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Summary. The existence of Nash and Walras equilibrium is proved via Brouwer’s
Fixed Point Theorem, without recourse to Kakutani’s Fixed Point Theorem for
correspondences. The domain of the Walras fixed point map is confined to the price
simplex, even when there is production and weakly quasi-convex preferences. The
key idea is to replace optimization with “satisficing improvement,” i.e., to replace
the Maximum Principle with the “Satisficing Principle.”
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Mordecai Kurz has been an inspiration for a whole generation of economists. 1
vividly remember many blissful summers at the IMSSS in Stanford, listening to
the programs Mordecai masterfully put together. Those summer sessions defined
economic theory for their time, and defined the standards of excellence we all tried
to live up to. In retrospect, the late 70s and early 80s appear clearly as a golden
era in the history of economic theory, and it is hard to believe things would have
turned out so well if it weren’t for IMSSS, and for Mordecai’s energy, enthusiasm,
and tenacity as its director.

* ] wishto thank Ken Arrow, Don Brown, and Andreu Mas-Cole)] for helpful comments. I first thought
about using Brouwer’s theorem without Kakutani's extension when I heard Herb Scarf’s lectures on
mathematical economics as an undergraduate in 1974, and then again when I read Tim Kehoe's 1980
Ph.D dissertation under Herb Scarf, but I did not resolve my confusion until I had to discuss Kehoe's
presentation at the celebration for Herb Scarf’s 65th birthday in September, 1995.

Correspondence to: C. D, Aliprantis



586 1. Geanakoplos
1 Introduction

The standard proofs of the existence of Nash and Walras equilibrivm (including
the original proofs by Nash [19], Arrow and Debreu [2], and McKenzie [17])
rely on Kakutani’s Fixed Point Theorem for correspondences. I show that a slight
perturbation of the standard arguments enables one to work entirely with Brouwer’s
Fixed Point Theorem for continuous functions.

Nash himself [20] gave a Brouwer fixed point proof of Nash equilibrium for
the special case of matrix games. McKenzie [18] derived the existence of Walras
equilibrium with production from Brouwer’s Fixed Point Theorem, The only ad-
vantage of the maps I propose is that some readers may think they are simpler. For
example, in my Walras existence proof the domain of the fixed point map is the
price simplex. There is no need to enlarge the domain to include excess demands,
as done by Gale [10] and Debreu {7], [8], or the demands of each consumer, as
done in the generalized game proofs of Debreu [6] and Arrow and Debreu [2], or
10 add the auxiliary commaodities introduced by McKenzie [18].2

In Section 2, the existence of Nash equilibrium in concave games is proved.
Leta game G = (tuy, Ly )nen be described by its payoffs u,, and compact, convex
strategy spaces X, for agents n € N, The original proof by Nash relied on the best
response correspondence B, (3,5 _n) = argmax, cs tn(0n, _n). My proof
simply replaces B,, with a satisficing improvement function

BB, 8-n) = arg maxt, (0, _pn) — o — &al%].
opEXy,

If 1, is concave in ¢, it can easily be shown that 3,, always moves agent n part
of the way to his optimal response against &_,. Moving all the way to a best
response is irrelevant to demonstrating that a fixed point is an equilibrium, Section
1 also includes a discussion of earlier demonstrations of Nash equilibrium based
on Brouwer’s FPT for matrix games.

In Section 3 the existence of Walras equilibrium is proved for economies
E ={(v" eMncu, (Y7)ser, (9}‘)';2? ) with quasi-concave utilities »” and con-
vex technologies Y}. Let M*(p, 5) be the minimum net expenditure household h
must make at prices p beyond its Walrasian income I"(p) in order to achieve the
same utility it would obtain if it faced prices p and income I"().3 It is well-known
that M " is continuous in (p, ) and concave in p for any fixed 5. Let M (p, p) be the
sum of the M" (p, 5) over all households . Let S be the price simplex. In Section 3

! Of course Kakutani's FPT can be derived from Brouwer’s FPT, so in a sense all these standard
proofs are derivable from Brouwer. But I mean there is a single continuous function, not involving any
approximations and selection, whose fixed points are Walras cquilibria.

2 Thus in the proofs (10), (7), (8) the dimension of the domain of the fixed point map is (L — 1) +
(L — 1), where L is the number of commodities. In the proofs (€), (2), the dimension of the domain is
(L —1)+ (H + F)(L — 1), where H is the number of households and F the number of firms. In the
proof (16) the dimension is (L — 1) +- F. All of the proofs (10), (7), (8), {6), (2) are based on Kakutani’s
fixed point theorem. My proof uses Brouwer's fixed point theorem on a domain of dimension (L — 1).

Y Income is defined by 1 (p) = p - &M + EIEFB}‘ maxy ey P Y-
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it is shown that the function ¢ : § — S defined for each $in S by
o(p} = arg rr;aX[M (2.7 — lp - 5lI°]

is continuous and has Walras equilibria as its fixed points.

The minimum expenditure function and its properties have been very closely
studied since Hicks showed that the so-called Hicksian demand is more regular
than the Marshallian demand. Intermediate textbooks often emphasize the duality
between utility maximization and expenditure minimization. Precisely this duality
guarantees (through the Maxmin theorem) that a fixed point of the function ¢ must
be a Walras equilibriumn. Nevertheless, though there are many closely related ideas
to be found in the literature, to the best of my knowledge nobody has used the
function M to demonstrate the existence of equilibrium,

To understand the genesis of the function M, let us temporarily suppose that
the Watrasian demand correspondence D" (), and the Walrasian supply correspon-
dence Yy (P) = argmaxy ey, P - y7, and therefore also the Walrasian aggregate
excess demand correspondence Z(p) = 3,y (D™(7) — €*) — 30 ;o o Y (D), are
all single valued functions, which we denote by d"(p), y;(5), z(p). (If utilities are
strictly concave, and production sets strictly convex, this will be the case, assum-
ing we enclose the economy in a compact space.) In that case we can define a
continuous function : § — §

(p)—argmaxtv 2(p) — |lp — #lI°]

whose fixed points are Walrasian equilibrium prices, as we show in Section 4,

When Z(p) is multivalued, there does not, at first glance, seem to be an ana-
logue for 7). However, define D (5) as the set of all consumption bundies (bud-
get feasible and not) that make agent h at least as well off as his Walrasian de-
mands D"(p). Define the “better than excess demand correspondence” Z, by
Zu(p) = Y peu(Dh(P)—em) -3 feF Yf, where firms choose anything feasible.
A crucial advantage of Z ;. over Z is that it is lower semicontinuous as well as upper
sermicontinuous. We show in Section 3 that

p(p) = argmax[ min_p-z—||p - p|’]
pcS  2EZ¢ (B}

defines a continuous function from the simplex to itsclf whose fixed points are
Walrasian equilibria. In fact this is the same ¢ given earlier, since
M(p,p) = mm Pz
€Z.(p)

In the standard Kakutani existence proof pioneered by Debreu (see Arrow and
Debreu [2]), the price player chooses p to maximize the value of a given excess
demand 2. The vector z is an independent argument in the fixed point map. In my
proof the prlce player chooses p to maximize the cost of achlevmg a given social
welfare (v")ne i, where " is a utility level for agent h. The (v*)yc g are in turn
derived from prices 7, v" = v™{p), the indirect utilities at Walrasian prices 7, so
that prices are the lone independent variables.
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The mapping ¢ naturally suggests a potential Lyapunov function L. : § - R
defined by

L(p) = mex(M(p, ) — IIp - Al

It might be interesting to establish conditions for the underlying economy guaran-
teeing that L(p(p)) < L(p) for all # € S, but this line of inquiry is not pursued
here.

In Section 4 I examine several special economies with strictly quasi-concave
utilities 1*, for which there are already standard proofs of Walras equilibrium based
on Brouwer’s FPT. In the first special case we also take the Y strictly convex, so
excess demand Z(p) is a function z(p), as mentioned earlier. By replacing M with
N =min, ¢z p - 2, obtaining

N(Paﬁ)Ezglzi%)P'Z:P'z(f’)

we obtain the function v defined earlier.* The map ¥ is quite different from the
standard Brouwer map (deriving from Nash’s matrix game map) that is exposited
in most textbooks, but it turns out that ¥){p) reduces to another one of the standard
Brouwer maps, namely h(p) = Projs(p + $z(p)). But whereas it requires the
Kuhn-Tucker theorem to verify that a fixed point of h is a Walras equilibrium, it is
tmmediate that a fixed point of 9/ is an equilibrium. Thus our perturbation —||[p—p/|?
still simplifies matters, even when dealing with excess demand functions. We apply
similar maps in other special cases, e.g., with constant-returns-to-scale technologies
(CRS).” In this case 7 turns out to be closely related to the maps used by Todd
[25] and Kehoe [13] to compute equilibria of economies with fixed coefficient
technologies.

The only technical point in this paper occurs in showing that the function
M({p, p) is continuous, which is tantamount to showing that the “better than” cor-
respondence Z (5) is upper semi-continuous (USC) and lower semi-continuous
(LSC). This in fact is trivial, but I prove it after introducing a new lemma called the
Satisficing Principle, which could perhaps stand just behind the Maximum Princi-
ple as a useful tool in the theory of choice, because it guarantees L.SC and USC.
The impression the student is sometimes left holding is that LSC is less central

# Note that for any pair (g, 5}, M(p,5) < N(p,5); usually M(p,§) < N(p,). Indced when
excess demand Z is a correspondence, as will typically be the case without further assumptions, N{p, 7)
is not continuous. Even when Z () is a function, and IV is continuous, M (p, #) # N(p, p). The function
N has nevertheless often been used to prove the existence of equilibrium. In one such approach the
prices p are called “better” than the prices B if N(p, 7} > 0. Walras equilibrium then exists if it can be
shown that this partial ordering on prices has a maximal clement. The problem is thus reduced to one of
maximizing a (nontransitive) binary relation, for which see Nikaido [22], Fan [9], Sonnenschein [24],
and Aliprantis and Brown [1]. For a lucid exposition of these ideas, see Border {4]. Along these lines, see
also the proof of the K- K-M-§ theorem via Brouwer in Krasa and Yannelis {15]. For another proof of
Walras equilibrium via Brouwer, that works even with infinitely many commodities, see Yannelis {26].

3 An interesting feature of each successive Walras existence proof is that Broower’s fixed point
theorem must be augmented by Farkas' Lemma (when technology is given by a finite number of
activities), the separating hyperplane theorem (when technology is given more generally by a cone),
and the MinMax theorem (when technological possibilities are given by arbitrary convex sets).
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than USC, but we should not forget that the Maximum Principle cannot be applied
unless the budget correspondence of each agent is USC and LSC.

The Satisficing Principle supposes that an agent is maximizing a continuous
utility 1, () subject to a constraint & 3(c) over which he is locally nonsatiated.
Suppose he is satisfied with a payoff w(a) < v(e), where v(a) is the maximum
achievable utility given the exogenous parameters ¢, and w is any continuous func-
tion. Then the correspondence W () of all choices achieving payoff at least w(a)
is lower semi-continuous (LSC}) as well as upper semi-continuous (USC) in «, pro-
vided that 3{c) is. The Satisficing Principle complements the Maximum Principle,
which guarantees that v(cx) is continuous and that the set of choices achieving
v(c) is USC but not necessarily LSC. One immediate application of the Satisficing
Principle is that the Walrasian budget correspondence is LSC and USC when the
endowment is strictly positive. More importantly, since the Walrasian indirect util-
ity function w"(p) is continuous, and by nonsatiation, strictly less than the maximal
utility v®(p) = v achievable without a budget constraint, the Satisficing Principle
guarantees the LSC and USC of D% (p), and hence of Z_ (p).

The Satisficing Principle is stated and proved in Section 5, where it is also used
to give a Brouwer FPT proof that quasi-concave games have Nash equilibria. In
some sense the whole idea of this paper comes down to replacing optimization
with satisficing improvement; first for the game players and the auctioneer, by
subtracting ||o», — &, |12 or ||p — P||2, and second for the households, in substituting

Z(p) for Z(p).

2 Games and Nash equilibrium
2.1 Concave perturbation lemma

My proofs rely on the following concave perturbation lemma:

Concave perturbation lemma. Letr X C R" be convex, and let £ € X. Let
u : X - R be concave. Then arg max.c x [u(x) — ||z — Z||?] is at most a single
point, and if £ = arg maxgex [u(z) — ||z — Z||?], then £ € arg max ¢ x u(z).

Proof. Sincewis concave in z, and — ||z — Z||? is strictly concave in z, fu(x) — ||z —
Z1|?] is strictly concave, and arg max,e x [u(z) — |l — z||%| cannot contain two
distinct points. Suppose T = arg maxye x [u(x) — ||z — Z||?]. Take any 2 € X. By
hypothesis, and by the convexity of X and the concavity of u, forany 0 < £ < 1,
02 {u(l(1 —€)z + ez]) - ||[(1 - &) + ez] — z1*} — {u(2) - {lz - 2II°}

— u([(1 - )7 + ex]) — £%lJx — #]1? — u(a)

> (1 —&)u(g) + eufz) — u(@) — 2||z — i

= efu(z) - u(®)) - *ljz — 2

So

u(z) — u(E) < eljz — Z||* forall e > 0, so
u(x) —w(z) <0
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2.2 Concave games

Let a game G among N players be defined by compact and convex strategy spaces
X4, ..., T in finite-dimensional Euclidean spaces, and by continuous payoff func-
tions uy, ..., Uy, Where foreachn € N,u, : X=X x .- x Zy = R. We call
G a concave game if for any fixed 5_,, = (1, ..., Fn—1,Fn+1, W DN E XN g =
Fi XX 1 X Zpyr X -« X Xy, un(0,,T_,) is concave in oy,

Given a game G = (&1, ..., Zn;i 1, ..., un), @ Nash equilibrium is a choice
7 =(&1,..,0~n) € Zsuchthatforalln € Nandalloy, € Xy,

Un(7) 2 uplon, _y).

Theorem. Every concave game has a Nash equilibrium,

Proof Define the function
P& = X, by

@nlF1y ey Ony ey TN ) = BTEMAX Uy (O, Fon)— llon — 5n|¥2]-
onEEy

Observe that the maximand is the sum of a continuous, concave function in o,,, and
a negative quadratic function in &,, and hence is continuous and strictly concave.
Since X7, is compact and conveX, ¢, is a well-defined function, Furthermore, the
maximand is continuous in the parameter & = (&1, ..., 5 ), hence by the maximum
principle, ¢, is a continuous function.

Now define ¢ : & — X by ¢ = {1, ..., o~} Clearly ¢ is continuous, and so
by Brouwer’s theorem it has a fixed point ¢(7) = &.

By the concave perturbation lemma, for all o, € Xy, tn(0n,5_n) < un(7).
Hence 7 is a Nash equilibrium, o

Nash [19] suggested the correspondence ¥, : ¥ = I, defined by n(7) =
ATE N8Xg, e 5, YUn(On, T—n). SiNCE 2y, is not necessarily strictly concave, ¥, (7)
may contain multiple clements.

The maximand above is simply a perturbation of the Nash maximand. It guaran-
tees that a player will always make some improvement when there is an opportunity
to improve, but he will not necessarily move all the way to his best response. An-
other difference is that the Nash correspondence 4, throws away some information,
since 4, actually is defined on X_,,. The map ¢,, depends on all the coordinates,
including X,,.

2,3 Matrix games

Two player matrix games are defined by r x s matrices A and B. Player « has
strategy space £, = {p € RY, : 3.;_, pi = 1} and player 3 has strategy space
Ys={geRi: 2;:1 g; = 1}. The payoffs are defined by u.(p, q) = p’ Aq and
us(p, g) = p'Byg. Since uy, is linear on 5, for n = o and f, these matrix games
are indeed concave games.
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Nash [20] showed that for matrix games, Brouwer’s Fixed Point Theorem suf-
ficed. He suggested using the excess return functions z, (p, §) = Ag— (7 Ag)1 and
z5(p,7) = p'B — (pBg)1, which specify the surplus each agent can get by playing
each pure strategy instead of his designated mixed strategy. He then defined the
map

_ o Pr[Ag- (@AYt g+ [P'B - (@@Bpl*
fea)= (1+{Aq-- (PADI* 1’ 1+ 7B - (P BOI+- 1) ’

where for any vector y, [y]T is the vector with ith coordinate max(0, y;), and
1 is the vector of all 1's, or just the scalar 1, depending on the context. A fixed
point of the Nash map can be shown to be a Nash eguilibrium by observing that
7'{AG—(p' Ag)1] = 0.Indeed this same trick is copied in the now standard existence
proof for Walrasian equilibrium, where it crops up as Walras law. The Nash map f
exploits the special form of matrix games.

The map ¢ can be used for any concave game, not just matrix games. In the
special case of matrix games, a short computation shows that it reduces to

©(®,q) = h{p,q) = (IIs, (p+ 1 Aq), Iz, (¢ + 39’ B)),

where ITy () is the closest point in K to x. The map A has already been used to
prove the existence of Nash equilibrium in matrix games by Lemke and Howson
[16], and to study the index of matrix game Nash equilibrium by Gul, Pearce and
Stacchetti [12]. To see that  reduces to k for matrix games, one needs to use the
Kuhn-Tucker theorem. Indeed, one needs the Kuhn-Tucker theorem to verify that
a fixed point of h is a Nash equilibrium.® But as we saw in the proof of our first
theorem, using  avoids the need for the Kuhn—Tucker theorem.

3 Walrasian economies
3.1 The Walrasian economy
Let us represent an economy by
E-— {H, (X", et Ve s, P (Vi) ser (9})’;§g} ,
where H is a finite set of households, X* < R is the consumption set of household

h, " is the endowment, and 1" is the utility function of agent b € H, F is a finite
set of firms, Yy is the technology of firm f € F, and 6’; € R, is the ownership

share of firm f by agent b, 3", 6% = 1 forall f € F. Following Arrow and
Debreu [2], we assume in addition that Vh € H,

6 By the Kuhn-Tucker theorem, ‘P(ﬁs E) = (‘POE (ﬁr q)s ¥8 (ﬁ! 6)) satisfies Aq‘ - 2(‘Pﬂ (:6: q) - lﬁ) -
Je + A = 0, where A > 0 is a diagonal matrix with A;; > 0 only if @, ;{5,§) = 0. By the Kuhn—
Tucker theorem, the map h(B, §) = (ha (B, §), ha(P, §)) satisfies —2(hq (B,7) — L A§ - P) + pe +
{1 = 0, where {2 > 0 is a diagonal matrix with £2;; > O enly if Ao ;(5, @) = 0.



592 J. Geanakopios

(1) X" is closed, convex, and bounded from below: Hc_ih such that g_fh < x for all
rc Xh

(2) e’ € X" and 3d* € X" with ¢* < &*

(32) u" : X* — R is continuous

(3b) " is quasi-concave, i.e., [uP(z) > ut(y) and 0 < A < 1] = [ut(Az + (1 -
Ay) > ulh(y)), forall z, y € X

(3¢) uP is nonsatiated, i.e., Vy € X*, 3z € X" with ub(z) > uh(y)
and forall f € F,

{4) Y7 is a closed convex subset of R“, and 0 € Y;
and furthermore,

(5) HY =Y p Yy, then Y NRY = {0}

(6) Irreversibility: Y N Y = {0}.

3.2 Walras Equilibrium

A Wairas equilibrium (WE) for the economy E is a tuple (5, (") nep, (F7) rer) €
REY x XneuX™ x XpepY; satisfying

@ Yhen T <V pen e+ Xicp iy
(b) g5 € argmaxp ys, Ve F
fey;
© FeBMp)={zec X" :pa<p+ T 8% max pyy = I*(p}},Vh € H
feF " u€Y)
(d) z* € argmaxu"(x).
zEBR(p)

By nonsatiation and quasi-concavity, we know that at a WE each agent spends
all his income, so the budget inequality in (c) reduces to equality, and we therefore
conclude that in a WE,

Sab<d e+ g mi=0 (L1

heH hey fer

3.3 Easy consequences of the assumptions

It follows from (1.1) that we obtain an equivalent definition of equilibrium by
strengthening the definition of equilibrium to require equality of supply and demand
in condition (a), provided that we augment production by allowing free disposal,
replacing Y with ¥ =Y — ]R_’;. So without loss of generality we require equatity
in (a) but also assume

(7) Free disposal: Y —RY = Y.

As shown in Arrow and Debreu [2], assumptions (1)}-(6) have the consequence
that 4 = {(:I:l, . a:H,yl, . yp) < XheHX’Lx XfEFYf : EhEH(‘Th - Bh’) —
> sep Y5 < 0} iscompact. In view of the quasi-concavity of the utilities, restricting

the consumption sets from X* to X* N X* and restricting the technologies from
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Y} to Y; N Yy where X" and Y; are compact and convex and such that A is
contained in the interior of Xpezr X" X Xser ¥ gives rise to an economy E with
exactly the same Walras equilibria as E. Thus without loss of generality, we may
add assumption (8) and weaken assumption (3c):

(8) X" and Y are compact forall h € Hand f € F,
which requires weakening (3c) to
(30) [z, ... a1, . yr) € Al = [Vh € H, 32k € X7, uh(3") > uh(z)].

An implication of the convexity of X" from (1), and the quasi-concavity of uP
from (3b), is that

(3d) w" is locally nonsatiated in X" : ¥y € X*,if 3z € X" with u®(z) > uh(y),
then 3{z(n)}22, C X*, z(n) — y with u*(z(n)) > u(y) for all n.

We list six more simple observations. All lemmas rely on assumptions (1)-(8).
Lemmas 1 and 2 rely on the definitions of USC and LSC, and on the Satisficing
Principle, all of which are deferred to Section 5.

Lemma 1. The budget correspondence B™(p) is USC, LSC, nonempty valued, and
compact-valuedon § = {p e RY : ¥ p, = 1}.

Proof. This is a standard and trivial result. Instead of proving it directly, we note
that it is a corollary of the satisficing principle proved in Section 3.

B'p)={zeX":p-s<I"(p)}={ee X" —p. 22 -I"(p)}

Let w(p) = —I"(p) be the satisficing threshold. Let v(p) = maxzexs —p- T
be the maximal threshold. Since ¢* > d*, for all p € §, w(z) = —I*(p) <
—p-et < —p-d® < max,exs —p - & = v(p), so the lemma follows from the
compactness of X", the continuity of I"(p), and the Satisficing Principle. O

Let v*(p) = max,epr(p) u*(z) be the so-called indirect utility function of
agent h. Since B (p) is USC and LSC, nonempty valued and compact-valued, by
the Maximum Principle, v*(p) must be continuous on S. Furthermore, let

D"(p) = arg maxu"(z)
zc8*(p)

be the demand correspondence of agent 1. Again by the Maximum Principle, DM(p)
is USC. Unfortunately, D*(p) may not be LSC, as is well known.

A central element of the existence proof given in Section 3.4 is the replacement
of the demand correspondence D" (p), which may fail to be LSC, with the “demand
or better” correspondence D (p), which is always LSC. McKenzie [18] used a
similar correspondence.

Lemma 2. D"(p) = {z € X" : uM(z) > v*(p)} is USC, LSC, and nonempty-
valuedforp € S. Hence so is the better than excess demand Z..(p)=3 pc Dk (p)

— Dohem et — Zfep Y.
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Proof. The USCand nonemptiness of D follow immediately from the continuity of
uh. As for LSC, let p(n) — pandletz € D" (p). Lety(0) € arg max{u"(y):y €
X"} I ut(z) = u(y(0)), then uP(z) > vt(p(n)) Vn and so letling z{n) = = for
n > 1 shows the LSC of D? at p. If u(z) < u"(y(0)), then by local nonsatiation
(3d), Jy(m) — z with w*(y(m)) > u"(z) for all m > 1. Since the indirect
utility v" is continuous, v*(p(n)) — v*(p). Hence for n > 1 we can define
2(n) = y(m(n), where m(n) = Maxo<men{uH(y(m)) = v*(p(n))}. Then
z(n) € DY(p(n)) and z(n} — x, showing the LSC of D*. The sum of USC
{LSC} correspondences whose range is compact is also USC (LSC).

Lemma 2 can also be derived from the satisficing principle. Let w(p) = v"(p) be
the satisficing threshold, and let v*(p) = v* = max,¢ x» () be the maximum
threshold. Apply the Satisficing Principle, noting that X* and u” are independent
of p, and that v"(p) is continuous, |

Lemma 3. The minimum expenditure function

Mp,p) = i .
(p,DP) (Loin Pz

is continuous in (p,p) € 8 x 8, and concave in p for any fixed 5 € §.

Proof. Lemma 2 and the Maximum Principle guarantee the continuity of M (p, 7).
For any fixed B, M (p, p) is the minimum of a family of linear functions in p, hence

it must be concave, ]
Lemma 4. Forallp € S, Z(p) C Z,(p). Hence M(p,p) <0,
Proof. Obvious. O

The following Lemmas 5 and 6 show the role of the so-called “duality principle”
that utility maximization and expenditure minimization are the same at points where
nonsatiation holds. Lemma 5 also uses the linearity of unconstrained expenditure
minimization.

Lemma 5. If for some § € S, there is z € Z (p) with Z < 0, then 33" ¢ X" Vi
and §y € Yy Vf such that (B, (") nen, (§5) ser) is a Walrasian equilibrium.

Proof. If Z € Z,(p), then by definition there is z* € D" (p) Vh € H, and
Jr€YyVfe Fwithz=3Y, 7"~ Pohea € — > rer ¥g. Since Z < 0,
nonsatiation obtains from (3c) and we deduce from local nonsatiation (3d) that
p-3" > I"(p)Vh € H Butz < 0and § € § implies that 0 > p .3 =
P open B — B neme™ + 2rerlfl 2 Dhen I*(p) ~ Yheu B = 0.
Hence 5 - 2" = I*(p) Vh € H and §; € argmax,, ey, § - y5, Vf € F. |

Itis worth noting that (assuming local nonsatiation), neither the quasi-concavity
of the u" nor the convexity of the ¥} played any role in proving Lemmas 1-5.

Lemma 6. If for some p € S, maxyesM(p,p) = M(p, D), then 3z" € X* Vh
and §y € Yy Vf such that (9, (" e, (5} rer) is a Walrasian equilibrium.

Proof. 'We now invoke the convexity of the X" and ¥}, and the quasi-concavity
of ", to assert the convexity of Z (). The minmax theorem then guarantees that
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3z € Z, (p) with M{(p,p) = maxpesp - Z =P Z = minez, (5 P - 2. Since by
Lemma 4, M (p,5) < 0, we must have Z < 0 (if Z; > 0, take p; = 1). Hence by
Lemima 3, § is a Walrasian equilibrium price vector. 0

3.4 Existence of Walras equilibrium

We now construct an existence proof of Wairas eguilibrium for general quasi-
concave preferences and convex production sets, that uses only the domain of
prices S, and only Brouwer’s fixed point theorem.

Theorem. Let E = (H,(z" e®, uh)ren, F\ (Ys)ser, (03)3ER) be a Walras
economy satisfying assumptions (1-(6). Then E has a Walras Equilibrium

(D, (F)nes, (Fr)rer).

Proof Recalling that Z, (5} = S pey DY (B) — Lhen eh — > jer Yf(D) is the
at least as good as excess demand, and that M (p, p) = min,cz, (5 P - 2, define
w: 8- 8by

@(p) = argmax[M(p,p) — |Ip - "]
pES

= argmax| min_p-z— |lp - 2%
pES ZEZ4(P)

Since (by Lemma 3) M is concave in p for any fixed 5, and {|p— 5{|® is quadratic, the
maximand is strictly concave, so it has a unique maximum and () is a function,
Since by Lemma 3 M is continuous (equivalently, since Z, (p} is USC and LSC),
¢ is a continuous function. Therefore by Brouwer’s fixed point theorem,  has a
fixed point .

At the fixed point g,

M(p,5) = max[M(p, ) - e — A% = max M(p, p).

where the last equality follows from the concavity of M in p and the concave
perturbation lemma. By Lemma 6, {7 is a Walrasian equilibrium price vector. [

Again it is worth noting that the quasi-convexity of the X k and the convexity of
the Y} played no role until the very last step where they guaranteed the convexity
of Z,.(p) at the single point p = 7. In traditional proofs of Walrasian existence,
it is important to make sure that the excess demand correspondence is convex at
every point p (otherwise there might not be a fixed point).

Aumann [3] gave a famous proof of Walras equilibrium without quasi-concavity
{and without production) for an economy with a continuum of agents. He did it
without using Kakutani’s fixed point theorem, by adapting McKenzie’s proof [18].

The existence proof just given can be extended to cover the case with convex
Y, but without quasi-concave u™, provided that we imagine that each agent & is
now regarded as a continuum of identical replicas. I indicate the steps, without
giving details. At the last step, when Lemma 6 is invoked, we must replace Z. (P)
with its convex hull co{ Z; (p)}. Then apply the minmax theorem, obtaining Z €
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co{Z+(P}}, as in Lemma 6. By Caratheodory’s theorem, Z = Zf‘jll A:Z' where
Z = hen® e — EJ’.GF Y € Z,1(p), and the X; are nonnegative
weights summing to 1. Regarding "¢ as the choice of a fraction ); of the agents of
type h, and y5 = Ef:ll A,;y} & Yy as the choice of firm f, we get an equilibrium
of the continuum compactified economy. However, without quasi-concavity, we
can no longer be sure that an optimal consumption choice in the interior of the
compactified consumption set is optimal in the original consumption set. So we
must compute a different equilibrium for each compactification k. Then we let the
size & of the compactifications go to infinity. Take convergent subsequences of the
weights. For all those weights not converging to zero, take convergent subsequences

of the Z"(k), and of the 3 (k). That limit is an equilibrium for the economy.

4 Comparisons to earlier proofs:
Walras equilibrium with strictly convex preferences

The main difference between the standard proofs of Walrasian existence and the
proof just given in Section 3 is that the latter only requires Brouwer’s fixed point
theorem, applied to a domain of dimension L — 1. Another difference is that the
latter proof has a natural “Lyapunov function” L : § — R given by

L(p) = max{M(p,p) — [Ip - 21"].

I do not pursue the question of identifying conditions under which £. declines under
the dynamic 5 — o(5).

Instead I turn to explaining the connection between my method of proof and the
standard methods when excess demand is already a function. Taking advantage of
the unicity of the excess demand, my proof can be modified to show its connection
to earlier proofs,

In this section we specialize the general Walrasian economy given in Section
3 to cases where we can work with excess demand functions. For these cases it is
already known that Brouwer’s Theorem suffices to prove the existence of Walras
equilibrium. But we show here that the perturbation —||p — 5||? can still simplify
matters.

4.1 Pure exchange and strictly convex technologies
LetS={peR}: Zf‘:l pi = 1} be the usual price simplex.

Let z be called an excess demand function whenever z : S — RZ is a contin-
uous function satisfying Walras Law: p- z(p) = 0Vp € 5.7

7 Suppose that, in addition to assumptions {1)-(7} from Section 2, for all h € H,
() > w™{g)] = [ Az + (1-Ny) > ut ()]
fo<A<lzAyandx,ye X" andforall f€ F

[z#yeYn, 0<A <] = [Tz e Yy withz 3 Az + (1-A)yl.
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We define a Walras equilibrium for the excess demand function z as a price
vector § € S satisfying
z(p) < 0.
Note that by Walras Law, z;(5) = 0 vnless f; = 0, in which case we may have
Z,t(j[_l) < 0.
Theorem. Every excess demand function has a Walras equilibrium.
Proof. Define themap ) : S — S by

¥(p) = argmax[p - 2(p) — ||lp — 2%
peS

Observe that the maximand is the sum of a linear function in p and a quadtratic
function in p, hence it is strictly concave and continuous in p. Since S is compact and
convex, ¢ (p) is a single point, and so ¢ is a function. By the maximum principle,
% is a continuous function (since the parameters 2{p) and p move continuously as
P varies).

Hence by Brouwer’s Fixed Point Theorem, 1 has a fixed point p. By the concave
perturbation lemma, p € § = p - z(p) < 5 - z(p). By Walras Law, p - 2(p) = 0,
which implies z(7} < 0. O

Debreu’s [8] proof of Walras equilibrium uses the correspondence §(z)
= arg MaXpes P - 2. As Debreu said, & is motivated by the principle that when
there is excess demand in some commodity, z; > 0, prices should go up, at icast
where excess demand is greatest. The only drawback to Debreu’s construction is that
8(z) may be multivalued, thus forcing the use of Kakutani's Fixed Point Theorem.
The function 2/(p) is obtained by a slight perturbation of Debreu’s construction.

“The best known continuous function for proving Walras equilibrium is obtained
by imitating the Nash [20] fixed point map for matrix games: gi(p) = {p:i +
@A + D)), where o]t = max{z,0), fori = 1,.., L. A
simple, but slightly awkward argument, using Walras law, shows that a fixed point
of g is a Walras equilibrium.

The function 4(p) is (surprisingly) identical to the map h(p) = Hs(p+52(p)),
where ITg(z) is the closest point in S to z.® By deriving ¢ from the above max-
imization, one can see transparently that a fixed point is a Walrasian equilibrium.
On the other hand, to show that a fixed point of A on the boundary of S is an
equilibrium, the Kuhn~Tucker theorem must be invoked.

4.2 Production with constant returns-to-scale technologies

We now consider CRS production. A constant returns-to-scale (CRS) technology
isaset Y ¢ RE such that Y is a closed, convex, cone (y € Y implies iy € YV

Then #(p) = 3. ncn DM py— 3 hcH &P — 3 rep ATE maxy ey, P Yy is a continuous function
satisfying Walras Law. In the special case Yy = {{]} Vf € F, we have a pure exchange economy.

8 By the Kuhn-Tucker theorem, %(P) = argmaxpes(p - () — |ip — Bif*] satisfies
(#(p) -P) = %z@) — he+ A where A > 0 is a diagonal mateix with A;; > 0 only if ¢;(%) = 0.
Similarly by the Kuhn—Tucker theorem h(F) = arg minyes |lp — [F + %z(}‘))} |12 satisfies the same
equation.
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for all ¢ > O0; in particular, 0 € Y). Furthermore we suppose that Y allows for
free disposal; z < y and y € Y implies z € Y. Finally, we suppose there is some
p* e Swithp* - Y <0,ie,p* - y<0forallye Y,

A Walras equilibrium with production for an excess demand function, CRS-
technology pair (2, Y) isaprice i € Ssuchthat z(p) € Y and pY < 0. Note that by
Walras Law the production plan z(p) chosen makes zero profits, while alternatives
either lose money or do no better,

The central example of a CRS-technology is an activity analysis production
technology given by the matrix B = |—f A] where I is the L x L identity matrix
and A is an L x n vector of activities. Each column of the B matrix represents an
“activity.” Positive elements correspond to outputs, negative entries in B3 correspond
to inputs. The first L columns of B represent pure disposal. The activity matrix B
determines the CRS-technology

Y = {Bziz e RE™"}.

Clearly Y is a convex, closed cone allowing for free disposal. If for some vector
W > 0, {z € RX*™ ; Bx + W > 0} is bounded, then there must be a p* € S
withp* - Y <0,

Technology lemma. If Y is a CRS-technology and for some vector z € RE,
[pESandpY <0]=>pzr <0, thenzeY.

Proof. Suppose z ¢ Y. Since Y is closed and convex, by the separating hyperplane
theorem we can strictly separate ¥ and z, that is find some p € R% such that
P-Y < P-z. ButY is acone, so §- Y bounded above implies 5+ Y < ¢; also
OcY,sowehavep Y <0 < §.z By free disposal, - Y < 0 implies p > (.
Scaling p, we getp € S and pY < 0 < p - z, contradicting the hypothesis. O

Theorem. Every excess demand function, CRS-technology pair (z,Y') has a Wal-
ras equilibrium.

Proof. WeseekD & Sy ={p€ § : p-Y < 0} with 2() € Y. By the technology
lemma, it suffices to find p € Sy suchthatp € Sy = p- 2(p) < 0=p z(p).
By hypothesis, Sy is nonempty. Furthermore, Sy = (\,ey{p € §:p-y < 0}
is the intersection of closed and convex sets, and so is closed and convex.
Define 9 : Sy = Sy by

$(B) = argmax[p - z(p) — llp — pl|*].
PESY

As we argued earlier, 7 is a continuous function. Since Sy is compact and convex,
Brouwer’s Fixed Point Theorem guarantees v has a fixed point 5.

From the concave perturbation lemma, at the fixed point 5, p € Sy = p-2(p) <
B 2(p)=0. a

The idea that Brouwer’s theorem alone can be used to prove the existence of
Walras equilibrium with production is due to McKenzie [18] who also used the set
Sy . His mapping is much more elaborate than 4, but it allows for excess demand
correspondences. McKenzie [18] showed that one could always reduce convex
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technologies to CRS-technologies by adding F' auxiliary commodities, representing
the contributions of the owners to each firm. The fixed point map must then be
carried out in a simplex of dimension L + F — 1. In the above proof the domain is
the original L — 1 dimensional simplex.

Todd [25] suggested the map h(p) = Mg, [p + 2(p)]. (A similar map is in
Kehoe [13].) He showed by the Kuhn-Tucker theorem that a fixed point of A must
be a Walras equilibrium, when Y is given by an activity analysis technology. The
map % is identical, its only advantage being a perhaps more transparent proof that
a fixed point is a Walras equilibrium (and the incorporation of general CRS Y').

4.3 Unbounded consumption sets, monotonic preferences
and boundary behavior

In Sections 4.1 and 4.2 we assumed that the excess demand function z is continuous
on all of 5, including at p € S where some prices p; may be zero. This will be true
whenever utilities u” are strictly concave, and consumption sets X » are compact, as
we indicated in Section 3.1. Some authors prefer to skip the step where we bound
the consumption sets, preferring for aesthetic reasons not to invoke Assumption
(8) (see Section 3.1). In its place they make the substantive assumption of strict
monotonicity. I show now that the method of proof indicated in Section 4.2 still
applies. To that end, let S° be the interior of S, and 89 be its boundary. For every
£>0,let S = {p€ S :p>el} be the trimmed simplex, and 5° its boundary,
where 1 = (1,...,1).

We say that (z,Y") is an excess demand function, CRS-technology pair with
proper boundary behavior whenever z : S% —» R” is a continuous function satis-
fying Walras Law for all p € S°, and such that 3¢ > 0 and Jp* € §%, satisfying

p Y <0. 4.1

pedS =p*z2(p)>0, 4.2)
When preferences are strictly monotonic, p — 85 = some z;(p) — co. Since
excess demand is bounded from below by the aggregate endowment of goods, strict
monotonicity implies that for any p* » 0, p* - 2(p) > 0 if p is close enough to
the boundary. Thus proper boundary behavior is automatically satisfied by excess
demand functions derived from strictly monotonic preferences, provided we can
find some strictly positive prices p* at which p* - Y < 0. This latter condition is
trivially verified if for example there is some indispensable input like labor that is
never produced.”

Theorem. Every monotonic excess demand function, CRS-technology pair with
proper boundary behavior has a Walras equilibrium.

Proof. S¢ is compact and convex. Hence 5§ = S5° N Sy is also compact and
convex. Define ¢ : 55 — 5% by

(7) = argmax(p - 2(p) — |lp — B|}*] -
peSy

% For a refinement of this boundary condition, sec Neuefeind [19].
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As before, 1 is a continuous function, hence it has a fixed point 5. Again by the
familiar argument, p € §§ = p- 2(5) <5 2(p) = 0.

If someB; = ¢, then by proper boundary behavior, p* - z(f) > 0, a contradiction,
since p* € S5 Hence § > 1. Butthen by concavity of the maximand, p € Sy =
p- z(p) < 0. By the technology lemma, z() € Y, s0 § is a Walras equilibrium. G

5 The satisficing principle and quasi-concave games
5.1 The satisficing principle

Recall that the famous Maximum Principle asserts that the best response correspon-
dence is upper semi-continuous (USC). The USC property is the crucial hypothesis
in Kakutani’s fixed point theorem for correspondences. Kakutani’s theorem is used
instead of Brouwer precisely because the best response correspondence may not be
lower semi-continuous (LSC). What I show below is that if we replace maximiza-
tion with almost maximization (satisficing), then the satisficing correspondence is
LSC and USC,

Let. A ¢ R™and X C R™ andlet? : A 3 X beacorrespondence associating
with each o € 4 a subset ¥(e) C X. We say that ¢ is upper semi-continuous
(USC) if

On = a
Tn 2% =z € P{a)
Zn € P(an)

for any {zn, 2} C X, {a,, @} C A. We say that ¢ is lower semi-continuous
{LSC) iff

Qp = O dz, =z

z€ 1/)(0!)} {wn € P(an)

for any {o,, ¢} C Aandz € X,

We say that ¢ is USC or LLSC at a point @ € A if the above conditions hold
when o = @. Clearly v is USC or LSC if it is USC or LSC at each point & € A.

Letu : 3 — R, where 8 C R™. We say that u is locally nonsatiated in 3 if
for any pair z,y € 8 with u(x) < u{y), there is a sequence {z(n)}22, C § with
z(n) — z and u(z{n)) > u(z) forall n.

If 3 is convex and u is quasi-concave, then it follows immediately that . is
locally nonsatiated in 3.

Satisficing principle. Letu : X x .4 — R be a continuous function, where
XxACR*xR™ Let3 : A3 X beanonempty, USC and LSC correspondence.
For each fixed o € A, let u(-, o) be locally nonsatiated in B(a). Let v : 4 —
R U {oo} be the maximum value function defined by v{a} = sup,cs,) u(z, ).
Finally, let w : A — R be continuous and satisfy w(e) < v{a) forall & € A.
Then the correspondence W : A = X defined by

W(a) = {z € (o) : u(z,0) > w(a)}
is USC and LSC, and nonempty valued,
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If in addition 8{a) = Fforalla € A, and u(z, o) = u(z) forall (z,a) € X x
A, then the same conclusion holds even with a weak inequality w{a) < v(a) = v
foralla € A.

Proof. The nonemptiness of W is evident. USC follows as in the maximum prin-
ciple, and does not depend on the strict inequality w(a) < v(a). Simply note
that if {z, € W{ay) for all n, and oy, — « and x,, — x}, then by USC of 3,
z € B(a). By hypothesis, u(Z,,, &) > w(oy,). Passing to the limit, and recalling
the continuity of » and w, u(z, a) > w(a), so z € W(a).

To prove LSC of W, let ov,, — . Suppose Z € W{a) and u(Z, @) > w(a).
From the LSC of 3, we can find &y, € 8(cn), n — Z. From the continuity of u
and w, for large n, say, n > N, 4%y, @n) > w(ay). Thus Z can be approached
by Zn in W (ay,) if u(Z, &) > w(a). It remains to verify that any & € W(a) with
u(2, &) = w(o} can be approached. If v{a) > w(a), there is some Z € G{a) with
u(Z,a) > w(a). By local nonsatiation, we can take a sequence of Z{k) € F(a)
converging to &, with u(Z{k), a) > w(a). Since each (k) can be approached in
W (), so can Z.

If u(#, a) = w(e) = v(a), then we must be in the additional case where 8
and u are independent of . In that case, £ € W{ay) for all o, so £ is trivially
approachable. 8]

The application of the satisficing principle to the Walrasian better than corre-
spondence D,.(p) = {z € X" : u(z) > w(p)}, where w(p) = max{u{z) :
z € X" p-x < I*(p)},is particularly simple, since then neither u* nor 3(p) = X"
depends on p.

Corollary (Continuous correspondence lemma). Let X C R™ be convex, and
let AC R™. Let g, : X x A — R be continuous, and convex on X for each fixed
a € A, forall i = 1, ..., k. Suppose that for each o € A, there is x(a) € X with
gi(z(a)) < Oforall i =1,..., k. Then the correspondence B . A =3 X defined
by

Bla)={z e X : gi(z,a) <0, foreveryi =1, ...k}

is USC and LSC.

Proof. Defineu : X x A — R by u(z,a) = mincick[-gi(z, a)]. As the
minimum of concave functions, u is concave on X for each fixed @, as well as
continuous on X x A. Since B(«) is convex, u,, is nonsatiated on B(c). Further-
more, v(a) = sup{u{z,a) : ¢ € X} > u(z(a)) > 0, for all @ € A. Hence by
the satisficing principle, B(a) = {z € X : u(z, o) > 0} is USC and L.SC. o

5.2 Quasi-concave games

In our definition of games given in Section 1, we can weaken the hypothesis that ©,
is concave in &, to the hypothesis of quasi-concavity: 4, (0n, F-n) > Un{Gn, G-n)
implies wy, (Adn + (1= A)Tn, F—n) > Un(Fpn, T—p) forall 0 < A < 1. Theresult is
called a quasi-concave game. We now use Brouwer’s fixed point theorem to prove
the existence of Nash equilibrium for all quasi-concave games.
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Theorem. Every quasi-concave game has a Nash equilibrivm.

Proof. Letv,(5_,) = max, cx, Un{0n, 0_5)define acontinuous function from
X .o toR, called the “indirect utility function.” Let 8,,(F) = vn(0-n} —u,(F), and
let6(5) = maxpen 6, (F). Clearly & is a Nash equilibrium if and only if §(5} = 0.
Let § = minge 5 §(0). Let wn(F-n) = vn(F_n) — 59, and let

Wo(8_n) = {on € Zn @ uplon, 0-p) 2 wp(d_n)}

Suppose (7 has no Nash equilibrium. Then § > 0 and for all 7 € X and each
n, Wn(F-n) < v,(5-n). By the Satisficing Principle (which applies since u,,
is quasi-concave, and thus locally non-satiated in any convex budget set), W, is
nonempty, USC, LSC, and convex-valued. Moreover, for all 7 there is some player
n With 1, (F) < Wp(F-pn), 80 5n & Wi(d-xn). Define g, : &, x X_,, —+ X, by

—_ —_ . —_ 2
Ty Op) = min On — dn|l”.
‘Pn( ns T ) a,.eWn(&_n)” n n“

Clearly ¢, is a function, since W, is convex-valued. Furthermore, if W, is USC
and LSC, then by the Maximum Principle, ,, is a continuous function. Let p =
(1, ..., ). If G has no Nash equilibrium, then ¢ is a continuous function with
no fixed point, a contradiction. 1
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