, it might appear that it would make no sense to ask when an event
E = Q is common knowledge when agents have nonpartitional information. Since
the agents do not fully understand their own information precisely, how can they
think about what the others think about their information processing? The answer
is that common knowledge can, as we saw, be understood in a way that depends
only on self-evident events. Each of the doctors Q, R, S can be perfectly aware of
which events E are self-evident, i.e., satisfy P;(w) < E for all meE. This degree of
mutual awareness would not induce them to refine their possibility correspondences,
except at «w = BB.

After getting their information at any weM = {GG, GB, GB}, doctors Q and R
would be willing to make a wager in which doctor R pays doctor @ the net value
the operation turns out to be worth if doctor Q performs it. At each of the states
in M doctor Q will decide to perform the operation, and therefore the bet will
come off. Moreovcr, the event M is public, so we can say that the bet is common
knowledge at each weM. The uninformed but rational doctor R would in fact
come out ahead, since 2 out of every 3 times the operation is performed he will
receive 2, while | out of every 3 times he will lose 3.

Doctors S and R would also be willing to sign a bet in which R paid S the net
value of the operation if doctor § decides to perform it. Again doctor R will come
out ahead, despite having less information. In this BNE it is not known by doctor
R that the bet is going to come off when doctors S and R set their wager. Doctor
R is put in a position much like that of a speculator who places a buy order, but
does not know whether it will be accepted. One can show that there is no doctor
(with partition information, or even one who makes the same kinds of crrors as
doctor §) who doctor § would bet with and with whom it would be common
knowledge that the bet was going to come off.

It can also be shown that ozone scientist P would not get lured into any
unfavorable bets (provided that the ozone layer was the only issue on which he
made information processing errors). Furthermore, it can be shown that none of
the four agents P, Q, R, S would agree to disagree with any of the others about
the probability of some event.

Geanakoplos (1989) establishes necessary and sufficient conditions for the degree
of rationality of the agents (i.e., for the kinds of information processing errors
captured by the nonpartitional possibility correspondences) to allow for specu-
lation, betting, and agreeing to disagree. There is a hierarchy here. Agents can be
a little irrational (satisfying nondeluded, KTYK, and nested), and still not speculate,
bet, or agree to disagree. But if agents are a little more irrational (satisfying
nondeluded and positively balanced), they will speculate, but not bet or agree to
disagree. If they get still more irrational (satisfying nondeluded and balanced), they
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will speculate and bet, but not agree to disagree about the probability of an
event.? Finally, with still more irrationality, they will speculate, bet, and agree to
disagree.
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