Cowles Foundation Paper 901

The Value of Money in a Finite-Horizon Economy: A Role for Banks

Pradeep Dubey and John Geanakoplos

Frank Hahn (1965), among others, has argued that it is difficult to prove,
or even to justify, a positive price for fiat (i.e., paper) money in economic
equilibrium. The problem is particularly serious when there are only a
finite number of time periods. In the last period nobody will want to hold a
positive amount of it, if its price is positive. Hence, if there is a positive
supply of money, equilibrium requires its price to be zero in the last period.
But then in the second-to-last period nobody will want to consume it, or
hold it, since it brings no reward in the last period. Again its price must be
zero if its supply is positive. Working backward to the beginning, it follows
that the value of money is always zero if it is in positive supply, in a finite-
horizoneconomy.

This argument is not affected by the stipulation that all trade must be
conducted between goods and money, provided that preferences for com-
modities are strictly monotonic. If the world is expected to come to an end
in exactly 1 billion years, then no trade can take place through money in all
the intervening years, no matter how horrible the initial distribution of
commodities.

There are at least four ways around these problems. One could postulate
an infinite-horizon model, so that there is no last period. This was done
by Samuelson (1958), who made the agents finitely-lived, and also by
Grandmont and Younes (1973), who had infinitely-lived agents that faced
a transactions constraint. Alternatively, one could model the present, leav-
ing the future as part of exogenous expectations. As long as these expecta-
tions suppose positive prices of money (Grandmont and Younes 1972) in
the future, no matter what the conditions today, or at least levels of prices
that are not too much higher than those today (Hool 1976), money will
have positive price in today’s temporary equilibrium. Third, one could
postulate the existence of an external agent who stands ready to trade
commodities for money at prearranged prices. Finally, following Lerner
(1947), one could postulate the existence of a government that is owed in
taxes (payable only in money) an amount precisely equal to the cash bal-
ances of all the individuals. In the first two approaches, money has value in
any period because it is a store of value, and will by hypothesis have value
in the next period; in the last two approaches, money has value because an
external agent gives something (either commodities or relief from taxes) in
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exchange for it. In the Lerner model the delicate balance of money and
debt implies that the net supply of outside money is zero.

We propose to add another explanation for the value of money by intro-
ducing a competitive banking sector. The “banking sector” is endowed
with fiat money and wishes only to get more money. Agents also have
endowments of money that they own free and clear, with no offsetting
debts to an outside government or bank. In contrast to the first two ap-
proaches to money, its value to the agents can be derived from its transac-
tion role alone, quite apart from any store-of-value role it might also have.
Moreover, unlike the external agent mentioned in the last two approaches
above, the banking sector does not have anything to offer in exchange for
money. It does, however, have the power to lend money to voluntary bor-
rowers, and to enforce the collection of the ensuing debts.

Consider an Arrow-Debreu economy in which there is some commodity
that every agent has in positive supply. Suppose that one of the agents is
endowed only in this good and cares only about consumption of this one
good (in which he is never satiated), and that the rest have no utility for the
good. Curiously, there can be no Arrow-Debreu equilibrium. If the good
has positive price, then the first agent will demand exactly his endowment
and the others nothing, so supply will exceed demand. If the price is zero,
the first agent will demand an infinite amount of it, and so demand will
exceed supply. If we think of the first agent as the banking sector, and
the privileged commodity as fiat money, then we see that adding the bank-
ing sector to the standard general-equilibrium model can create still more
problems: instead of getting an equilibrium in which money has a price of
zero, we get an economy with no equilibrium at all!

Our model is therefore further enriched by postulating a cash-in-ad-
vance constraint along the lines of Clower 1965. All trades of commodities
must be in exchange for money. Agents who wish to spend more than their
endowments of cash can borrow money from the banking sector, at some
endogenously determined interest rate. They repay the bank out of the
cash receipts from the sale of goods. The banking sector is endowed with
an exogenously fixed stock of money, M. In equilibrium, which exists un-
der quite general conditions, the demand for money is equal to M, and the
value of money is positive. By adding a banking sector and a cash-in-
advance constraint to the traditional general-equilibrium model, we are
able to show what neither modification alone can generate: that money has
value because of its transactions role.



Value of Money in Finite-Horizon Economy 409

The crucial idea behind our analysis is that agents, who do not initially
owe the bank anything, are driven by their own optimizing behavior to
borrow and incur debts until their endowments are owed to the bank.
More precisely, the money market for cash borrowing will clear only when
the interest rate reaches at least a level 8 so high that the money owed back
to the bank, (1 + )M, is at least equal to the sum M + Y,y m® of bank
money and the private endowments {m®},_y of fiat money owned by the
agents. Although the result is superficially similar to the Lerner model, in
that all outside money is finally owed to an external agency, each agent in
our model begins with outside money, which he considers real wealth.
There is no artificial requirement that the stock of money precisely balance
government taxes.

When Y ,.zm® > 0, the set of monetary equilibria is determinate; ie.,
there are (generically) only a finite number of equilibria. Supply and de-
mand determine not only the relative prices but also the level of prices
and the interest rate. As M/Y .y m® — oo, the interest rate goes to 0, and
the monetary equilibrium commodity allocations converge to the Arrow-
Debreu equilibrium allocations of the underlying nonmonetary economy.

Our existence theorem for monetary equilibrium provides a completely
new proof of the existence of Arrow-Debreu equilibrium, by taking the
limit as M — oo (see Dubey and Geanakoplos 1989b). When Y, ym® = 0,
and agents honor all their debts, the price level is indeterminate, but all
monetary equilibrium allocations are Arrow-Debreu allocations.

By contrast, in the Lerner model, the monetary equilibrium commodity
allocations are always indeterminate. (See Balasko and Shell 1983.) Adding
a cash-in-advance constraint implies that are also disjoint from the Arrow-
Debreu commodity allocations.

In our model the banking sector “earns” a positive rate of interest on
worthless paper by exploiting the agents’ need to transact through money.
If one thinks of the banking sector as a central bank, then it is easy to see
that the bank could acquire real commodities in exchange for printed pa-
per (exactly the opposite flow envisaged in the third approach to monetary
equilibrium mentioned above, in which the government gives goods for
money). Even when the banking sector is content to acquire only paper, its
gains still cause a deadweight loss for the agents on account of the interest
rate. Since a positive interest rate puts a wedge between buying and selling
prices, it inhibits trade unless the gains to be made are sufficiently large. We
are thus led to introduce a measure y*(x) for the available gains to trade at
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any allocation x, which may be of some value in its own right. Our exis-
tence theorem for monetary equilibrium (which implies a positive price for
money) depends on the hypothesis that the gains to trade y*(e) at the initial
endowment e exceed ),y m*/M.

Our model displays some of the rudimentary properties of a full-fledged
monetary economy when the private stocks of money are positive. Injec-
tions of bank money are not neutral. They tend to cause inflation, but to
lower the interest rate. On the other hand, gifts of fiat money to agents
also cause inflation, but raise the interest rate. The former injections are
analogous to open-market operations and the latter to fiscal policy. In this
simple model, injections of bank money tend to push the economy to-
ward the Pareto frontier, but the resulting inflation may make agents with
large endowments of fiat money worse off. As Friedman (1969) and Bewley
(1980) suggested, albeit in different contexts, monetary equilibria for econ-
omies with ), . zm® > 0 become efficient only when M — oo and 6 - 0.
When Y, ., m® = 0, changes in the stock of bank money M are neutral.
But the moment Z m* exceeds zero, equilibrium price levels become deter-
minate, and money is no longer neutral, as explained above (except, of
course, with respect to the joint scaling up of bank money and private
endowments, which is tantamount to changing dollars into cents).

A more realistic model of a monetary economy would involve many
possible periods of trade, and uncertainty. Money as a durable good would
then have a store-of-value role as well as a transactions role to play. If there
were other assets in the economy, money would have to compete with
them in each agent’s portfolio, and we could speak of the speculative de-
mand for money. If we added production to the model, we could examine
the effects of increasing the stock of money on firms’ output. And if we
further allowed for durable goods other than money, we could discuss the
velocity of money as well. (None of these features is present in the current
work; the interested reader is referred to Dubey and Geanakoplos 1989a
and 1989¢.)

Shubik and Wilson (1977) first introduced a banking sector into a general-
equilibrium model. They computed the equilibrium in an example, but
did not give a general statement or proof of the existence of equilibrium.
Nor did they note the possibility that money would have positive value
even if the stock of privately held money was positive. They did, however,
introduce bankruptcy penalties to represent the idea that the banking sec-
tor might only imperfectly be able to enforce the repayment of its loans. In
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their formulation, an agent suffered a loss of utility proportional to the
number of dollars of his unpaid bank loan.

We investigate the existence of equilibrium when there are finite bank-
ruptcy penalties. If the penalties are sufficiently high, then bankruptcy will
not occur, and we are back in the situation described above. For lower
penalty rates, bankruptcy must occur in equilibrium. Yet we are able to
show that, no matter what level of penalty rates, so long as the rate is
multiplied by the number of dollars owed, a monetary equilibrium will
exist, given the above condition on gains to trade. Some agents will fail to
repay the banks, but the equilibrium interest rate will be so high that the
banking sector will recover the same amount of money in the aggregate as
it did when there was no chance of default. The interpretation we make of
the banking sector is that banks have no information about the reliability
of particular customers and so stand ready to lend as much asis desired (up
to their total holdings) to any customer at the going rate of interest. In the
regime of low penalties, with bankruptcies occurring in equilibrium, scal-
ing both the stock of bank money and the private endowments of money
will have non-neutral effects (as has been noted by Shubik and Wilson)
when the penalty rates are multiplied by the nominal debts.

We also consider real penalties, where the punishment depends on the
size of the unpaid debt deflated by some price index. Here we find that
there is a minimum threshold to the harshness of the penaity that is ne-
cessary to maintain the integrity of the banking system and the value of
money. This threshold level is, however, low enough so that there can be
considerable bankruptcy in equilibrium. Once we permit the harshness of
the penalties to depend on the level of prices, it is only natural to extend the
analysis to allow for them to depend on other macro variables, such as the
volume of trade. We conclude by developing a much more general scheme
for penalizing the nonpayment of debts and showing that the crucial prop-
erty that must hold to guarantee the existence of monetary equilibrium,
when there are sufficient gains to trade, is that the penalty becomes harsh
as the volume of trade goes to zero.

1 The Economy with Fiat Money

Let H={1,...,h} and L = {1,...,¢} be the sets of agents and commodi-
ties, respectively. Thus, the commodity space may be viewed as R% , whose
axes are indexed by the elements of L. Agent a € H has initial endowment
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e® € RL and utility function u*: R — R. We assume that
e’ =(ef,...,e5) # 0,

Y >0,

acH

and, further, each u* is concave and continuously differentiable (we assume
smoothness throughout only for ease of exposition), and

Dju“EZix>0 forjeL,aeH, xeR,.
]

There is fiat money in the economy, and it is the stipulated medium of
exchange. Let M > 0 be the supply of money at the bank, and let m* > 0 be
the private endowment of money for « € H.

To describe the budget set and the optimization problem faced by an
agent a, it will be handy to represent the sequence of events as a tree (see
figure 1). Let 0 € (—1,00) and p € R% ,, where 6 is the money rate of interest
and p; is the price of j € L (quoted in terms of money). Both 6 and p are
taken by a as exogenously fixed.

At the start, « borrows ¢* € R, units of money from the bank. Thus, «
owes u® = (1 + 6)c® to the bank. Next a trades in the L commodities, using
money for purchases. The choices available to him at this point are then
given by

X & « 2 & '] . a & e — uc a
{(b ,g*)eR: xRL: g <ef for jeL; andjeZLb, Set+misrodm }

Here b}’ is the money spent by a for purchase of commodity j, and g is the

}a borrows c%out of M

a spends b® on purchases,
and sells qa

} a returns r% to the bank

Figure 1
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quantity of j that he puts up for sale. Thus, « winds up with the commodity
bundle x* € RL , where

b
= xa(b »q ’p) = e q; pj (I)

forj e L, and the amount of money
e ecttmt = b+ T
jeL jeL

Finally a chooses to repay r* < ¢* on his loan. Consequently, his debt
outstanding at the bank is

de = du( uere) = ut—re (II)

In summary, the choice set of agent « is

Z%0,p) = {(y',b',q',r‘)e R, x RL x R x R,: qf <eforjeL;

a &a. ”
T sthgemr s m- 5 b T par).

JjeL
The outcome functions x; and d” are continuous functions from
Z*(0,p) x RL,

into R,, and for any fixed (6,p) € (—1,00) x RL, they are linear on
Z4(@,p).

It may help to illustrate the attainable consumption bundles of « when
h = 2and ¢ = 2forfixed p and 6 > 0. (See dark lines in figure 2 and 3.)

Note that when 6 = 0, m* = 0, and a chooses to have d° = 0, figures 2
and 3 reduce to the classical Walrasian budget set.

Note also that, for any fixed (p,6,d*), the consumption set is convex if we
allow free disposal.

We must now specify the utility U*, to a, of the outcome (x%,d*). Were
there no incentive to return money to the bank, the agent would always
choose r* = 0 and b* and d* very large. Prices would be driven to infinity,
and the value of money to zero. It almost goes without saying that, since
agents are not rationed in borrowing from the bank, there must be some
compulsion to return their loans if money is to have value. We model this



414 Pubey and Geanakoplos
P
&
E] B o &y B—w 1
A = By = ﬁ"‘.‘.'.."""E'i‘ =150
¢2 ___________________ 2
1
[
‘1
1
I
|
I
a 1
£ P ¢
Fifreere 2
{m™=04"=14
A
B
¥ - -
'52 B_EZED_E%T}?
: : ¥
A - £ C - B
B
£y
j
1
4 i
2 ,.1 I3 G
Figute 3

{m? =D g5 = 03



Value of Money in Finite-Horizon Economy 415

through U?, in terms of an “extra-economic penalty” that is levied on «
when d* > 0, and that has the effect of reducing a’s utility. The simplest
form for U* is

U%(x*,d%) = u*(x*) — A%d%,

where ¢, = max{c,0} for any real number c. (Note that, for fixed 6 and p,
U* is a concave function of the outcome variables (x*,d®), which in turn are
linear in the choice variables (u*,b%,q%r%).)

The function U® incorporates a bankruptcy penalty via a flat rate 1%. The
penalty increases in harshness directly with the size of the debt. By thinking
of A% as infinity, or a fixed constant, or a function of prices, we can describe
many different kinds of bankruptcy laws.

Case 0: Infinite Penalties

If we imagine A* = oo, or indeed sufficiently large 1° agent a will never
choose to go bankrupt, and his budget set X° is effectively modified by the
requirement that d* = 0, i.e., 7* = u* This may be reformulated as follows.
Let

z=x"—e"eRl

denote the net trade. Then the net trades available to « are

{ze Ri:e®*+220,p-z" + i _t_ Op-z' < m‘},
where z; = max{0,z;} and z;7 = min{0,z;}.

When € = 0, this is the conventional Walrasian budget set. For § > 0,
the available net trades are reduced. There is a “float loss” caused by the
fact that purchases require the use of money. Since purchases and sales
occur simultaneously, in markets where goods trade for money and not
directly for each other, the money receipts from sales are obtained too late
to be used directly for the purchases. This makes it necessary for a to
borrow (p-z* — m®), from the bank. To avoid bankruptcy (i.e., to ensure

d* = 0), o must choose
Q+6)p-z* —m"), < —p-z”.
(See figures 2 and 3.)
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Casel: Nominal Penaities

Let A2 > 0 be a fixed scalar. In this case agents may choose to go bankrupt
(i.e., choose d* > 0), and they are punished by a utility loss proportional
to the number of dollars they fail to return, regardless of the prevailing
price levels. This is not fanciful. Historically, bankruptcy laws and penal-
ties (such as the threshold above which a misdemeanor becomes a felony)
have not quickly adjusted to inflation. Such nominal penalties were, as we
said, first introduced by Shubik and Wilson (1977).

CaseIl: Real Penalties

Letae R:,a # 0,and

U%(x®,d%p) = u*(x*) — —d3.
Here we allow for bankruptcy penalties to adjust instantaneously to the
price level. The vector a € RS \ {0} serves as a “price deflator” with respect

to which penalties are measured.
CaseIIIl: Endogenous Penalties

Once we have admitted the possibility that the penalty rates can depend on
price levels, as in case II, it is only natural to consider penalties that depend
on other macro-variables of the economy, such as interest rates, the total
volume of trade, or the total volume of debt. To describe such penalties, let
A = {(6,p,x) € (—1,00) x RL x (RL)¥} denote the set of all interest rates,
prices, and allocations, and let

nA-Q

be a map from A4 into a (Euclidean) signal space Q. For each a e H,
consider

A% (-1,0) xRE x Q-R, ..

Both n and A% are assumed continuous. The term A%(6,p,w) is interpreted to
be the penalty rate for a when interest rates 8 and prices p prevail, and
when other relevant macrovariables in the economy are according to w.
Thus, the utility toa is

U%(x*,d%0,p,0) = u*(x*) — 2%(0,p,w)d5 .
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One scenario that is of central importance in the current case occurs if
penalty rates are harsh when the total volume of trade in the economy is
close to zero, and progressively more lenient as the volume expands.

2 Monetary Equilibrium

We say that {6,p,y}, where y = (y!,...,y*)and y* € RE for « € H, is a mone-
tary equilibrium (M.E.) if there exist (u®b%q%r*), g such that
(i) fora e H,

(a) (n%b%g°r*)e Argmax U*(x*(b,q,p),d*(u,r),0,p,)
(1,b.q.r) e T%0,p)

(®) y* = x“(b°q°p),

(i) @ = n(6,p,y),

(“1) uezﬂ y= cezH ¢

Y L =M

aeH 1 + 0
In other words, each agent optimizes (i), correctly anticipating the macro-
variables o (ii); commodity markets clear (iii); and the money market clears
(iv).

By the very definition of an M.E. we guarantee that, if it exists, money will
have positive value. (Commodity prices are not allowed to be infinite at an
M.E)

But the only role for fiat money in our model is to facilitate trade. When
the endowments are Pareto optimal there are no gains to trade. In such a
situation, money cannot be expected to have positive value, and M.E. will
not exist.

Furthermore, the presence of money does not of itself make for friction-
less trade. For instance, suppose the interest rate is positive. Then, as al-
ready discussed (see figures 2 and 3), a float loss is imposed which inhibits
trade unless the gains to be made are sufficiently large.

It turns out that if the initial endowment of fiat money is positive, a
positive interest rate is inevitable in any M.E. No agent will want to hold
money at the end, since it is fiat and has no direct utility of consumption
for him. Thus, all of M + Y,z m® will be returned to the bank at the
end of trade. On the other hand, no agent will return more than he owes
(otherwise he could spend further on purchases without going bankrupt,
and improve his utility), so that atleast M + Y, , m* is owed to the bank.
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The upshot is that ) ,. y m*/M represents a “floor” on the money rate of
interest, which is achieved precisely when all debts d* are O fora € H.

3 A Measure of Gains from Trade

Positive endowments of money imply a positive money interest rate, and a
positive money rate of interest inhibits trade. It follows that the question
of sufficient gains to trade must arise in the analysis of existence of M.E.
We now give a measure of the gains to trade available at any allocation

y=0h.., 0"

DEFINITION Given utilities (#*),.y and y € R,, define the allocation
(¥%,...,y") to be y-Pareto optimal iff there do not exist feasible net trades
2., 2" (e, z* e RY, y* + 2 e R foralla e H;and Y,y 2* = 0)such that

uj(2) = u (y* + 2°(7)) = u*(y")

for all a e H, with strict inequality for at least one a; where zi(y) =
min{zf,2}/(1 + y)} fora € H,je L. If zf > 0, then z}(y) < z{, while z{(y) =
z{ for z§ < 0. (Recall that positive (negative) components of z* denote pur-
chases (sales) by &)

Figure 4 illustrates an allocation that is y-Pareto optimal but not Pareto
optimal.
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The indifference curve for uj' through y* lies strictly inside the preferred
set for u® through y*. Moreover, it has a kink at y*.

Remark1 If(y%,...,y")is not Pareto optimal, then for small enough y>0,
(%,...,y" is still not y-Pareto optimal. On the other hand, for large
enough y, (y%,...,y") is y-Pareto optimal. Note that for any allocation
y = (y!,...,y") there is a minimum y* > O for which y is y-Pareto optimal.
This y* = y*(y) can be thought of as a measure of how far y is from Pareto
optimality.

Remark 2 We could also define y-Pareto optimality of (y!,...,y") by
requiring that there are no feasible trades (z',...,z*) such that
u*(y*+z°(y)) > u*(y®) for all « € H. By the usual arguments, this coincides
with the other definition, since utilities are strictly monotonic.

Remark 3 The initial endowment allocation e = (¢!,...,e") is y-Pareto
optimal if and only if there exists p > O such that for alla € H

OecArg max {u*(e* + z(y):e*+ 22> 0,p 2z < 0}.
zeR

Equivalently,
OeArg max {u*(e® + z):e*+220,(1 +0)p-z* +p-z~ <0}
zeR

To see why this is so, let
uy(z) = u®(e® + z(y)) forz > —e".

Since the map from z; - z/(y) is coordinate-wise concave, and u*® is strictly
monotonic and concave, it follows that uj is concave. Moreover, it is
trivial to check that uj is strictly monotonic. Remark 3 therefore fol-
lows from the standard first and second welfare theorems applied to the
utilities u;.

4 The Existence of Monetary Equilibrium with Nominal or
Real Penalties
The crucial condition we place on the economy is the following:

(CI) The initial endowment is not ) ,.;m®/M-Pareto optimal; iec.,
7*(€) > Yaeam*/M.
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Remark 4 If y = 0, the notion of y-Pareto optimality reduces to standard
Pareto optimality. Thus, if the initial endowment of fiat money is zero
(i.e., m* = 0 for « € H), then CI is tantamount to requiring that the initial
endowment is not Pareto optimal.

Remark 5 1tisevident that CI rules out the case where #L = 1.
Odur first result is now easily stated.

THEOREM 1 Consider case I with nominal penalties. Suppose condition
CI holds. Then so long as (1%), . g » 0, an M.E. exists.

To guarantee the existence of M.E. when the debts are measured in real
terms, penalty rates cannot be allowed to be arbitrarily low. Let Du®* =
(Dyu”...,D,u") denote the gradient of u*, and let - stand for dot product.

(CII) Fora € H:a; > 0=>¢} > Oforj € L, and (Du*(e”)) - a < A"

THEOREM 2 Consider case II with real penalties. Suppose conditions CI
and CII hold. Then an M.E. exists.

THEOREM 3 Consider the case of either real or nominal penalties (case I,
II). For all sufficiently large A% no agent goes bankrupt at any M.E. In
particular, equilibrium exists in case 0 of infinite A* under condition CL

COROLLARY Letm® = O for a € H. For all sufficiently large A% every M.E.
yields Walrasian prices and allocations (in cases I and II, and obviously
also in case 0).

Remark 6 An M.E. with nominal penalties can always be interpreted as
an M.E. with real penalties suitably adjusted to reflect the price levels, and
vice versa. However theorems 1 and 2 are not equivalent, since one must
know the price levels to effect the transformation between nominal and
real penalties, and the price levels are endogenous to the M.E.

5 General Bankruptcy Penalties

We could now turn to case III, which includes cases 0, I, and 1I, and
develop the analogue of CII to ensure the existence of M.E. But in fact we
have a still more general setup, of which the existence theorems 1 and 2 are
corollaries. In addition to allowing for bankruptcy penalties that depend
upon macrovariables, we no longer require that the penalty is linear or
even separable from consumption.
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Consider
URL x Rx(—1,0) x RE, xQ-R

and assume the following:
(i) U*iscontinuous.
(i) U*(x*,d*0,p,w)is concave in (x*d*)for any fixed choice of 6, p, w.
(iii) U*(x*,d%6,p,0) = u*(x*)ifd* < 0.
(iv) (a) oU?/od”* exists, is continuous, and is negative if d* > 0.
ouU*
®) oy

J

(x°,d%0,p,w) exists, is continuous and positive; and

sup {%Z (x*,d*,6,p,w): j € L,x"lies in a compact set,d* € R,

J

Oe(—l,oo),coeﬂ} < o,

and

inf {gz (x*,d*0,p,w): j € L, x*lies in a compact set,d* € R,
J

Oe(—l,oo),coeﬂ}>0.

(v) Forany trader « € H, and any sequence (x*(n), p(n)) that is uniformly
bounded, suppose that (d*(n), 6(n)) — co. Then

limninf U*((x*(n), @*(n), 6(n), p(n), n(6(n), p(n), x(n))) < u*(e®).

Conditions (i) and (ii) are technical. The remaining three conditions in-
corporate the essential properties of fiat money and bankruptcy penalties:
fiat money has no direct utility of consumption (iii)}, unpaid bank debts
are penalized and cause disutility (iv); if prices and consumptions stay
bounded, then for sufficiently large debts and interest rates the bankruptcy
penalties are harsh enough that an agent would prefer not to have traded
at all (v).

This generalized setup clearly includes all the previous cases, without
relying on the artificial separability between consumption and bankruptcy
penalties. It might well be, for example, that the penalty represents a term
in jail, and that could in turn affect the relative marginal utilities of con-
sumption goods.
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The analogue of condition CIl in the general setting is as follows. Let

e,
W(e ,d ,O,P, ”(O’I,’e))

A%(p) = inf{ :d*>0,0> o}

and

auU*
( p (e%,d%6,p, n(O,p,e))> ‘a
v¥(p) = sup inf

:a € RE\ {0},
0 @ pa +\{}

age’td*>0and6 >0

Then require, for every sequence p — 0,

(CIII) lim sup M >1

peo V(D) )
Note that A%(p) is the minimum utility loss to a if he owes a dollar to the
bank and goes bankrupt (when no trade is taking place in the economy).
On the other hand, v*(p) is the utility loss to « if he raises a dollar by
forgoing consumption (and making sales) at his initial endowment. Thus,
condition (CIII) states that if

pj— oforallje L
and
x*-»eforallae H,

then the marginal disutility of a dollar’s unpaid debt > the marginal dis-
utility of a dollar’s credit (taken out of consumption) for each « € H.

THEOREM 4 Consider the case of general penalties. Suppose conditions CI
and CIII hold. Then an M.E. exists.

Remark 7 (Neutrality of Money) If we double M and each m® then
clearly the M.E. remain unaffected in the case of real penalties, except that
all prices are also doubled. This happens in the nominal case as well, except
that it is now also necessary to halve the penalty rates A% (unless the A* were
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sufficiently high to have ruled out bankruptcy in the first place). These
changes are analogous to a change in units, and it would be surprising
indeed if a switch from dollars to cents caused rational agents to behave
differently. But it is worth reiterating that even such a change in units will
be non-neutral if the “courts” are not directed (in the nominal case) to
suitably adjust the bankruptcy laws (i.c., the 1%).

Remark 8 (Non-Neutrality of Money) Suppose the penalities are harsh
enough to rule out bankruptcy (in accordance with theorem 3)—indeed,
take 1* = oo for all a—and that ) ,.gym® > 0. Then the interest rate is
Y cexm®/M at any M.E. Thus, an injection of bank money (with endow-
ments of money held fixed) will lower the interest rate, while gifts of fiat
money to agents (hold the supply of bank money fixed) will raise it. In
either case there will be inflation and the M.E. allocation of commodities
will be affected.

When there is bankruptcy, the effect of injections of bank money or
private endowments will be non-neutral, and the effects on the interest
rates and inflation will tend to be in the direction specified above, but not
necessarily always.

Remark 9 (Dropping the Gains-from-Trade Hypothesis) Consider an
economy for which the initial endowment is not Pareto optimal. As
M- o,

Y m¥M -0
aeH

and we reach a level M* such that condition CI holds automatically for all
M > M*, ensuring (by theorems 1, 2, and 4) the existence of an M.E. (given,
of course, condition CII or CIII for real or general penalties).

More generally, let us fix utilities and the m* and suppose that endow-
ments vary in some hypercube in (R% )?. Then the “volume” of economies
for which condition ClI fails (and hence, possibly, M.E. also fail to exist) will
gotoOas M — oo.

Remark 10 (M.E. vs. Walrasian Equilibria) Suppose throughout there is
no bankruptcy (e.g., A* = o). If Y, ym* = 0, then the interest rate § = 0,
and it is immediate that the M.E. prices and allocations are Walrasian. If
Y eenm® >0, then 8 =Y m*/M — 0 as M — co. It follows that the wedge
between buying and selling prices approaches zero, and the M.E. outcomes
converge to Walrasian. (Indeed, if we specialize to the nominal case, then,
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as M — oo, bankruptcies will disappear even if the penalties were not harsh
enough to begin with, and Walrasian outcomes will occur in the limit.)
Thus, our existence theorem for M.E. provides an alternative proof of the
existence of Walras equilibrium (see Dubey and Geanakoplos 1989b).

Remark 11 (Distinction of M.E. from Walras Equilibria) We have al-
ready seen that when Y, 5 m® > 0, the interest rate 6 > 0 and then the
M.E. outcomes are not Walrasian.

Let Y ,.ym® = 0. At any Walras equilibrium there is an implicit penalty
rate for each agent, given by his “marginal utility of income” (with p-a =
one unit of income). Thus, if we choose n(6,p,x) = n(x) and each
2%(d®, p,n(x)) strictly smaller than these implicit rates, as (p,x) ranges over
all Walras equilibria, no M.E. (in the case of real penalties) will be
Walrasian. Thus, our model provides a new type of equilibrium, distinct
from the Walrasian, in which liquidity constraints come to the fore. (Of
course, under the conditions given in remark 10, we get Walras equilibrium
as a special case of M.E.)

6 Determinacy of MLE. and the Value of Money

Let 1°= o0 for a€H, and Y ,.gm*=0. As we saw, the ME. are
Walrasian; but it is equally clear that there is great indeterminacy of the
commodity price levels: they can be scaled down arbitrarily (with agents
hoarding increasing amounts of bank money M) without disturbing the
M.E.

But the moment Y,z m® > 0 we must have 6 = Y, .y m*/M > 0. Con-
sequently there is no hoarding and the above indeterminacy abruptly dis-
appears. In particular, the value of money (given by the price levels) is
determinate.

We can state this intuition formally as follows. Let 4 be a finite-
dimensional vector space of infinitely differentiable utilities which satisfies
the property that if ¢ € R” is small enough, and u € %, then v € %, where v
is defined by v(x) = u(x) + c- x.

THEOREM 5 For an open, dense, and full measure set & of vectors
E = (M’(la’eu,muyua)ae}l) € R++ X (R++ X R{f‘-+ X R++ X %)H’

the set of M.E. for the economy defined by E is finite in number, where 1*
refers to either real or nominal bankruptcy penalties.
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Remark 12 This theorem applies whether or not there is bankruptcy.

7 Exogenous Debts

We can extend our model to allow for the possibility that agents have
exogenous debts to the bank, on account of unpaid loans from the past
(which have been rolled over into the current period). Let A* denote such a
debt of « € H. If A* is positive, then this means that « owes A® to the bank; if
it is negative, the bank owes —A* to «. (In the interpretation, agents may
owe each other money, with the banking sector acting like a “clearing
house” through which all debts are channeled.)

Define M.E. exactly as before, with one amendment: d° is replaced by
d® + A® throughout, in the argument of U?, for all « € H. Thus, the pay-
ment of A% is called for at the end of trade, and the current debt d° (incurred
in trade) is adjusted by the exogenous debt A® to arrive at the net final debt
(d* + A%), ofato the bank.

We extend the gains-from-trade hypothesis (CI) to allow for debts:

(CI*) The initial endowment is not

(z""m ~Yeend ) -Pareto optimal,
M +

ie.,

'y‘(e) > (zaeﬂml‘;f ZaeﬂA')+ .

THEOREM 6 Consider the case of general penalties. Suppose conditions
CI* and CIII hold, and furthermore

Y mt— Y A*20.

aeH aeH

Then an M.E. exists. Moreover, if penalties are nominal or real (cases II
and I1I), then for large enough (1°), . i there is no bankruptcy at any M.E.

With nominal penalties, existence is guaranteed no matter how large, or
what the sign, of the A*

THEOREM 7 If penalties are nominal and CI* holds, then for any {A*}, u
an MLE. exists.
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Theorem 7 holds without the artificial assumption of separability be-
tween consumption and penalties. We now define general nominal penal-
ties, and then restate the theorem.

DEFINITION  U*(x*d",0,p,w) corresponds to general nominal penalties if,
in place of conditions iva and v of general penalties, we assume that for
x*< Y g pef andany 6, p, 0,

(i)** there exists ¢ > 0 such that, ford* + A* > 0,

aU‘ a a a ra
(a) - ad¢ (x ,d + A ,opp,w) <cC
ou*
(b) (e",d* + A% 6,p,n(6,p,e)) > 1/¢.

T odt
(ii)** thereexists D > 0 such that, for d* > D,
Us(x*d* + A*6,p,w) < U%(e*,A%6,p,w).

THEOREM 8 Consider the case of general nominal penalties. Suppose con-
dition CI* holds. Then, for any {A"},. » an M.E. exists.

8 Proofs

Proof of Theorem 4 For any ¢ > 0, we construct an extensive game I,
with a continuum of players, that is partitioned into h types. An M.E. is
then obtained as a limit of plays of type-symmetric strategic equilibria of
I, e—=0.

The set of players is the interval [0,h) equipped with the Lebesgue mea-
sure, and for t € [a — 1, a) we have

e = e", mt = m", U= U',

where 1 < a < h. At the start, all ¢t € [0,h) simultaneously send an “1.O.U.
note” u* € [¢, 1/e] to the bank. The interest rate # forms according to the
rule

_Jopdr

and ¢ obtains
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t

) [

‘=175 @

units of bank money. In the second stage of the game, all ¢ € [0,) simulta-
neously choose (b',g") € R: x RL subject to the constraints

JZLIJ_,'SI»:+m'+c‘ 3)
and
g <e. O]

Here b} is the money sent by ¢ for purchase of commodity j, and gj is the
quantity of j put up by him for sale. In the final stage of the game, each
t € [0,h) returns all the money he has to the bank, which is optimal for him
since money yields no utility. For each j € L, the price p;is formed by

_e+fobjdt

P g ®

and ¢ obtains the final bundle x’ € RL, and the debt d*, as given by the
right-hand sides of equations (I) and (II) in section 1 (after substituting ¢ for
a, and ¢ + m' for m*, and the money ¢ has on hand after trade for r%); i.e.,

|
x}=ej‘—qj‘+b—jforjeL, ©
p;
d=p—|{cf+m+e— ) b+ ').
U (C j;L i j;L Pi9; )]
The payoff to ¢ is then

U(x',d",0,p,w),

where

1 k
w=n(0,p,J‘ x'dt,...,J‘ x'dt).
0 h-1

Finally, assume that at the end of stage 1 each ¢ observes the interest rate 6.
This completes the description of the extensive game I'*.

A strategic equilibrium (S.E.) is a choice of strategies by all the players in
[0,h) such that no player can improve his payoff by a unilateral change
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of strategy. It is called type-symmetric (and denoted T.S.S.E.) if, for each
a € H,allt € [« — 1, a)choose the same strategy.
Note that in the game I'* the effect of the “c-perturbation” is threefold:

(a) Each player has an extra endowment ¢ of fiat money.
(b) Each player is constrained to keep his 1.0.U. note within the range

[e 1/e].
(c) In each commodity market, an “external agency” supplies ¢ units of
money and ¢ units of the commodity.

ccamMl ATSSE. existsinI™foranye > 0.

Proof Each t € [0,h) chooses p* < 1/¢, and 6 forms as in (1), so we must
have

he h/e

— <

M <146< i

So consider a “generalized game” in which each t € [« — 1,a) has the am-
bient strategy set

Z“:{(ﬂ‘,b¢’q¢)eR+ x R x Rf;_;es”as_::_’quse.’

a a ”‘
jeZLbj <e+m +_hs/M}’

which is compact and convex. For a type-symmetric choice
6=(c...,0"0) e x - x T
by the players in [0,h], where ¢* = (u*,b%4®), the formulas for 6, p, etc.
simplify to the following:
ZaeH I‘a
1 =&
+ 6(0) YR

E+Z¢eﬂbj' .
)= ——", eL
pj( ) E+Z¢eﬂqf. J

b®
xo)=e*—qg*+——, jeLandae H
7(0) = ¢ — gj 2 J

n(0) = n(6(0), p(0), x*(0), .., x*(0)).
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Note that 6, p, and 5 are continuous functions of ¢. Also, for ¢ € T! x
-+« x Z"and « € H, define

E(a)—{(ﬂ,b,lI)Ez-j;bi se+m +1+o(a)}

to be the feasible strategy set of t € [a — 1, a) when all others choose strate-
gies according to o. Since, as already remarked,

1+ 6(c)> he/MforceX! x -+ x I
we have
I¥o)cX®

for all such g. It is also clear that (g) is compact and convex, and contin-
uous in 6. Now define

£%0) = Arng(n?x U*(x(z,0), d(z,0), 8(0), p(0), (o)),
where, with 7 = (i1,b,q), we mean

xft,0) =€ —q; + forjelL,

P9)

7
d(t,o)=u — et ——— 00— > b .
(1,0)=p (s +mt  000) EL ) + j;l_ pj(a)qj)
In other words, £%(c) is the best-response set of t € [« — 1, a), when others
make the (type-symmetric) choice of ¢, so that t now faces fixed 6(c), p(0),
and n(o). The map

t > U%(x(1,0),d(z,0), 6(0), p(0), n(0))

is continuous and concave by assumptions (i) and (ii) on U* and the fact
that ©+— (x(1,0), d(1,0)) is linear. We conclude that £*(¢) is nonempty, com-
pact and convex, and upper semi-continuous in o.

Then the correspondence

o E0) x -+ x EH(g),

satisfies all the conditions of Kakutani’s fixed-point theorem. Any fixed
point is easily seen to be a T.S.S.E. of our generalized game. Using these
moves on the tree, and defining arbitrary but type-symmetric moves at
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other positions on the tree, we then obtain a T.S.S.E. of I'®. This proves
claim 1. -

Let
0(e), p(e), X (e, .., x*(e), d* e), .., d*(e)

denote the outcome at a T.S.S.E. of I in all steps below, and let u*(e), b*(e),
and ¢°(¢) denote the moves by players of type « along the T.S.S.E. play of
the game.

cLAM2  6(e) = (he + Y, gm*)/M > O for sufficiently small .
Proof Choose ¢ small enough to ensure

1_/8>h8+2.63m¢+M
M M )

If 4%(e) = 1/e, for any a, then clearly the claim is true. So assume u*(e) < 1/¢
for « € H from now on.

Clearly at a T.S.S.E. no agent will end up with a negative debt; for if
—d*(e) = K > 0 then he could borrow an additional

A K

<1709 T+00

from the bank (by raising u*(c) by A), use this money to buy any commod-
ity he liked, and defray the loan by increasing d°(¢) by A without incurring
any default penalty. This improves his utility, a contradiction.

Since all the money in the system is returned to the bank, the total .O.U.
notes sent to the bank are at least

he+ M+ Y me
aecH

proving Claim 2, [ ]
CLAIM3 Thereisan R > Osuch that

pi(e)
p—j(a <

foranyie L,je L,and all sufficiently small ¢.
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Proof By claim 2, 6(¢) > 0, and at least one agent type chooses u*(¢) > ¢.
We claim that no agent whose 1.O.U. note exceeds ¢ will hoard the bank
money that he borrowed (i.e., not spend it on purchases). Otherwise, let
him reduce his 1.0.U. note by é and spend an extra 66/(1 + 6) on any good.
His debt remains unchanged, but his consumption increases, so his utility
goes up, a contradiction.

Clearly such agents (whose 1.O.U. notes exceed ¢) acquire at least
M — (h — 1)¢ units of bank money (since 6(c) > 0). Choose ¢ small to
ensure M — (h — 1)¢ > M/2. Since they do not hoard, there is at least one
commodity j* with

M

pjple) 2 70" 0 (say),
where
Q =14+ I‘l"leaf {anH ef},

and we take ¢ < 1. (Q is the maximum offering of commodities, including
the external agent’s &) Let I < L be the set of commodities that are being
purchased by some agent in H, and let J = L\ I. Note that j* € I.

If i € I, let « be a player-type that is purchasing i. Then we must have

D,U(x*(e),...) _ pile)
DU(x%(e),...) ~ pile)

for any k € L. Otherwise, let t € [« — 1,a) spend A less on i and use A to
purchase k; his gain in utility will be

D, U"(x"(e),...)A - D, U'(x'(e),...)é >0, :
Dx P

i
a contradiction. Put

- (DUx,...)
Q= Sup{D,u'(x,...)

taeH,ieL kel x;< QforjeL}.

(Note that 0 is finite on account of condition (iv) (b) on the U*.) We con-
clude thatifie Jandke L,

ple) _ =

Y lahd
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Now takei e J. Then

[

— =S

g) =
P = ST ®
SoforanykelL,

pie) _ pile) pole) 1.

e pre) P 0
Take R = max{(0,0/0}. .

>

CcLAIM 4 There is a B > 0 such that p;(e) > B for je L and sufficiently
small e.

Proof This follows from claim 3 and the fact (proved inside claim 3) that
there is a j* € L with

M

pje) 2 . .
2(1+max| 5, o)

Consier a sequence of T.S.S.E.of " ase — 0.

casea There exists a subsequence and a B > 0 such that
pe)<B
forallje Landalle.

cLAM 5 Incase A, thereis a B such that 8(c) < B and p®(e) < Bfora e H
and sufficiently small e.

Proof Note that 8(¢) = oo if and only if there exists an « € H such that
1%(g) = oo on afurther subsequence. If u*(¢) — oo, then

d*(e) > p%(e) — (M + EZH m® + hs) - .

Then, by condition (v) on the U®, t € [« — 1,a) would do better by not
trading at all sufficiently far down in the sequence, a contradiction. a

Thus, in case A we can select a subsequence so that

1 (e), b*(e), g%(e) = 1%, b%, q°
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for all « € H; moreover,
ple)—pforjeL,

0(e)— 0,

and

x%(¢), d*(e) —» x*,d*fora € H.

It is readily verified that the limit points yield an M.E. (Note that the
constraint of 1/¢ on ' is not binding since u* < B < 1/¢ for small enough ¢.
Then since U* = U* is concave in g, b', ¢ for any fixed p, 8, w, it follows
that we could have dropped the 1/¢ constraint altogether.)

casE B Case A does not occur. Then, using claim 3, there is a subse-
quence such that p;(¢) — oo forall j € L. But

E+ Y enbie) _e+he+ M+, gm*
e O R S R
Hence, Y, g 4f(e) = Ofor je L,ie., q°(e) » O for « € H. Then
b(e)
pi(e)

forae H,je L;ie.,x*()—> e*forae H.
We break the analysis of case B into two subcases.

xj(e) = ef — qf(e) +

—ef

SUBCASE BI 3 a type a and a subsequence of T.S.S.E. such that a goes
bankrupt throughout the subsequence.

Thenit must‘be that, for small enough ¢,

ou
2 (), 4°(e), 0(2), p(e), n(6(c), (), x(e)))- @

: . L a
inf oo a raeRi\{0},a<e

ou*

335 X (6).d°(¢),0(e), p(e), n(6(e), pe), x(e)))

p-d

Otherwise (recalling that x*(¢) = e*) any t € [a — 1, a) could choose d(e) €
R%\ {0}, such that (i) d(¢) < e* and (ii) forall A > 0,
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ou
25 @) d°(2), 6(e), P(e), n(6E), P(e), x(2)) - 4e)

4 @30

ou*

<Aad'

(x*(e)...., (6(e), p(e), x(€))| -

But then ¢ would sell the vector Ad(e)/p-d(e) of commodities and raise A
units of money for defraying his unpaid bank loan. The loss in his payoff
(for small A) is given by the LHS and the gain by the RHS, so that he can
improve his payoff, a contradiction.

Let ¢ = 0, and recall that x*(¢) — e* for all « € H. Taking limits on the
inequality, we contradict condition CIII. So subcase BI cannot occur. This
leaves us with subcase BII:

SUBCASEBH Subcase BI does not occur.
Then no one goes bankrupt throughout the sequence. This implies that

he +M+z¢eam'

14 6(s) = ~

for all ¢, and hence

0(8) - Zaeﬂm¢

M-

Now it is easy to check that e = (¢!, ..., e") is 9-Pareto optimal, contra-
dicting condition CL

Indeed, note that by claim 3 relative prices are uniformly bounded;
hence, there is some p > 0 such that on a subsequence

Pi(e)/p(e) = pi/p;for alli,j e L.

But then, if p(¢): z < 0and z > —}e® we must have
u®(x*(e) + 2(6(e)) < u*(x*(¢))

for small &. Passing to the limit, we see that if p- z < 0 then
u*(e” + z(7) < u*(e®),

recalling the notation
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. z
z,(y) = min {zj, l_-:-'y}

By remark 3, (e!,..., e*) is §-Pareto optimal.
This eliminates case B altogether, leaving us with case A as the only
viable one and concluding the proof of theorem 4. =

Proof of Theorem1 ltis easily checked that if
U*(x%,d%,0,p,w) = u*(x*) — A*d%

then assumptions (i), (ii), (iii), (iv), and (v) on U* hold. Further,
A%(p) = A%

Let E = maxDju®(e®). Then, if } ;. ;= 1,

Du*(e®)- a < E

p-a min p;’
JjelL

This implies that

vi(p) < —L.
< it
JjeL

‘We conclude that

, A% min p;
2%(p) > JjelL P
vi(p) E
and so condition CIII holds. Then, by theorem 4, an M.E. exists in case I1
of nominal penalties. [ ]
Proof of Theorem2 Here

—00 asp-—» o,

U*(x*,d%,0,p,w) = u*(x*) — d:

p-a
and, once again, assumptions (i)—(v) of U* are easily seen to hold. Here
Aﬂ

rm=ra
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and

v‘( p) < m‘l ,
p-a

SO

4(p) A

>1

V() - Du(e) a

by condition CII So condition CIII holds, and by theorem 4 an M.E.
exists. ]

Proof of Theorem3 First consider the case of real penalties, i.e.,

US(x,d%p) = ui(x®) — S0k
pa
Let
Du*(x) .
* _ [ .
Q 1+max{Dku,(x).aeH,teL,keL,xeu},
where

u={xeRﬁ:xjsl+max y e}‘}.

jelL aeH
Put
A® = 220%a max{Du’(x): je L,x e o},
where

a = max a;.
iel

It will be shown that if A* > 4= for all a € H, there can be no bankruptcy at
any M.E.

Suppose, to the contrary, that g is going bankrupt in such a situation.
Let

L*={jeL:a;>0},
J*={jeL: gf <ef}nL*
K* = LY\J*.
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Since, by assumption CII, ef > 0 for j € L*, we see that there is positive
trade in commodities in K* (indeed, § has sold them); hence, there are
buyers of K*, and then (as was shown in the proof of claim 3)

(i)* p. < Q*p;forallie L, ke K*.

If K* = ¢, let B sell ea (which is certainly feasible for him) and use the
money to repay the bank. His loss in utility is

e[DuP(x*)-a] < ei®

and gain is
eA’p-a ot
pa

Since 4* > 1%, « improves his payoff, a contradiction.

If K* # ¢, then B has sold goods in K* so he must have bought some
good j. Let B buy e£Q*a less of good j, and sell £a; of each good i € J*. Then
the money available to f to repay the bank is

@* ¢ Y pa+epfQrazce Y paite Y Dy
ieJ* ieJ* ke K*

=¢p-a.

(The inequality follows from (i)*.) His loss in utility is at most
s[ Y. Dub(xP)a, + Dju"(x")(Q“c‘z] < el?,
ieJ*

and gain is at least (using (ii)*)
e Afp-a
p-a

=&,

again a contradiction, since A# > 1°.

This proves theorem 3 for real penalties. The proof for nominal penalties
is even simpler. Note that there is bankruptcy = 6 > 0 = there is no
hoarding = all of M is spent =

M
P 2 m = C (say)
jel acH
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for some j* € L= C < p;. < @*p; for all j e L. (The last implication fol-
lows, asin (i)*, from the proof of claim 3.) Thus, p; < C/Q* forallj € L.

Suppose B is going bankrupt. Then he must be purchasing some good j.
Let him reduce his purchase by ¢ and return ¢ to the bank. His loss in utility
is at most

Dp(x?) _ sDub(x*)Q*
Dj Cc

and gain is at least ¢A%. So if we take each

L
> %— max{Du“(x*). a e H, je L, x* € 0}

itis clear that no agent will go bankrupt. =

Proof of Theorem 5 (Sketch) At any M.E. (6, p,(x%), ) > O, the follow-
ing conditions must hold. (We write out the conditions for nominal
penalties.)

Y (-9 =0, 0
acH

0x;
s if & borrows money,

U . 2
ol aPj = Oif asells x; @

J

—t,pi(1 + 0) = 0if « buys x;

xj' — e; = 0if a neither borrows nor sells j;

pix*—e®)s(1+0)+p-(x*—e*). —(1 + 0)m* —d*=0foralla e H;
@)

d* = Ofor all a that do not go bankrupt, 2
(

d (]
(‘}Z I—i- — (1 + 8)A* = 0 for all « that do go bankrupt, if « is buying j;
j Py
Yy p-(x‘—-e”)+—(M+ ¥y m‘)=0. )
eecH aecH

Equation (1) simply says that all commodity markets clear; (2) and (4)
reflect the fact that « has maximized U° where ¢, = marginal utility of
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money for «; (3) may be viewed as a definition of the debt d° If a does not
borrow, then with 6 > 0, a spends exactly m*®, sells nothing, and

ou*

Fx}' = apjk

for goods j that a buys, where 1 < k < (1 + ). The variable k is new, but
we also add a new equation m* = p-(x — e%),.

The crucial equation is (5), which asserts that total expenditures are
equal to the total stock of money. Note that this equality must hold when
0 > 0, since (as we have seen before) when 8 > 0 there can be no hoarding.
An agent who has a dollar will always spend it, even if he has borrowed it.
(Equation (1) implies that

z p.(xa _ ea)+ = z p,(xc _ ec)_’
aeH acH

that is, money spent on purchases equals money obtained from sales. Also,
(3)and (5) together yield 0 = (Y .c gm® + Y o g d°)/M.)

Note that in (4), if « is going bankrupt, he must be borrowing, and
purchasing some good j; hence, he could contemplate a dollar less or more
of borrowing, spending a dollar less or more on good j. If neither direction
is to increase his utility, then the second statement in (4) must hold.

So let the map

[:6 xR, xR,y x(RE,)TF xREF x RESRL x RLE x R x R¥ x R
be given by

f((M’ (A"eaamaauﬂ)a eH> (P’ 0’ (xl)a eH> (da)aeﬂ’ (t')“ H)
= the LHSs of the above equalities.

We can check immediately that f A 0, as follows: By varying M, we perturb
(5) however we like, without disturbing any other equation. By varying m?,
we can perturb (3) without changing anything except (5), which is already
“controllable” (i.e., it can be compensated for by a change in M). By vary-
ing d* or A, we can perturb (4) however we like, disturbing only (3) and (5),
which are controllable. By perturbing U®, we perturb (2) however we like
(presuming there is trade by every individual in every good), affecting only
(4), which is under control. Finally, we can perturb x* to control (1), and
that may affect all of (2)—(5), but that is no matter, since they are all under
control.
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It remains only to check that if some a does not trade j, then the same
argument goes through. If j is being purchased by some other agent g, then
(1) can be perturbed by varying xf, and (2) can be controlled by varying
0U*/0x,, as we have seen. To perturb x7 — ¢; for a (not trading j), vary xJ;
this can be compensated by varying xf, and (2) § can be compensated by
varying 0U#/0x;.

For now, let us restrict attention to the open set of endogenous variables
V at which for every j there is some B with xf — ef 0. We have just
proved that f: & x V — RL*LE+2H+41 45 transverse to 0. Since the dimen-
sion of V is also L + LH + 2H + 1, we deduce from the transversality
theorem that for almost all parameters (M, (4%,e%,m%u®), . z) the resulting
economy has a finite number of equilibria with endogenous variables in V.

To finish the proof, let L = L be any nonempty subset of L. For allj ¢ L,
fix x{ = ¢ for all « € H, defining the subeconomy on L. For this sub-
economy the above argument shows that, for a generic set of parameters,
there are only a finite number of equilibria with endogenous variables in ¥;
(where for each j € L, x? — eff # Ofor some a).

Since m*® > 0, each agent is buying some good at equilibrium. Hence,
any equilibrium of the original economy will be an equilibrium of the
subeconomy L with endogenous variables in ¥;, for some nonempty set
L < L of traded goods. Since there are only a finite number of subsets
¢ # L c L, the result follows for nominal penalties.

The proof of real penalties is exactly the same, except that in (4) we
substitute 1%/p- a for A% (]

Proof of Theorem6 Define T, as before, with the following substitution:
d' = d' + A’ (where A’ = A*forte[a — 1,a)

in the argument of U”, for t € [0,h). Then a T.S.S.E. exists exactly as in claim
1. (We have not altered the strategy sets of the agents, or their payoff
functions. Only the outcome has got adjusted as indicated above.)

Now reread the proof of claim 2 as follows. As before, no agent will hold
positive amounts of fiat money at the end of trade, so all the money in the
system,
he+ Y m*+ M,

aeH
is returned to the bank. Now, however, agents may well repay more than
their 1.O.U. notes to the bank (in an effort to clear their exogenous debts),



Value of Money in Finite-Horizon Economy 441

but clearly (by the same argument as in the proof of claim 2) no agent ¢ of
type « will repay more than his total debt,

ue) + A' = p*(e) + A%,
ata T.S.S.E. Hence,
Y ute) + ZHA'Zhs+ Y m*+ M,

aeH aeH

which implies that

.g;: o) = he + ';H m® — .;u A® + M.
Since

Y m - Y A0

aeH aeH

by assumption, we have

Y w@=he+M>M,
aeH
and hence

0(8) - Zceﬂl"(s) — l

0.
M >

The rest of the proof of theorem 6 goes through like the proof of theorem
4, replacing d° by d* + A® throughout (in the argument of U*). Similarly,
the proof of theorem 3 goes through as well. ]

Proof of Theorem 8 (and thus also theorem 7) Define I, as in the proof of
theorem 6, and note that a T.S.S.E. exists.

CLAIM 6 3 B* such that, for sufficiently small e,

py(e) > B*

forl<j<l

Proof Suppose 0(c) — oo. Then the total debt of all agents is at least
6EM + Y A7 '

aeH

and so agents of some type § have debt at least
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0OM + Toenl®
h

0

and hence, by (ii)**,
Ul (xP(e), d* + A, p(e), 0(c), n((6(c), P(&), x(&)))
< UP(e?, A%, p(e), 0(), 1(0(c), p(e), x()))

for small enough ¢. Then any agent of type 8 would do better not trading at
all, a contradiction.

We conclude that 6(¢) is bounded from above, hence so is each u*(g), and
therefore the bound of 1/e on the 1.O.U. notes is not binding for small
enough ¢.

Suppose p;(e) = 0 for some j € L. Let any agent of type « increase his
1.0.U. note by 4, obtain

o
1+ 0(@)
units of bank money, and purchase
5
(1 + 6()pye)
of j. His gain in utility (for small &) is at least
ous .. o
o, (x%(e), d“(e), p(e), 6(e), n(B(e), P(E), x(e)) T+ 006
and loss is at most (using (i)**)

co.

Since 6(¢) is bounded from above, and dU%/dx; is bounded away from zero,
we see that he can improve his payoff, a contradiction. This establishes
claim 6.

Since condition CIII is obviously implied by hypothesis (b), the rest of
the proof of theorem 7 proceeds exactly as the proof of theorem 4 (after
claim 4). [

Remark 13 (on a variation of condition CII) We can drop the require-
ment that a; > 0 only if ¢f > Ofor all« € H by making the A* harsher. More
precisely, let
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— M
Q=37 max S e’
jel aeH

. Du(e”)
@7 =1+ max {D.u'(e’)‘

" Q*}
R* = ‘,—: .
max{Q )

aeH,ieL,keL},

Assume
(CID* A* > ¢2R*a max{Du’(e*): je L} foraeH,
where (recall)

a = max a;.

jelL
Then our results hold with (CII)* in place of (CII). To see this, reread the
proof of theorem 3, remembering that as p(e) = o

x*(€) — €%,

and obtain the same contradiction. (Note that, as in claim 3, p;(e)/p.(€) <
R*, so we can substitute R* for 0* in rereading the proof of theorem 3.)
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