DEFAULT AND PUNISHMENT IN GENERAL EQUILIBRIUM

BY

PRADEEP DUBEY, JOHN GEANAKOPLOS
AND
MARTIN SHUBIK

COWLES FOUNDATION PAPER NO. 1108

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
- AT YALE UNIVERSITY
Box 208281

New Haven, Connecticut 06520-8281
2005



Econometrica, Vol. 73, No. 1 (January, 2005), 1-37

DEFAULT AND PUNISHMENT IN GENERAL EQUILIBRIUM!

BY PRADEEP DUBEY, JOHN GEANAKOPLOS, AND MARTIN SHUBIK

We extend the standard model of general equilibrium with incomplete markets to
allow for default and punishment by thinking of asscts as pools. The equilibrating vari-
ables include expected delivery rates, along with the usual prices of assets and com-
modities. By reinterpreting the variables, our model encompasscs a broad range of
adversc sclection and signalling phenomena in a perfectly competitive, general equilib-
rium framework.

Perfect competition climinates the need for lenders to compute how the size of their
loan or the price they quote might affect default rates. It also makes for a simple equi-
librium refinement, which we propose in order to rule out irrational pessimism about
deliveries of untraded assets.

We show that refined equilibrium always exists in our model, and that default, in
conjunction with refinement, opens the door to a theory of endogenous assets. The
market chooses the promises, default penaltics, and quantity constraints of actively
traded assets.

KEYWORDS: Default, incomplete markets, adverse selection, moral hazard, equilib-
rium refinement, endogenous assets.

1. INTRODUCTION

GENERAL EQUILIBRIUM THEORY has for the most part not made room for
default. In the Arrow-Debreu model of general equilibrium with complete
contingent markets (GE), and likewise in the general equilibrium modcl with
incomplete markets (GEI}, agents keep all their promises by assumption. More
specifically, in the GE model, agents never promise to deliver more goods than
they personally own. In the GEI model, the definition of equilibrium allows
agents to promise more of some goods than they themselves have, provided
they are sure to get the difference elsewhere. Agents there too must honor
their commitments, though no longer exclusively out of their own endowments.
Each agent can keep his promises because other agents keep their promises to
him.

We build a model that explicitly allows for default, but is broad enough to
incorporate conventional general equilibrium theory as a special case. We call
the model GE(R, A, Q) because each asset j is defined by its promise R;, the
penalty rate A;, which determines the utility punishment for default on the
promise, and the quantity restriction (), attendant on those who sell it. When

!This work is supported in part by NSF Grant DMS-87-052%4 and SES-881205. The first ver-
sion of this paper (Dubcey, Geanakoplos, and Shubik (1990)) appeared in 1990. That version, con-
taining essentially the basic model and Theorems 1 and 2 from this paper, was never published,
though our model has been frequently used and cited: see, for example, Araujo, Monteiro, and
" Pascoa (1998), Bisin and Gottardi (1999}, Santos and Scheinkman (2001), and Zame (1993). An
expanded version, of which this paper is a part, was circulated in 19%4, and again as a Cowles
Foundation Discussion Paper No. 1247 in 2000.
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A and @ are set to infinity (or made sufficiently high), the model reduces
to GEI.*
Fixing exogenously the set A of tradeable assets,

A={(R;, A;, Q) (R}, A, Q) is tradeable},

we solve for equilibrium E(.A4). The equilibrating variables include anticipated
delivery rates K; on assets, along with the usual prices (4, p,) of assets and
commodities. In keeping with the spirit of perfect competition, we suppose that
every agent regards (p, w, K) as fixed.

One of the central features of our model is that assets are thought of as
pools.® Different sellers of the same asset will typically default in different
events, and in different proportions. The buyers of the asset receive a pro rata
share of all the different sellers’ deliveries, just as an investor today does in the
securitized mortgage market, or in the securitized credit card market. When
the pools are large, an (infinitesimal) buyer can reasonably assume that both
the price 7; and pool delivery rate K; are unaffected by the number of shares
he buys.

We have in mind the huge, anonymous markets now becoming so common
on Wall Street. Mortgages today are promises sold by homeowners to banks,
who then sell them into mortgage pools (totalling around $3 trillion). The bank
plays a minor, administrative role, collecting payments and verifying the eligi-
bility of the homeowners (according to criteria specified by the pool, not the
bank). The bank receives a “servicing fee” for its efforts, and passes the default
and prepayment risk on to the shareholders in the pool. The analysis therefore
properly shifts from the one-on-one interaction of banker and homeowner to
the pool level of anonymous shareholders (lenders) and borrowers, which is
more akin to perfect competition.?

Even though our pools are perfectly competitive, heterogencous default
still creates adverse selection. Sellers with a proclivity for default have incen-
tive to sell disproportionately many promises into the pool, thereby worsen-
ing the pool’s delivery rate. We show in Section 8 that the adverse selection
and signalling phenomena described by Akerlof (1970), Spence (1973), and

IMany authors (including Townsend (1979), Diamond (1984), Gale and Hellwig (1985}, Hart
and Moore (1998), and Allen and Gale (1998)) have studied models of equilibrium default. But
none of these models yields GEI as a special case while explicitly incorporating nonpecuniary
punishment for default.

*Io the best of our knowledge, Green (1974) was the first to introduce pooling in the context
of default. His contribution is all the more remarkable, coming as it did, before pooling became
so prevalent in practice.

“If the banks “cherry pick” their loans, selling only the worst ones into the pools, or if the agen-
cies which organize the pools likewise retain the best loans, then game theoretic considerations
come to the foreground, and the analysis bccomes vastly more complicated. The system currently
in place in the United States is designed to eliminate or at least discourage such cherry picking.
To the extent it is successful, perfect competition becomes a plausible idealization of reality.
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Rothschild and Stiglitz (1976) can all be captured in our perfectly competitive
framework.?

An important consequence of default is that the subset A* = A*(E(A)) C A
of actively traded assets

A*={(R}, A;, Q) € A1 (R}, A;, Q) is positively traded in E(A)}

is usually much smaller than 4. The reason is that, with default, the sale of an
asset is not the negative of its purchase. The buyer receives only what is de-
livered, but the seller gives up in addition penalties for what is not delivered.
The wedge between the marginal utility of buying and the marginal disutility
of selling is like a transactions cost. Assets which yield gains to trade greater
than this cost will still be traded, while the rest will not, In GEI the selection of
assets is usually regarded as outside the model, because typically every (nonre-
dundant} asset is actively traded, so .4 = .4*. However, with default, there will
be many assets in .4\ A" that are priced by the market, but neither bought nor
sold.® The promises, penalties, and sales limitations corresponding to assets
in A" can thus be regarded as endogenously emerging out of A.

At equilibrium the market is “open” for every untraded asset j in A \ .A* via
its price 7; and its expected delivery rate K, though agents choose voluntarily
not to go there. For active markets j € A", the rate K is determined via rational
expectations of the actual deliveries made in pool j. But if j € A\ A* is inactive,
how are we to assign K;? Allowing K; to be arbitrarily low would by itself
render j inactive. How are we to eliminate such irrational pessimism?’

We introduce an equilibrium refinement in which the government intervenes
to sell infinitesimal quantities &; of each asset and fully delivers on its promises.
We take K; = lim K;(#) as £ — 0. This touch of intervention generates enough
optimism to rule out all spurious inactivity on asset markets.

Our refinement is very simple. Agents do not have to speculate on reac-
tions to reactions to...to untried actions, as in the contract theory literature,
where a small number of parties are in face-to-face strategic interaction (see,
e.g., Cho and Kreps (1987)). They need only think about the observable macro
variable K;(¢).?

*Moral hazard also enters the picture: first because sellers have a choice not to deliver, and
second, because a seller of many assets will be less able to fully deliver on any of them than if
he had refrained from overextending himself. For other general equilibrium models of adverse
selection, sce Gale (1992), Hellwig (1987), and Prescott and Townsend (1984),

fIn some applications we might choose to limit .4 exogenously; the point is that even if A is
inclusive, .A4* will still be limited.

"In Green (1974) expectations of future delivery rates were taken to be completely exogenous.
Therefore the issue of rational expectations on active markets, much less that of pessimism on
inactive markets, could not arise. This eliminated the need for equilibrium refinement, and the
possibility of endogenous asset selection and signalling,

*In Section 3.2 we distinguish our refinement from the trembles used in game theory.
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If agents have the mental powers to anticipate future rates of default (contin-
gent on future events), just as they are presumed by conventional equilibrium
theory to have the mental powers to anticipate future prices (contingent on
future events), then default is consistent with the orderly function of markets.
In Section 4 we prove the existence of refined equilibrium with default under
exactly the same conditions necessary to prove the existence of equilibrium in
the GEI model (where default is ruled out by assumption}. More precisely, we
show that our refined equilibrium E(A) exists for every collection A of assets
(R, A, Q) for which Q < oo, or for which ( = oo but the promises R are all
paid in the same numeraire.

Recall that each asset (R}, A;, Q) is characterized by three dimensions. If the
set A of available assets is comprehensive (i.e., all conceivable levels and com-
binations of the three asset dimensions are present in .A), then we prove in
Section 5 that A* will in effect select the Arrowian levels: completely span-
ning promises, with infinite penalties, and nonbinding quantity constraints. On
the other hand, if one of the dimensions in A is exogenously fixed far from its
Arrowian level, then the forces of supply and demand will endogenously select
the levels in the remaining dimensions in .4* to be far from Arrowian. In Sec-
tions 6-8, we illustrate the endogeneity of A* by fixing each pair of dimensions
and investigating how the market endogenously picks the third.

In Section 6 we consider an example with all the Arrow promises, plus the
riskless promise. When penalties are exogenously restricted to be low, and
quantity limits fixed at their infinite Arrowian levels, we show that none of the
Arrow securities is actively traded, so that the market endogenously chooses
the riskless promise. When the penalties are raised sufficiently, the Arrow
promises become active.

In Section 7, we suppose the span of promises is exogenously restricted,
while the quantity limits remain Arrowian. We first ask how harsh default
penalties should be. We find in our example that they should be so low that
agents sometimes default even when they have resources to deliver, but not so
low that everybody always defaults. We next ask how harsh the penalties will be
that endogenously emerge in .A*. We find that the forces of supply and demand
do select a unique penalty, which in the example turns out to be the optimal
penalty.

We show in Section 8 that if promises and penalties are fixed exogenously,
then 4* endogenously sclects quantity limits Q. Fixing the penalties in a par-
ticular way, we can incorporate insurance as a special case of default, which dis-
plays adverse selection and signalling in a pure form. We then obtain primary
and secondary insurance policies as part of the refined equilibrium. Unlike
the previous sections, we get multiple, Pareto comparable equilibria. If we fur-
ther impose the Rothschild-Stiglitz exclusivity constraint, prohibiting agents
from taking out more than one insurance policy, we get a unique equilibrium,
equivalent to their separating equilibrium, moreover without jeopardizing the
existence of equilibrium.
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Finally, in Section 9 we ask why the right asset is necessarily used in Sec-
tion 7, but the wrong assets are used in most of the equilibria of Section 8. The
answer has to do with adverse selection. In refined equilibrium, the delivery
rates K; of untraded assets j depend only on the reliability of the agents most
eager to sell (the “on-the-verge sellers”). Depending on the allocation achieved
via the traded assets, the most eager to sell might be the most unreliable or the
most reliable.

2. DEFAULT IN EQUILIBRIUM: THE GE(R, A, ) MODEL
2.1. The Economy

As in the canonical model of general equilibrium with incomplete mar-
kets (GEI), we consider a two-period economy, where agents know the present
but face an uncertain future. In period 0 (the present) there is just one state
of nature (called state 0), in which H agents trade in L commodities and J as-
scts. Then chance moves and selects one of § states that occur in period 1 (the
future). Commodity trades take place again, and assets pay off. The difference
from GEI is that in our GE(R, A, () model, assets pay off in accordance with
what agents opt to deliver. Qur notation for the exogenous variables is:

feL —{1,..., L} =sect of commoditics;

seS=1{1,..., 5} =setof states in period 1;

S§* = {0} U § = set of all states;

he H={1,..., H} = set of agents;

" € RY "L = initial endowment of agent 4;

jed ={1,...,J} = set of assets;

R; € R3*" = promise per unit of asset j of each commodity £ € L in each
state s € §;

u" Rt — R = utility function of agent /;

Afj e R. =R, U {oc] = real default penalty on agent 4 for asset j in state s;

Q! € R. = bound on sale of asset j by agent A.

We assume that no agent has the null endowment, and that all named com-
modities are present in the aggregate, i.e., e" =(e’,,...,e" ) £0forallhe H
and s € §*, and e, = 3, ¢, > 0 for all s¢ € §* x L. Also each u” is con-
tinuous, concave, and strictly increasing in each of its §* x L variables. Having
assumed strict monotonicity and concavity, there is no further loss of generality
in assuming that u*(x) — oo whenever | x|/, — 00.°

Let u* be concave, continuous, and strictly monotonic. Let [ = {x € R¥L:jx)l <
21 ¥, et Let £ be the set of affine functions L:RS$'L — R such that L(x) > u*(x) for all
X e ]Rf:’-, and L{x) = f(x} for some x € [0. Define &*(x) = inf;., L(x). Then equilibria with
1" and &i* coincide, and #" has the desired property.
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Agents h have heterogeneous, state-dependent endowments ¢* ¢ R and
disutilities of default A,

A promise R; = (ng; se8, tel)= (st)ses € (R )$ for j € J specifies
bundles of goods (or services) to be delivered in each state.

Each kind of asset prescribes a limit, Q%, on the sales each agent 4 can make
of it. Such limits are natural in any realistic model of credit.”” If Q) = 0, then
agent A is essentially forbidden from selling asset j. If the limits Qh =00 or
are very large, they may be entirely irrelevant, as they are in the examples of
Sections 6 and 7.!! But if they are small, then they may be used as a signal that
the sellers are not making many promises, and hence that the promises are
reliable. We explore signalling in Section 8.

An economy is defined as a vector

= (", €nerr, (R, ((Adsess Onenr) )+

Note again that assets consist of promises, penalties for default, and limits on
sales.

2.2, Equilibrium
2.2.1. Macro variables and individual choice variables

Our endogenous variables consist of three macro variables and four individ-
ual choice variables:

p € RS* = commodity prices;

e Ri = asset prices;

K 10,115 == expected delivery rates on assets;
x* € R¥*L = consumption of A;

#* e RY = asset purchases of 4;

@" € R}, = asset sales of ;

D" e RY*M™ = deliveries by agent & on assets j € J.

The possibility of default forces us to add delivery rates K as macro variables.
In keeping with anonymity, the promises ¢ and ¢} of different sellers /2 and h
are not allowed to be distinguished, even though they may deliver differently,
Di# D"’ Just as the sales of promises ¢ are pooled at the market for asset j,
so we suppose the deliveries on j are also pooled. The buyers (shareholders) of

WEvidence abounds that finite bounds are always imposed in the extension of credit. Even the
best “name” among borrowers has a limited credit line.

In Section 4 we are able to prove the existence of equilibrium even when @ = oo, provided
A3 0 and the R; all deliver in the same good.
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pool j receive a pro rata share of all its different sellers’ deliveries. Each share
of pool j delivers the fraction

_ Dsen P Dy

K= —he 7' 7y
' 2 hen Ps- stfPﬁ-l

of its promis¢ p; - R;; in state s. For large pools an agent will take K; as fixed
(just as he takes mr; as fixed). The shareholder of pool j does not know, or
need to know, the identities of the sellers or the quantities of their sales, All
that matters to him is the price @; of the share and the anticipated delivery
rates K; = (Kyj)ses.

The terms (R;, ((A)ses, Q7 )nen) of pool j are set exogenously, just as the lo-
cation, date, and quality of a commodity are in traditional general equilibrium
theory. The prices r;, the delivery rates K;, and the trades (9}’, qoj.‘)he,q at each
pool j are all determined endogenously at equilibrium by the market forces of
supply and demand.

An agent’s ability to keep a promise depends on how many promises he sells,
both of the same kind j, and of other kinds j' # j. Moral hazard enters the pic-
ture, since a buyer of an asset (i.e., lender) does not know which other promises
the seller (i.e., borrower) has made, and because borrowers have the option to
default.

Adverse selection enters the picture because agents have different endow-
ments out of which to keep their promises, and also different disutilities of
default. Some agents, whom we may think of as unreliable, have more incen-
tive to default and to make large sales of promises into the pool.

Signalling enters the picture via the quantity limits Q;. If no agent can sell
more than @, promises into the pool, and if reliable agents can be counted on
to sell the full quota @;, then buyers need not worry that the unreliable sellers
are disproportionately represented.

2.2.2. Household budget and payoff
The budget set B*(p, m, K) of agent A is given by

B*(p, 7, K)

:{(xs 9, QD,D)ER__S:XL XRiXRiXRiXSXL:
pl]'(x[)_eg)-i_'fr'(a—q))fo; @lsgjlforje‘]—;and’

VSES, PS'(‘X_"—G?)‘FZPJ‘DsjEZ!qusjps'st}'

Jjes jel



8 P. DUBEY, J. GEANAKOPLOS, AND M. SHUBIK

The budget set allows agent & to deliver whatever he pleases. On the other
hand, the agent expects to receive a fraction K, of the promises bought by him
via asset j in state s. The first constraint says that agent k£ cannot spend more
on purchases of commodities x, and assets 6 than the revenue he receives from
the sale of commodities e/ and assets ¢. Moreover, he can never sell more than
Q% of any asset j. The second constraint applies separately in each state s € S.
It says that agent / cannot spend more on the purchase of commodities x;
and asset deliveries } ; Dy in state s than the revenue he gets in state s from
commodity sales e” and asset receipts » . 6,K,; p;Ry;.

The only reason that agents deliver anything on their promises is that they
feel a disutility A?j from defaulting. The payoff of (x, 8, ¢, D) given prices p,
to agent A is

A’f[‘P 5" RS- _— 5" DS.]+
w"?(x, G,QD,D’ p):ufi(x)_z Z i Jp if P 5 ’

jel  se§ Ps Vs

where v, € RY is exogenously specified with v; # (0. Note that ¢, p;- R; — p, -
D" =max{0, ¢;p, - Ry — p, - Dy} is exactly the money value of the default of
# on his promise to deliver on asset j in state s. Dividing it by p; - v; measures
it in real terms.

Notice that the budget set is convex,'> and the payoff function w” is concave,
in the household choice variables (x, 8, ¢, D).

2.2.3. Default penalties

Once we allow for default it is evident that society has much to gain from
punishing those agents who fail to keep their promises. In a multiperiod world,
market forces themselves might provide some incentive to keep promises, since
agents who acquired a bad reputation for previous defaults might find it more
difficult to obtain new loans. Collateral is also a very important device for guar-
anteeing at least partial payment (see Geanakoplos (1997)), but here we ignore
it. For reasons of simplicity and tractability, we confine attention to a two pe-
riod model with exogenously specified default penalties that are increasing in
the size of the default. These penalties might be interpreted as the sum of third
party punishment such as prison terms, pangs of conscience, (unmodeled) rep-
utation losses, and (unmodeled) garnishing of future income.

Default in our model can either be strategic or due to ill fortune. Penalties
are imposed on agents who fail to deliver, whatever the cause. Debtors choose

121t is also worth noting a scaling property of the budget set (which is immediate from its
definition and the fact that ¢ £ 0 and p, 3» 0 for all s € §*): {x, 8, ¢, D) € B*(p, 7, K} and
D<a<l=(ax,af,ap, aD) e B (p', o', K" for all (p', #', K') sufficiently close to {p, 7, K).
This property will often be useful to us.

'3Had we expressed these choices with other (apparently natural) variables, such as &) = de-
livery per unit promised, the budget set would no longer be convex, nor would w” be concave.
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whether to repay or to bear the penalty for defaulting; creditors cannot observe
why default occurs. Agents who have no resources to repay will be punished as
severely as they would if they had the resources but chose not to repay.’ The
consequences of default penalties are therefore two-fold: they tend to induce
agents to keep promises when they are able, and they tend to discourage agents
from making promises that they know in advance they will not always be able
to keep.

Although in practice the severity of the penalty (e.g., a felony vs. a misde-
meanor) depends on the nominal amount, and that is only adjusted slowly in
the face of inflation, we suppose the adjustment is instantaneous, so that the
penalties depend on the “real” default. Accordingly, we divide nominal de-
faults by the market price in state s of a fixed basket of goods wv,.

For simplicity (and for the facility of doing comparative statics) we have
taken the default penalty to be linear and separable in the amount of default,
as in Shubik and Wilson (1977). But we can easily accommodate more general
payoffs w” that allow for the marginal rate of substitution between goods to
depend on the level of default. All that is needed for Theorem 1 is the continu-
ity of w" in all its variables, and concavity of w" in (x, 6, ¢, D). For Theorem 2
we need to assume, in addition, that given any x, w(x, 8, ¢, D, p) < u"(e") if
the default in any state, on any asset, is sufficiently large.

One could easily imagine a legal system that imposes penalties that are non-
concave and even discontinuous in the size of the default, for example, trigger
penalties that jump to a minimum level at the first infinitesimal default. One
could also imagine confiscation of commodities in case of default. Our model
does not explicitly allow for these possibilitics. But as we show in our working
paper (Dubey, Geanakoplos, and Shubik (2000)), with a continuum of house-
holds, such modifications to the default penalties do not destroy the existence
of equilibrium.

2.2.4. Market clearing
We are now in a position to define a GE(R, A, ) equilibrium. It is a list
(p,m K, (x", 8", ¢", D"} such that (1)<(4) below hold.
(D Forhe H, (x*,0" ¢* D" cargmaxw®(x, 48, ¢, D, p)
over B'(p,m K),
(2) > (xh—e"y=0,

heH

(3) > (8" - "y =0,

heH

“In our model default penalties do not distinguish fraud from ill fortune. In reality they are
hard to separate, but ever since Las siete Partitas of Don Alfonso X “the wise,” bankruptcy law
has sought to distinguish them.
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ZPS'DE/ZPS'R#‘P? ifzps'st‘P::'I >0,
(4) K.= hell hell hell
arbitrary if Z Ds -st(pj.’ =0.

heH

Condition (1) says that all agents optimize; (2) and (3) require commodity
and asset markets to clear. Condition (4), together with the definition of the
budget set, says that each potential lender (i.e., buyer) of an asset is correct
in his expectation about the fraction of promises that do in fact get delivered.
Moreover, his expectation of the rate of delivery does not depend on anything
he does himsclf; in particular, it does not depend on the amount 6;‘ he loans
(i.e., purchases) of the asset. Every lender gets the same rate of delivery.

Since heterogeneous borrowers may be selling the same asset, the realized
rate of delivery K; is an average of the rates of delivery of each of the bor-
rowers, weighted by the quantity of their sales. It might well happen that those
borrowers with the highest rates of default are selling most of the asset, and this
is the adverse selection and moral hazard that rational lenders must forecast.

We believe that our definition of GE(R, A, Q) equilibrium embodies the
spirit of perfect, anonymous competition, and represents a significant fraction
of the mass asset markets of a modern enterprise economy.

2.2.5. Chain reactions of default

Our general equilibrium formulation enables us to evaluate the system-wide
consequences of default. In a world in which promises can exceed physical
endowments, each default can begin a chain reaction. A creditor in one asset
where payment does not occur is deprived of the means of delivery in another
asset where he is the debtor, thereby causing a further default in some other
asset, etc. The indirect effects of default might be as important as the direct
ctfects, but they are missed in partial equilibrium models.

In modern financial economies, agents often are long and short in many
different assets, They rely on revenues from their loans to keep their own
promises. But these revenues are only as reliable as the loans other agents
have made to yet different parties, thus opening the possibility of a chain reac-
tion of defaults. If « defaults against 3, forcing 8 to default against y, forcing
to default against 8, then in our definition of equilibrium, «, 8, and y will pay
default penalties, and the total utility loss from defaults will be large. Curi-
ously this phenomenon is at its most dangerous when the financial system is at
an intermediate level of development, with smoothly functioning markets, that
permit agents to go short, but with missing asset markets, which force agents to
hold complicated portfolios of assets to achieve the risk spreading they desire.

Consider a world with four agents and three possible future events, each
consisting of many different states of the world. Suppose 8 wants to consume
in the first event, v in the second event, and & in the third event. Suppose
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agents 3, v, and 8 have no endowment in the future states. Suppose « wants
to consume in the present, but has a considerable endowment of good in the
future, except in one unlikely state w in the third event.

If there were an advanced financial system of Arrow securities, agent «
would in effect sell directly to each of the other three agents. For example,
with just three Arrow event-contingent securities, each one paying off exclu-
sively in a different one of the three events, agent a would sell the first security
to 8, the second to v, and the third to 8. Agent @ by himself would default in
state w, and he alone would pay a default penalty.

Suppose, however, that in a less advanced financial system there are again
three securities available. R'™ promises 1 dollar in every state, R? promises
1 dollar in (every state in) events 2 and 3, and R* promises 1 dollar in (every
state in) event 3. Then in equilibrium we could expect a to sell R'Z, 8 to
buy R'* and to sell R¥, y to buy R¥ and to scll R?, and 8 to buy R. In the bad
state w in event three, the chain of defaults indicated above will take place. The
penalty that o pays for starting the chain reaction may be very small compared
to the total penalty incurrent by the rest of the defaulters.

Notice that the asset span of {R'™, R¥, R®} is exactly the same as with the
three Arrow event-contingent securities. What makes the chain of defaults pos-
sible is the interlocking asset trade, with some investors holding assets that
other investors short, in a long chain. With Arrow securities this chain would
never include more than one link and one default.

One way around these chain reactions is to encourage market intermedia-
tion that nets payouts, as discussed in Dubey, Geanakoplos, and Shubik (2000).

3. EQUILIBRIUM REFINEMENT
3.1. Untraded Assets

It is a curious fact that many of the large asset markets that our model seeks
to describe have been initiated not by entrepreneurs but by government inter-
vention. The government, for example, began the GNMA mortgage program
by guaranteeing delivery on the promises of all borrowers eligible for the pro-
gram (but not the timing® of delivery). It is likely, however, that these mort-
gage markets would function smoothly even without government guarantees.
Private companies indeed do sell insurance on non-GNMA mortgages. A rea-
sonable question to ask is why the securitized mortgage market did not begin
on its own?

One possible explanation is provided by our model. When assets are actively
traded, expected deliveries K,; must be equal to actual deliveries. Expecta-
tions cannot therefore be unduly pessimistic. But for assets that are not ac-
tively traded, our model makes no assumption about expectations of delivery

" A default induces the government to prepay the loan immediately, even if the lender would
preter the scheduled payments.
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(see (4)). In the real world, investors with no experience in observing default
rates might tend to overestimate their probability. This can create serious prob-
lems, in practice as in our model. In the model, so far, there is nothing to stop
the expectations from being absurdly pessimistic, which in turn will support
trivial equilibria with no trade in the asset. The point is easily scen by a simple
example. Consider an equilibrium of an economy. Introduce new assets j, but
choose their prices 7r; close to zero. Then no agent will be willing to sell them,
for he gets very little in exchange, but undertakes a relatively large obligation
either to deliver commodities or to pay default penalties. Also choose the K ; to
be positive but even smaller. Then in spite of their low price, no agent will be
willing to buy the assets since he expects them to deliver virtually nothing. Thus
we have obtained trivial equilibria in which there is no trade of the new assets
on account of arbitrarily pessimistic expectations regarding their deliveries.

We believe that unreasonable pessimism prevents many real world markets
from opening, and provides an imporiant role for government intervention.
But it is interesting to study equilibrium in which expectations are always rea-
sonably optimistic. It is of central importance for us to understand which mar-
kets are open and which are not, and we do not want our answer to depend on
the agents’ whimsical pessimism.

3.2. Refined Equilibrium

Expectations for deliveries by assets that are not traded are analogous to be-
liefs in game theory “off the equilibrium path.” Selten (1975) dealt with the
game theory problem by forcing every agent to tremble and play all his strate-
gies with probability at least ¢ > 0, and then letting £ — 0. We shall also invoke
a tremble, but in quite a different spirit. Our tremble will be “on the market”
and not on households’ (players’) strategies. Indeed, it might well be that no
household could tremble the way we want.

Consider an external g-agent who sells and buys £ = (g;);.; » 0 of every
asset, and fully delivers on his promises. (One might interpret this agent as a
government which guarantees delivery on the first infinitesimal promises.) This
touch of honesty banishes whimsical pessimism.’

1%In the strategic market games literature it has been cbserved that markets can be arbitrarily
shut because each agent expects that no other agent will go there, and hence does not go himself.
Those markets are truly opened simply by announcing any price: trade will necessarily be induced,
unless there were no gains to trade to begin with. Unfortunately, in our model, the problem is
not so simple. As we saw in our thought experiment, it is afways possible to announce some prices
{7, K) that eliminate all buying and sclling, arbitrarily shutting the asset markets. To truly open
them, we need to pick appropriate {ar, K). This is achieved by our carefully chosen boost.

In strategic market pames an external agent was introduced simply to trade, because any trade
necessarily led to the formation of a price, which is all that was required. He could easily be
replaced by a tremble on household strategies that forced them to trade instead. This expedient
does not work for asset markets in the presence of default. Our external agent must trade and
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An equilibrium E{(e) obtained with the s-agent is called an e-boosted
equilibrium. Thus any such E(e) = {p(&), (&), K(e), (x"(&), 8" (&), ¢" (&),
D" ())penr) must satisfy:

(1% (x"(e), 0"(e), ©"(£), D*(2)) € argmaxw’(x, 8, ¢, D, p(&))
over B*(p(e), m(e),K(e)),

0 ifs=0,
@) Y@ —e)=13 gl K, (NR, ifses,
heH jel
(3% Y (0(e) - ¢"(e)) =0,
heH

ps(e) - Rge;+ 3, pslE) - Di}(a)
(4*) Kﬁj(s) = p-‘-‘(g) : R»?jaf + ZheH pS(g) ’ R”GO?(S)
1 if ps(S)'R5j=0-

if p,(e)-Ry; >0,

Since the £-agent buys and sells &, units of each asset j, asset market clear-
ing (3*) is as before. But since he delivers fully g;R; on his promises, and
gets delivered only g;K,;(¢)Ry;, on net he injects the vector of commodities
3 81— K{(&))R,; into the economy in each state s € §. This explains (27).
Finally, condition (4*) says that delivery rates are boosted by the external agent.
(The delivery rate is irrelevant when promises p.(g) - Ry = 0, and we have ar-
bitrarily set it equal to 1.) As & — 0, this boost disappears for assets that are
positively traded in the limit. But if &,/ 3", _,; ¢/ (&) does not go to zero, the
limiting rates K,; will be boosted (unless there is no default by the real agents).

An equilibrium E = (p, m, K, (x", 8", ¢", D*},.;} is called a refined equilib-
rium if there exists a sequence of e-boosted equilibria E(e) with & — 0 and
E(g)— E.

In (an unrefined) equilibrium, the price #; of an untraded asset j might be
so low that no agent is close to wanting to sell it, or so high that no agent is
close to wanting to buy it. In any refined equilibrium, if an untraded asset j is
expected to default somewhere, ie., K;p, - R; < p, - R;; for some s ¢ §, then
there must be at least one agent who is selling it in E(e), otherwise K; = 1,
and is therefore on-the-verge of selling it in E (in the sense that he would sell
it if its price were any higher). If every agent 4 on the verge of selling j is
“strictly conscientious,” i.¢., has a penalty A greater than the marginal utility
of his consumption in state s, then clearly K; = 1, since deliveries will be full
in E(&) for all small e. If every agent is strictly conscientious in at least m states

deliver fully. Replacing him with households who tremble (and deliver less than fully on average),
will lead to more equilibria, defeating the purpose of our refinement.
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on asset f, then K; = m/S for at least one state 5. These properties, and a few
more described in the Appendix, yield what we call on-the-verge equilibria. They
form a superset of refined equilibria, but are much easier to compute. If the
superset is a singleton, then Theorems 1 and 2 guarantee that we can compute
refined equilibrium as the unique solution of these on-the-verge conditions,
without having to bother with the infinite sequence E(g). We exploit this in
our examples.

We could have imagined an external agent who delivers only 70% of his
promises, instead of 100%. It is clear that any “100% refined equilibrium al-
location” is a “70% refined equilibrium allocation,” thus explaining why our
choice of 100% deliveries gives the sharpest refinement.

In Sections 5-8, on the endogeneity of the asset structure, we show that the
equilibrium refinement plays a crucial role in determining whether an asset j is
positively traded (j € .A*) or not (j € A\ A*).

3.3, Perfectly Competitive Pooling vs. Negotiation

Pooling dramatically reduces the information needed to buy a diversified
portfolio of risks. Instead of forecasting individual deliveries K s’} for many dif-
ferent individuals &, a buyer need only concern himself with a single average
delivery K ;. Figuring out K for one individual is typically no less difficult than
estimating K ; for a pool with a large population. Buyers facing K,; are aware
that unreliable sellers have put more into the pool, but they need not worry
that they will get a worse selection than other buyers.

Perfectly competitive pooling reduces information requirements even fur-
ther. Buyers need not worry about either #; or K,; varying as they change their
expenditures on j.

Nor do they need to forecast how the delivery at any pool would vary if the
price were changed, since no one of them can change the price. In the contract
theory tradition, buyers try to lure a better clientele by offering higher prices.
But then they must foresee delivery rates K(w, R, A, Q) over 4 dimensions,
while with pooling they need only foresee K over 3 dimensions (R, A, Q)."7

Thus pooling ameliorates the costly information processing problems inher-
ent in multiple bilateral negotiations, which is one reason why it is becoming
so prevalent in modern economies.'®

""The reader may worry that the paucity of prices will compromise the potential of the model to
incorporate the interesting features of adverse selection and signalling. While our simplification
precludes the analysis of price-setting in one-on-one bargaining situations, adverse selection and
signalling are clearly still present in the model. As we show in Section 8, our simple modcl does
praduce interesting equilibria, even for insurance markets.

"The informational difference betwcen modern pools and traditional negotiation is beauti-
tully illustrated by the mortgage banker played by Jimmy Stewart in the movie “It's a Wonderful
Life.” His clients have no qualifications for loans, but he chooses to lend to them on the standard
terms, based on his extraordinary intuitive insight into their character. His brilliance is rewarded
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Pooling also vastly increases liquidity. When an asset is very finely defined,
so as to require delivery in exactly those states most appropriate for a small
group of people, then it is not likely to be heavnly traded. A seller may have
to wait a long time to find a suitable buyer, and vice versa. And when such a
seller is found, he will exercise some temporary monopoly power. When there
is pooling, the volume of trade is high and nobody has monopoly power.

4. THE ORDERLY FUNCTION OF MARKETS WITH DEFAULT

Our first goal in this paper is to establish that default is completely consistent
with the orderly function of markets. To that end we prove that under fairly
general conditions, refined equilibrium always exists in our model.

The universal existence of equilibrium is somewhat surprising because of
the historical tendency to associate default with disequilibrium (or more accu-
rately, to make full delivery part of the definition of equilibrium). Furthermore,
endogeneity of the asset payoff structure is known to complicate the existence
of equilibrium with incomplete markets. But we show that no new existence
problems arise from the endogeneity of the asset payoffs due to default.

The universal existence of equilibrium with default is also surprising because
the pioneering papers placing adverse selection in a model of competition, by
Akerlof (1970) on the market for lemons, and Rothschild and Stiglitz (1976)
on insurance markets, purportedly showed that adverse selection is quite com-
monly inconsistent with equilibrium. (We discuss Rothschild-Stiglitz in Sec-
tion 8.)

We are now ready to state our main theorem, which is that GE(R, A, Q)
equilibrium always exists, even if we insist on the equilibrium refinement dis-
cussed in Section 3. Its proof is given in the Appendix.

THEOREM 1: For any A € RIS and Q € RY, a refined equilibrium exists,
where R, =R, U oo.

Our proof uses the fact that ¢ < Q7 by assumption. Later the Q7 will play an
important role as signals, but now the reader may wonder what would happen
if they were eliminated, or taken to be enormously large. Recall that there is a
pathology that occasionally occurs even when there is no default, for example
in the GEI model. Sometimes two assets j and j that promise different com-
modities nevertheless become nearly equivalent at some spot prices (p ).y
because they then promise nearly the same money. At these prices the asset
span suddenly drops, and demand blows up as agents try to go infinitely long

in the movie. Unfortunately, in modern day competitive pools, there is no role left for Jimmy
Stewart’s skills.
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in asset j* and infinitely short in asset j (or vice versa). This destroys the exis-
tence of equilibrium. The bounds Q7 prevent this, as Radner (1972) long ago
pointed out for the GEI model.

Without the bounds, GEI equilibrium can only be guaranteed if all the assets
promise payoffs exclusively in the same good (say L) in each state s € S. (See
Geanakoplos and Polemarchakis (1986).)

Default accentuates the asset span problem: two assets that usually make
different deliveries might, given certain macro variables ( p, 7, K), actually de-
liver the same money. For example, if R, = Ry, and agent / sells asset j and
buys j’, defaulting slightly in state s on j, while agent A" sells j* and buys j,
defaulting slightly in state ', then 4 and &' have effectively created a new as-
set trading off consumption between s and s'. (We shall see that augmenting
the span of asset deliveries is the raison d’étre of lenient default penalties.) As
the default rates get lower, one might think the agents might go unboundedly
longer and shorter in the two assets, creating the same problem of asset span
as in GEI, since in the limit there would be no default and the span would
drop. One should therefore wonder if default introduces additional difficulties
in proving the existence of equilibrium. We have just seen that in the presence
of the bounds Q” it does not. Even without the bounds Q}, we can show that
equilibrium exists, just as in GEI, provided that all assets deliver in the same
commodity.

THEOREM 2: Let all promises R; be exclusively in good L for all s ¢ § and
let R; # 0 forall j €J. Define GE(R, \) = GE(R, A, Q) with Qj? =coVheH,
jeJ. Then GE(R, ) exists for any vector A € RES with 3~ MRy > 0 for all
heHandjel.

In the course of the proof (see the Appendix), we show that if an agent £ is
buying a portfolio #" and selling an equally expensive portfolio ¢” that makes
the same promises, and if there is the slightest default on an asset in 6”, then
agent s must default completely in some state on one of the assets in ¢”. The
problematic scenario just described with a slight default in two assets j and j'
making identical promises could not occur, because # and A’ would be default-
ing completely (not slightly) in some states s and s’.

5. ENDOGENOQUS EMERGENCE OF ARROW SECURITIES

In some contexts it has become customary to think of endogenizing the asset
structure by allowing atomic agents to invent new assets (often one at a time)
to upset a prevailing equilibrium. These asset-creating agents are hypothesized
to be motivated by payoffs that might depend on the perceived volume of trade
that would take place in their new asset if no other prices changed (or in the
new trading equilibrium, after all prices equilibrated), or in some other way on
their perceived profits from introducing the new asset. When the status quo
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assets are chosen so that none of these agents has an incentive to introduce a
new assct, the asset structure is said to have been endogenaously determined,
This approach to endogenizing the asset structure inevitably involves a combi-
nation of price taking behavior and oligopolistic-Nash thinking on the part of
the asset-creating agents.

By contrast we follow a relentlessly competitive approach to the problem
of endogenous assets."” Every agent is a price taker. An assct is endogenously
missing in our approach if it is not in 4%, ie., if there is a price at which no
agent wants to sell or buy it.

Recall that an asset is specified not just by its vector R; of promises across
states, but also by the associated default penalties Aﬁ‘j, and quantity con-
straints Qj?. The Arrow (1953) security, for state s, is an asset i(s) that promises
one unit of good L in state s (and nothing else), with penalty AL,y = oo and

ry=ocforallheH.

If the government could simultaneously and without limitations choose as-
sets, it would pick all the Arrow securities. We show in Theorem 3 that the
market would do the same. Given an arbitrary collection of assets that includes
all the Arrow securities (but possibly many other assets with low penalties or
low quantity constraints), equilibrium will necessarily be the same as if only the
Arrow securities were available. No asset with K; < 1 will be actively traded.
The set of actively traded assets .4~ can always be taken to be just the Arrow
securities, no matter how big A is.

THEOREM 3: Let £ = (1", €")penr, (R, ((/\ﬁ})sés, O Vher Vier) be an economy
that includes all the Arrow securities {i(s):s € S). Then for any GE(R, A, Q)
equilibrium n = ((p, m, K), (x", 8", ¢", D*),.), we can find prices g « RU5"
such that (g, {x")sen) is an Arrow-Debreu equilibrium. Moreover, if A0, 80
agent defaults on any actively traded asset in v, even if there are assets j € J
with low /\fj. Finally, there is an equilibrium v', possibly n itself, with the same
((p, 7, K), (x")4e) such that the only actively traded assets in v’ are Arrow se-
curities.

PROOF: Let 7 be given. Let gy = py and let g, = ., (p,/ psr) V5 € 8. Let
vi(@) =max{u*(x):q-x <q. ", xR}

Observe that K; = 1 for each asset j with Ai’j =00 Vh,s, if R, #10, since no
agent will default in the refinement and the external agent will be fully deliv-
ering. It follows that by never defaulting, each agent /4 could, by selling and
buying the Arrow securities, achieve at least v"(g), that is,

W (x"y = u"(x"y — default penalty > v*(g).

For other competitive approaches for endogenous assets, see Allen and Gale (1988, 1991),
Pesendorfer {1995), and Townsend {1979).
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It follows that g - x* > g - e" YA € H. Since 5 is a GE(R, A, Q) equilibrium,
Sn Xt =Y, €. Hence, g-x"=q- e" Yh e H, and (g, (x")jen) is an
Arrow—Debreu equilibrium, and the default penalty actually borne by each
agent h € H is zero.

Clearly each agent is indifferent to achieving x” via the actively traded as-
sets in m, or via Arrow securities. If every agent trades exclusively via Arrow
securities, then supply will equal demand, and we achieve the desired cquilib-
rium 7’. QE.D.

If A does not include all the Arrow securities, equilibrium will still select
actively traded assets. When default is expected on an asset and K; < 1, buy-
ers receive only what is delivered, but sellers give up in addition penalties for
what is not delivered. This effective transactions cost limits the number of as-
sets that can be actively traded, and leads to .4* much smaller than .A. This is
so even though we confine attention to refined equilibria in which optimistic
expectations tend to boost trade in every asset.

In the following three sections we give examples showing that if two of the
three dimensions (R, A, Q) of assets in A are fixed, the third dimension is
endogenously determined in equilibrium via .A*. In our examples one of the
two exogenous dimensions is fixed far from Arrowian (to steer clear of The-
orem 3), and we find that the endogenous dimension is then chosen also far
from Arrowian.

6. ENDOGENOUS PROMISES

Here we give an example showing that if penalties are low, the market will
choose to actively trade only a single riskless promise, instead of the Arrow
promises. In every state s € S, there is some agent who does not intend to de-
liver and is relatively unworried about his punishment in that state (because he
thinks the state is relatively unlikely). He will have incentive to sell the corre-
sponding Arrow promise f and debase its K;, and therefore its price ;. This
will effectively prevent agents intending to deliver in state s from selling j. By
raising the general level of default penalties, this phenomenon is discouraged.
As penalties are made harsher, A* increases.

EXAMPLE 1: Suppose there are just two future states § = {1, 2}, one com-
modity L = 1, and three asset promises Ry = (1,1}, Ry =(1,0), R, = (0, 1)
with Qf = oo for all #, j. Let there be two agents H = (1, 2} with period one
endowments ¢’ = (1,0), e? = (0, 1), and payoffs that depend only® on con-

Ty keep our examples as simple as possible, we suppose no utility in period 0. This violates
the strict monotonicity assumption of our model, but our theorems can be extended to cover this,
and the other examples. We refrain from doing so for ease of exposition.
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sumption (x, x;) in period 1 and on penalties:

’ 2
Wli(x,8,¢ D)= gl:lﬂg/ﬁ - ZA(RU(P,' — DU){I

i=0

1 2
+ g{lC)ng - ZA(RZjQDj - DZj)+]:

=0

1 2
Wix,0,0,D)= 3 {logxl — ZA(RMP}' - Dl,.){l

=0

2 2
+ 5 [lOgXZ — Z/\‘(RZJ‘PJ‘ - D2j)+]-

j=o

(We take the penalty deflator v, = 1, as we shall in all our remaining cxamples
as well.} Note that each agent ) effectively assigns probability 2/3 to his good
state s = h, and probability 1/3 to his bad state s # h. The penalty rate is A in
each state, on all three assets. We shall show that for low values of A only asset
Ry will be actively traded in equilibrium.

In any (symmetric) equilibrium, each agent will consume 1 — x in his good
state, and x in his bad state. If A > 3, it is easy to check that the Arrow—Debreu
allocation (x* = (2/3, 1/3), x* = (1/3, 2/3)) is achieved via trade in the Arrow
securities R,, Ry, But for A < 7/3, the Arrow securities are inactive in any equi-
librium. To quickly check this is so for A < 2, simply note that the marginal disu-
tility of selling R, is ;A foragent £ =1 (since x} =x < 1/3,50 1/x =3 > 2 > A).
For agent h =2 itis

2 21 2.2 1
iny—A, = iny=A, = -A if .
rmn{3 ’3l—x}2mm{3 ,3}>3)\ f A<2

Thus agent # =2 is not selling R,. But agent 4 = 1 would default completely
if he sold R,; hence R, is not sold actively in equilibrium. Similarly R; is not
actively traded. We leave it to the reader to show that there is active trade in
asset Ry in refined equilibrium for any 1 < A < 7/3 (the computation is similar
to Example 2 in Section 7, where the equilibrium is calculated in detail). For
these A the market endogenocusly chooses asset promises R,

For 7/3 < A <3, both agents sell both Arrow securities R, and R,, giving
delivery rates less than 1. As A rises to 3, delivery rates converge to 1 and
trades rise to Arrow-Debreu levels.
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7. ENDOGENOUS DEFAULT PENALTIES

We turn to the dual of the problem in the last section, and show that when
asset promises are exogenously restricted in A, the market will endogenously
choose intermediate default penalties in A%, even though higher and lower
levels are available in A.

We begin by asking how high the penalties should be, when promises are
restricted.

7.1. The Economic Advantages of Intermediate Default Penalties with
Incompleie Markets

There are four fundamental drawbacks to reducing the default penalties A
so far that some agents choose to default in at least some states in equilibrium:
(i) creditors, rationally anticipating that they might not be repaid (on account
of direct and indirect reasons), are less likely to lend; (ii} borrowers may not
repay even in contingencies that have been foreseen, and even though they are
able; (iii) imposing penalties is a deadweight loss; (iv) the default of unreliable
agents imposes an externality on reliable agents who, because they cannot dis-
tinguish themselves from the unreliable agents, are forced to borrow on less
favorable terms.

Despite myriad reasons why default is socially costly, the benefits from per-
mitting some default often outweigh all of these costs. These benefits are ba-
sically twofold, and both stem from the fact that markets are incomplete to
begin with, First, an agent who defaults on a promise is in effect tailoring the
given security and substituting a new security that is closer to his own needs,
at a cost of the default penalty. With incomplete markets one set of assets may
lead to a socially more desirable outcome than another set. Second, since each
agent may be tailoring the same given security to his special needs, onc asset is
in effect replaced by as many assets as there are agents, and so the dimension
of the asset span is greatly enlarged. A larger asset span is likely to improve
social welfare (although this gain must be weighed against the deadweight loss
of the default penalties that are thereby incurred). In short, permitting default
allows for a plethora of additional assets that do not have to be specified in
advance.

A third benefit from allowing default, which is closely related to the first
two, is that agents can go long and short in the same security, thereby doubling
their asset span. We make use of this in the following example, which shows
that the optimal default penalty is intermediate, even though it causes all the
disadvantages (i)—(iv).
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EXAMPLE 2: Let H = {1,2,3}, § ={1,2,3}, and L = {1}. Suppose agents
care only for consumption at ¢ = 1, and have the same utility*'

3
u(xl’ Xz, x}) = Z lOg(xs).
s=1

The endowments of the agents are e¢' = (0,1, 1), ¢ = (1,0, 1), ¢* = (1, 1, 0).
We assume there is one asset 0 promising Ry = (1, 1, 1). We take default penal-
ties to be Ajy = A > 0 V&, s, with the penalty deflator v, = 1 V5 € §. We take
Q(’: =ocVh.

We can calculate the equilibrium for any value of A € (1, 00). When A < 1,
buyers realize that sellers will not deliver anything, so demand will be zero
and equilibrium will involve no trade. When A > 1, there can be no inactive
refined equilibrium.” When A — oo buyers will anticipate full delivery, but
sellers will realize that with probability 1/3 they will not be able to avoid a
crushing penalty, and so again equilibrium trade goes to 0. By setting an inter-
mediate level of default penalties we can make everybody better off. We graph
the situation schematically in welfare space in Figure 1.

In equilibrium different sellers default differently. The buyers of the asset re-
ceive the average deliveries of all the sellers. For instance, when A = A* = 6/35,
sellers in their good states deliver fully, and sellers in their bad state default
completely, even though they have goods on hand. Thus our example illus-
trates the pooling aspect of assets, namely that investors buy shares of a pool
of individually distinct deliveries.

At A =6/5, x! =(1/3,5/6,5/6), x* = (5/6,1/3,5/6), and x* = (5/6,
5/6,1/3), 6" = ¢" = ¢ =1/2 ¥ h, and K, = K = 2/3 ¥ 5. By buying and selling
1/2 unit of the asset Ry, agent 4 gains 1/3 = (2/3)(1/2) = K6" when s = h
and gains (—1/6) = (2/3)(1/2) — 1/2 = K#" — ¢" in the two states s # h.
Agent h delivers fully when s # /2 because his marginal utility of consump-
tion after delivery is 1/(5/6) = 6/5 = A*. When s = &, agent h defaults com-
pletely since his marginal utility of consumption 1/(1/3) =3 > A*, Since for
any s € § we have 2 agents with i # s, Ky = 2/3. Thus the asset promise
Ry = (1, 1,1) actually delivers (2/3,2/3,2/3) per unit promise, Agent h = 1
delivers 1/2-(0, 1, 1), agent & = 2 delivers 1/2- (1,0, 1), and agent A = 3 de-
livers 1/2 - (1, 1,0). The reason cach agent buys and sells only 1/2 a unit of

LAl our examples satisfy the assumptions of Theorem 2. Hence we can be sure a refined
equilibrium exists. Actually log(x) is not continuous at {), so by “log x” we really mean
In if x> 8,
logx=1] 1 o tx= for some very small 8 = 0.
a Fr+tind-1 if0=zx=<s,

#Suppose trades are very small in the perturbation. Then each agent will be delivering fully in
his good states; hence Kyp > 2/3 for at least one 5. But then 4 = s will want to trade a nonvanishing
amount, a contradiction,
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W2 =U? — A (default)

Arrow - Debreu equilibrium

A=A =6/5

A<lord=co

W' =U" — A(defaull)

FIGURE 1.

asset R, instead of a full unit to get to the Arrow—Debreu allocation is that
the sale of ¢ units of the asset is accompanied by the loss of @A utiles for the
inevitable default in state s = 4. The marginal utility from buying the asset is
(2/3)(6/5)+(2/3)(6/5) + (2/3) - (3) = 18/5; the marginal disutility from sell-
ing is also (6/5) + (6/5) + (6/5) = 18/5. (It is therefore more convenient to
take 7y = 18/5.)

A consequence of pooling is that the volume of trade is high. In equilibrium
(when A =6/5), each agent sells 1/2 unit of the asset, giving a total volume of
trade equal to 3-1/2=3/2, much greater than the volume of trade per asset
in the Arrow-Debreu equilibrium.

When 1 < A < 6/5, agents default in every state, delivering nothing in their
bad state and delivering D(A) only up to the point where the marginal util-
ity of consumption equals A in their good state. The reader can verify that
K(A) = (6A — 6)/(4A — 3), D(A) =3 = (3/A), (X)) = (4/3) — (1/A), and
xYA) = (2(1 — (1/A)), 1/A,1/A), ete. Clearly as® A — 1, x}(A) — (0,1, 1),
D(A) — 0, and K(A) — 0. {Asset trade @(A) does not go to 0 as A — 1 be-
cause the log utility is —oo at zero consumption.) As A +6/5, ¢(A), D(A), and
K () are monotonically increasing, as is the utility of final consumption.

For A = 6/5, the agents always deliver fully in their good states, while still
defaulting completely in their bad states. Thus K is maintained at 2/3, but

B Recalling that log x = Inx only for x = §, we really require 2(1 — (1/A)) = 6, that is, A >
2/(2 — 8). By taking & small, 2/(2 — &} is just about 1.
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asset trade again begins to drop because the inevitable punishment makes sell-
ing less attractive. The formulas are messy and we do not bother to present
them here. An increase in the penalty rate beyond A = 6/5 does not improve
tisk bearing (since ¢ begins to drop), and it also increases the deadweight loss
from punishing agents who cannot deliver anyway. It thus strictly lowers wel-
fare,

Furthermore, observe that as A rises from 1 to A = 6/5, the deadweight utility
loss from default A +2A(¢ — D) = (4/3)A — 1 — (10/3)A +4=3 ~2A actually
falls, to 3/5. Since the allocation is improving, and the default penalty is falling,
we deduce that A* = 6/5 leads to the Pareto best outcome among all economies
with A2 = A

Example 2 illustrates that the optimal default penalty might be low enough
to encourage some real default, despite the attendant deadweight loss, when
markets are incomplete. In fact, the optimal penalty is so low that agents do
not deliver anything in their bad state, even though the receipts they obtain
from their asset holdings are on hand for delivery. In short, there is strategic
default. Diamond (1984) presented a principal-agent model in which the opti-
mal default penalty is intermediate. But the agent always delivered everything
he had on hand. Default in his case was not strategic, but only due to bad for-
tune.” Example 2 also illustrates that the possibility of default makes the asset
payoffs endogenous, since we do not know before an equilibrium is calculated
what the default rates will turn out to be. If we change the utilities or endow-
ments of the agents, or the default penalties, the equilibrium will change, the
default rates will change, and the asset payoffs will be different.

7.2. Market Choice of Default Penalties

In Example 2 we asked how severe the default penalties should be to pro-
mote economic efficiency. Since our model allows for the possibility that dif-
ferent punishment regimes coexist at the same time, we can also ask how
harsh the punishment scheme will be that endogenously emerges in equilib-
rium. For example, an agent could indicate his intention to perform a service,
he could orally commit to performing the service, he could put in writing that
he promised to perform a service, or he could draw up a contract with a lawyer
announcing his promise to perform a service. If all four of these promises are
treated equally by the courts, then there is no issue of selecting a punishment.
But if the punishment in case of default is different for these different man-
ners of making the same promise, then in effect the parties to the agreement
are choosing the severity of default penalties attached to the promise.

#Hess (1983) gave an example in which it would be Pareto improving if an agent were allowed
to default in a particular state, without penalty, provided he delivered fully in the others,
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We shall now show that in our example, the forces of supply and demand
select the optimal default penalty. The example is noteworthy for two reasons:
it shows that equilibrium forces can select a single default penalty at which
all assets will trade, and that this penalty is optimal. We are unable to prove
a general theorem establishing either point, but in Section 7.3 we do give cir-
cumstances under which the market will indeed choose the optimal assets.

ExXAMPLE 3: Consider Example 2 with only one asset promise Ry = (1,1, 1)
and My = A*=6/5V¥h e H and Vs € §. Tt is natural to regard the penalty A*
as imposed by a beneficent and knowledgeable government. But we may also
regard A* as emerging from the equilibrium forces of supply and demand.

Now let there be a finite number of additional assets R;, all making the same
promises R; = (1, 1, 1), but with default penalties A; = ).j} forall he H,s €S,
ranging at intervals of A*/100 from 0 to 100A*. The symmetry of the utilities,
endowments, and penalties guarantees (by symmetrizing the proof of Theo-
rem 2) that a symmetric, refined equilibrium must exist. (Symmetry implies
that cpj? = 8}' =g, for all h € H and j € J, and that deliveries are the same
up to relabeling states, and hence that K; is invariant across s.) We shall now
show that despite the myriad of available assets, in every (symmetric) refined
equilibrium, all trade will be conducted in the asset j* for which )\ﬁ; = A*. We
begin by describing an equilibrium of this type, and then we show it is essen-
tially the only (symmetric) equilibrium satisfying the “on the verge” condition
(described in the Appendix as a shortcut to computing equilibrium).

The equilibrium will involve exactly the same prices, delivery rates, trades,
and consumption as described in Exampie 2 for the case A = A* = 6/5. There
we found that x!'=(1/3,5/6,5/6), x2 = (5/6,1/3,5/6), x* = (5/6,5/6,1/3),
and (p " = 1/2 for all k, and K, = 2/3 for all s, 7w, = 18/5 == the marginal
utility of buying or selling asset j*. We must now extend that equ1l1br1urn to
define prices #; and delivery rates K,; for all the new assets. The “on the verge”
condition requires some agents to be on the verge of buying and others to be
on the verge of selling, each asset. This uniquely specifies all these (7, K ;) for
j# J*. Set ;= min{A;, 6/5} + min{A;, 6/5} +min{A;, 3} for j # j*, which is the
marginal disutility of selling asset j. At these prices agents are just indifferent
between selling f and j*, so it is optimal to supply zero of j.

The marginal utility of buying asset j must be equal to (18/5)/7- =1, i.e.,

$K; + K; + 3K, _

T

Hence, by on-the-verge trading, K; = (5/27)#; or else K; = 1. For A; > 3,
m > 27/5,s0 K;=1,1e, K; =1, F0r32)\ > At =6/5, m; > 18/5, hence
K;>12/3, consistent with two out of three types being strictly conscientious.
Thus on-the-verge boosting holds.
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By concavity, since the first-order conditions are satisfied, each agent is in-
deed maximizing by trading exclusively via asset j*. We have thus displayed an
on-the-verge equilibrium in which (almost) any default penalty is available, yet
only a single one (namely the Pareto efficient penalty) is used in equilibrium.

We now argue that there can be no other symmetric on-the-verge equilib-
rium. In any (symmetric) equilibrium we have consumption x' = (2x,1 — x,
1 — x), and similarly x> = (1 — x,2x,1 —x), and x* = (1 — x,1 — x, 2x). If
x =1/6, then all (7}, K;) are defined, as in the last paragraph, by the “on-the-
verge” condition and in this case only asset j* will be actively traded® (aside
from trivial wash sales in assets j with A; > 3 and K; = 1). If x > 1/6, then
agent 1 has delivered up to a point in states 2 and 3 where his marginal utility
of consurnption 1/(1 — x) > 6/5. He would not have done that unless he was
selling an asset with default penalty A; > 1/(1 — x) > 6/5. If asset j delivers
fully in every state, then it is irrelevant, since by symmetry each agent is buy-
ing and selling an equal amount of it. But from the argument in the proof of
Theorem 2, if the asset did not fully deliver everywhere, then any agent buying
and selling it would default completely in at least one state. Since by symme-
try every agent buys and sells it, K; < 2/3. The marginal utility to purchasing
asset j is at most

271 1 1 2 3x+1
5( )Ag(l—nx).’lx

1 1 3
Hl—x+(1—x)3x<l—x

T 1-x T«

(if x > 1/6) in period 1. The marginal disutility of selling asset j is at least

a contradiction.
If x < 1/6, we shall show there can be no equilibrium price o for asset
j = j*. The marginal disutility of selling asset j* is

L, 1.6
1—x 1—-x 5

since 1/(1 — x) < 6/5 = A*. Hence, the marginal disutility of selling is less
than 18/5. It is also the case that every agent would deliver in each of his

®For 6/5 < A; < 3, no agent will deliver anything on asset j in his bad state, since he consumes
1/3 and 3 > A,. Hence if f is actively traded, K, < 2/3, contradicting our formula K; = (5/27)w; =
(3/27)(6/5 4+ 6/5+ A;) > 2/3. If A; < 6/5, and yet consumption in the good state is 5/6, then no
agent who actively sells j will deliver anything on j in any state. Hence if j were active, K; would
be zero, contradicting our formula for K;,
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two good states if he were selling asset j*. Hence, from on-the-verge boost-
ing, K& > 2/3 for some s, and so by symmetry, ¥s € §. The marginal utility of
buying asset j* is then at least

21 +2 1 +21
31—x 31—x 32x

For x < 1/6, the marginal utility of buying is always larger than 18/5, hence
larger than the marginal disutility of selling, a contradiction. This proves there
is a unique symmetric on-the-verge equilibrium. Hence it must be the unique
symmetrically refined equilibrium (which we know exists by symmetrizing the
proof of Theorems 1 and 2).

8. ENDOGENOQUS QUANTITY CONSTRAINTS

We saw in Section 7 that the forces of supply and demand could endoge-
nously select unique default penalties that are active in equilibrium, out of an
arbitrarily large array of possibilities. Here we give an analogous example for
quantity constraints.

EXAMPLE 4: Consider our standard cxample, but now with 6 households
whose endowments are e! = (0,1, 1),e* = (1,0,1),e* =(1,1,0),¢' = (1,0,0),
e’ =(0,1,0), and e = (0,0, 1). The utilities of all households are identical:
u(x)= ZL log x,. Their default penaltics are given by

- {OO fei=1 rallheH.ses, jeJ

710 ife!=0, ’ ’ ’
All assets j € J ={1,2,...,100} entail the same promises R; = (1,1, 1), but
different quantity constraints Q; = j/30.

These penalties lead to full delivery in each agent’s good state(s), and to full
default, without any penalty, in each agent’s bad state(s). If a household buys
and sells equal quantities of an asset j, with delivery rates K, = (;, k;, k;), he
in effect obtains insurance. By giving up (on net) a dollar in his good state, he
obtains «;/(1 — ;) dollars in his bad state. Default, with the proper penalties,
can thus encompass insurance.

Example 4 satisfies the conditions of Theorem 1, so refined equilibria exist.
One equilibrium involves 8%, = o%, = 0y, =12/30=2/5for all h € H, 65, =
@l = 18/30 < QO for all & € {4,5, 6}. Prices and delivery rates are given by
kp =, =1/2, and «; = m; = 1/3 for all other j. In effect all households
take out primary insurance j = 12 up to its quantity limit Oy, = 2/5, at the
rate 1/2, reflecting equal proportions of reliable and unreliable in the pool.
The unreliable households, desperate for more insurance, take an additional
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secondary policy j = 30, but at a much worse rate of 1/3, since they alone
constitute the pool j = 30. Our refinement leads to «; = 1/3 for all inactive
assets j ¢ {12, 30}, as can easily be verified using our on-the-verge condition.
At this equilibrium both reliable and unreliable households feel constrained
by the primary limit (, = 2/5, and reliable households are just indifferent
to taking out the first dollar of secondary insurance. We therefore call it the
pivotal equilibrium,.

Notice that out of a whole menu of potential quantity signals, the market
chooses just two at which there is active trade.

Primary and secondary insurance are well-known features of insurance mar-
kets. We pursue the details in a sequel paper (Dubey and Geanakoplos (2003)).
Let us mention, however, that there are multiple equilibria, in contrast to the
previous examples. Any quantity limit 0 < Q» < 2/3 can serve as the primary
market maximum. In each of these equilibria, all agents take out primary insur-
ance up to its maximum limit, giving 7. = k;» = 1/2, while 7; = K, = 1/3 for
all other j # j*. (Only in the maximal equilibrium with Q» = 2/3 are reliable
agents taking out all the primary insurance they want at the going rate of 1/2.)
If the primary quantity limit satisfies 2/3 > Q;. > 2/5 then, as in the pivotal
equilibrium, only unreliable agents will take out further secondary insurance.
If 0 < @, < 2/5, then all households will take out further secondary insurance,
atarate 1/3 < « < 1/2 (since unreliable agents take out more secondary insur-
ance than the reliable). The equilibrium with primary limit @; = 2/3 Pareto
dominates the equilibria with primary limits 2/5 < Q;» < 2/3. In the aforemen-
tioned sequel paper we introduce a further refinement, capturing the hierar-
chical nature of insurance contracts, and find that only the pivotal equilibrium
survives, along with the pure pooling equilibrium in which all agents join in the
same secondary pool (the primary limit is Q;» = 0).

In their famous paper on insurance, Rothschild and Stiglitz (1976) imposed
an exclusivity assumption, that agents can take out only one policy (sell one as-
set), and they found that equilibrium might not exist. Exclusivity destroys the
convexity of the budget set, so our existence theorem does not directly apply.
But in another companion paper, Dubey and Geanakoplos (2002), we showed
that equilibrium in fact does always exist, and is unique. Indeed it is precisely
the separating equilibrium of Rothschild and Stiglitz! (In our numerical exam-
ple, reliable agents sell and buy ¢} = Qy = 9/30 units of asset i =9, at price
m = 2/3 = x;. Unreliable agents sell and buy ¢f, = Qs = 30/30 units of asset
J =230, at price 7; = «; = 1/3. The pricing of the inactive assets implied by our
refinement is strictly monotonic in Q;, over a large interval, and is described in
detail in Dubey and Geanakoplos (2002).) The universal existence and unique-
ness of the exclusivity insurance equilibrium is made possible by our perfectly
competitive framework.”

¥Cho and Kreps (1987) also showed in their game-thcoretic model that the separating equi-
librium must always exist. As we have said, their model has much greater complexity.
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9, A-EFFICIENCY AND THE MARKET CHOICES A*

In Theorem 3 and also in Example 3 we found a match between what assets
the market ought to choose, and what assets it does choose. This is not always
(or even usually) the case. Example 4 displays multiple refined equilibria that
can be Pareto compared; in the bad equilibria, the wrong assets are used. Why
is a socially useful asset j sometimes not used in equilibrium?

The major problem is that in refined equilibrium, the delivery rates K; for an
untraded asset j depend on the delivery rates of the agents most eager to sell
it (i.e., the agents on-the-verge of selling it). If the more reliable agents have
higher disutilities of selling j, their higher delivery rates will not be reflected
in K;. The asset may make useful promises, but still not be used by the market,
because its deliveries are debased by adverse selection.

Very often there will be only one seller type that is most eager to sell. If
there are several, then again the market cannot screen out unreliable sellers.
We call an asset unambiguously beneficial if it enables a Pareto improvement
no matter what the selection of sales from among the agents most eager to sell
it. We shall prove that assets that are not unambiguously beneficial can always
be left inactive at some on-the-verge equilibrium, Call an asset super beneficial
if it remains unambiguously beneficial even when its penalty rates are slightly
reduced. We shall prove that super beneficial assets can never be left inactive
in any refined equilibrium.

More precisely, let 4 C A, and let E = (p, 7, K, (¥, 0", &", D")yer) be a
refined equilibrium of the economy with assets A. Let je AN A and let o; de-
note the set of agents on the verge of selling asset j, i.e., the agents with the
lowest marginal disutilities of selling j, given prices in the A-equilibrium. (See
the section On-the-Verge Equilibria in the Appendix.} We say that asset j is
unambiguously beneficial at E if, ¥ sufficiently small ((p Vners With ¢ ; = 0 for all
h ¢ o, 3 asset purchases and incentive-compatible de]werles (91 Dt Dien and

an allocation (y") ;e satisfying:

(iy w"(y*") = ut(x") forall A € H, with at least one strict inequality;

(i) Y 3 =) e

heff heH
@ 3=
helff heH
: h_ =h k .
(v) y'=x+ -y D, DHEMIW&

ZFEH } ieH
(v) (D})ses € arg max{ (yl’;, (if + Z D, ) )
(DSJ);E}, ZlEH JoieH se8

. Ds - (D,.
ZAI S -

YEY

m”]mmuhai
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Condition (v) says that h’s deliveries are incentive-compatible for him; and
(iv) says that consumption is altered in period 1 only via deliveries on asset j.

H the asset j would still be undmbiguously beneficial at £ even after re-
placing all its penalties )tg. by (1 — 8)A%, for some & > 0, then we call it super
beneficial.

We call E A-efficient if no asset k ¢ A\ 4 is unambiguously beneficial at £.7
We call E strongly A-inefficient if some asset k € A\ A is super beneficial at £.

S_l’

THEOREM 4: Let AC A, and let E = (p, 7, K, (2", 6", ", D*)4epy) be a re-
fined equilibrium of the economy with assets A that is A-efficient. If utilities are
smooth,™ then E can be extended to an equilibrium satisfying the on-the-verge
conditions for the economy with assets A, with the same active assets as before,
Ar = A, If the A economy has a unique on-the-verge equilibrium, then the ex-
tended equilibrium is also a refined equilibrium (and therefore is the unique refined
equilibrivm).

Conversely, if E is strongly A-inefficient, and if utilities u" are smooth and addi-
tively separable between time periods O and 1, then there is no refined equilibrium
of A that extends E, leaving all assets in A\ A untraded.

The on-the-verge conditions and the proof of Theorem 4 are in the Appen-
dix.

Theorem 4 helps explain Examples 3 and 4. In Example 3, by symmetry,
every agent is always on-the-verge of selling every untraded asset, and since
they all deliver 2/3 of the time, there is no adverse selection, and refined equi-
librium chooses the right asset. Every equilibrium that uses an asset A # A*
must be strongly .4-inefficient and thus will be upset by the A* asset. On the
other hand, once the A* asset is used, no other asset is unambiguously benefi-
cial,

In Example 4, by contrast, the unreliablc agents are always strictly more ea-
ger to sell than the reliable agents. Thus K; is debased by the adverse selec-
tion to 1/3 for every untraded asset, no matter what the equilibrium. Untraded
assets have little power to upset an equiltbrium, and so we get multiple, low-
welfare equilibria.

If Example 4 is modified by an exclusivity restriction, limifing every agent to
selling at most one asset, then the identity of the most eager seller depends
on the equilibrium E. If reliable and unreliable agents are pooled together

at £, then the reliable agents are the most eager to trade a new asset with the

T Qur notion of A-efficient is different from the constrained efficiency defined in Geanakoplos
and Polemarchakis (1986).

*Smioothness (in the sense of Debreu, which includes differentiability and the hypothesis that
each agent will be worse off than at his initial ecndowment if he consumes 0 of any good) guaran-
tees interior consumption, so that all derivatives are well defined.
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right quantity limit, upsetting any pooling equilibrium. If reliable and unreli-
able agents are separated at £, then unreliable agents are more eager to sell
most new assets, and so the separating equilibrium prevails, explaining why
the separating equilibrium is the unique refined equilibrium in the Rothschild-
Stiglitz model. This is demonstrated in detail in our companion paper Dubey
and Geanakoplos (2002).
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APPENDIX

PROOFr OF THEOREM 1: Suppose first that penalties arc finite, A € R, Fix a tremble & =
(&;)jes 3> 0. We shall prove the existence of an £-hoosting equilibrium for small enough &. For
any smalt lower bound b = 0, define

‘.
4y = {(p,'n')eIRf:"L xR{_:ZpM=1VsES*,

E=1

1
b<p_ers£es*xL,andnglSBVjEJ}.

Choose M large enough to ensure that: ||x|. > M = u®(x) > *(2 D e ey for all he H.
(By assumption, u*(x) — oo as ||x| — 20, so such an M exists.) Now define, for each h € H,

O" = {(x,6,¢, D) RS xR x RY x BRI

el <M, 0,223 0 0 < 0%, and (Dilus < 1Qlln| Rlloo |-

el

Let DH = XkEHDh.
Denote n=(p, 7 K, (x", 8", 0", D")pepr) € Ay x [0, 17 O = 42,
Consider the map K, : 42, — [0, 1]**/ defined by

‘Ryei+3 .. ,,-Di‘.

in{ P Ryei+ 3 ,enp j;;!ll it R, £0,
Pi- R—!‘fgj + Zﬁsh’ Ds - Rsfq?j

1 if Ry =0,

K_bsj(n) =
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fE)r each s € §, j € J. (Note that Ry; # ¢ implies p, - R; > 0, since R, > () and p, > 0.) Clearly
Ky is a continuous function.
Next, consider the correspondence ¢ : 42, = A, defined by

) = argmard py- Y - ey 4 7 (0 - o)

(p.miedy heH kel

+ Z Ps- [Z(x‘? — E';i) - Z(l — Kb.;j(n))Rjj&‘j] }

el heH jei

Clearly this map is nonempty and convex-valued, and upper semi-continuous.
Finally for each # € H, define the correspondence ¢/ : 42, = 0" by

gy = argmax{w®(x, 8, @, D, p): (x, 8, ¢, Dy € B*(p, m, K) N (T},
x.0,¢,D
Natice that % is nonempty valued and convex-valued, thanks to the continuity and concavity
of w”, forall A € H. To check that B*(p, , Kyn" is lower semi-continuous, let p*, o, K" S B,
7, K with 5> 0. Let (%,8,¢,D) € B*(p, 7, K). Fix 0 < @ < 1. Then (ak, af, ago,aD) €
B"( P, K"y N O* for sufficiently large r by the scaling property of the budget set, be-
cause f, - ¢ >0 ¥s ¢ §*. Since o was arbitrary, this shows that B*(p, w, K) N T" is lower
semi-continuous in (p, , K) whenever p 3 0. Since B*(p, w, K) N [0* is clearly upper semi-
continuous, ¢ is upper semi-continuous by the maximum principle.
Let iy £, = {2, be the correspondence defined by

o () = ¥ (m) x (Kp(m)} x X g

By Kakutani’s Theorem ¢ has a fixed peint #° = (p°, #?, Kb, (x"(b), 6"(b), ¢*(B),
D#(B))4esi). To avoid notational clutter, we suppress the b.

Note that in state 0, po- (37, (xf —ef)+m- (3, (8* — ¢*)) =} (since, given the monotonicity
of each u*, this equality holds for each 4 individually in his budget set). It follows that the “price
player” could not make the value of excess demand (across commodities and assets) positive in
period (. Suppose for some j<J, z,,eH(Bﬁ' - cpj?} > 0. By taking 7; =1/b and 7, =0 for i # j, it
follows that

_Z(eh _[P1)+ZPW‘Z(X0“ _Eug) <0

fel heH

forall peP,={geR::q >bVie L, Yi g =1} Hence,
3 (8] — @) < bLeollc
h

Similarly, if 3, _, (x} — ef,) > 0 for some £, then by taking all #; =0 and pg, =1~ (L — 1}b and
Por = b for all k £ £, we get

(L = Diblleyll
(x::; - 63() B A
;H 1—(L -1

From the fact that K, fixed K, and from the fact that agents have optimized so that p; D‘;j <
ps- Ryoh, whenever p, - R; # 0 we get

Ds Ry +3 ey s D 3} <1

Ky= =
' poRygi + Dherr Ps qu’j
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Hence,

ZP: ° D; - ZKsij - R:j‘Pj'! - (1 - K?j)Px ° stgj-

heH heH

From aptimization of monotonic utilities in the budget set, we get

po(xt — ety =3 Kyp. Ry8! -3 p.-Di.

jed jef

Adding over agents k € H, and substituting the above expression for 3,y py - D%, we get

pa ' Z(I? - e?) = Z{] - Ksj)Ps b stij + ZZKS[IJS Rij(ef - ‘Pf)

heH jer Jeb hell

<3 (0 —Ky)ps-Rye; + T | RilxbLio] .

et

Suppose 3, (xf, — el )= T, (1— K;)Ryje; > 0 for some s € 5. Since we are at a fixed point,
the price player cannot increase the value of excess demand in state s by taking g, =1— (LD,
and py = b for all k # ¢. Hence,

Z(x?f. —ely - Z(] — KR

heH jed

1
< ml@ - ])b|:HeUHoo + IRIIM;EJ] +JHR”xbLHeU"m]'

Thus aggregate excess demand (including the external agent) goes to zero as b — 0. Fur-
thermore, 3., X" <23, e" as b — 0, provided the fixed (s;),.; were chosen small to begin
with. If py/ps became unbounded as b — 0, some agent with el, > 0 could have consumed
M units of commodity sk, obtaining more utility than «"(23 ", €"), for all small b; but since
ah < 2%, et for small enough b, this contradicts that i has optimized. We next argue that
7, must remain bounded as b — (. If Q¥ = 0V &, then replace m; with L. Otherwise, if a7; — oo,
any agent b with Qj? > 0 could replace his entire action by selling a tiny amount A of j, buying
M (< Ax;/L) units of each period 0 good. Since ¢f # 0 for all s, and commodity price ratios
are bounded in each state, agent 4 can do this without incurring any default. But this gives him
utility that exceeds #*(23",, "), which is more than he can possibly be getting at the fixed point,
a contradiction. Thus all asset prices are bounded.

Since all choices and all macro variables are uniformly bounded for small &, we can pass 1o
convergent subsequences, obtaining £ = (p, #, K, (¥, 8, §", D")scx) as a limit point. Taking
the limit of all inequalities derived above, we conclude that aggregate excess demand for com-
modities and assets is less than or equal to zcro in E. Since price ratios p./pa are bounded in
each state s € §*, the limiting p > 0, and all agents have positive income in every state in E.The
bounds in (" imposed on (x, #, D) are not binding in E. Hence, by concavity of w", individuals
are optimizing in E on their actual budget sets.

Note finally that if all commodity prices are positive, there cannot be excess supply in any com-
modity in E, otherwise the price player would be making negative profits. For the same reason
there cannot be excess supply of any asset j in E, unless a; = 0. But then no agent would sell j
unless A% Ry; =0 for all 5 € S. Without loss of generality we may in this case take B = ¢f =0 for
all A.

Thus we have shown that E is an e-boosting equilibrium. Letting £ — 0 and taking limits we
obtain a refined equilibrium. This proves the theorem for finite penalties A.
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If some penalties are infinite, we take limits of equilibria with increasing penalties. Since all
actions must stay bounded along the sequence (because Q;’ < 00), any cluster point of these
equilibria will serve as the desired refined equilibrium. Q.ED.

PROOF OF THEOREM 2: Theorem 2 specializes the conditions of Theorem 1. Hence we
have a GE(R, A, () equilibrium for all finite Q. Consider a sequence of equilibria, 7(Q) =
(P(D), m(Q), K(Q). (x"(Q), (D), ¢"(Q), D"(@)e ), where QF = Q e N, forall ke H, je J.

It there is a single Q with (,oj'(Q) < @, forall h € H, j e J, then by the concavity of each u”,
n(Q) is a GE(R, \).

Passing to a convergent subsequence if necessary, we may suppose that forall 2 € H and j e J,

0:(Q) ol
— .
Q 44 !

Moreover, we might as well assume that for at least one j and some /& and &', # £ 0 and % =1.
For notational convenience, we shall write R, and Dy;, instead of the more accurate
Rs1; and Dy, and we shall suppose that real default in each state s € § is measurced in terms
of the commodity bundlc v, = 1, , which is one in the Ith coordinate, and zero elsewhere, Since
all assets are exclusively delivering in the Lth good, no harm results from these simplifications.
Finally, w.l.o.g. take p,; =1forall s € S.
Observe that for any A€ H, 5 € 8, ] € J, the level of default

— 8?,

1
dH Q) = Ry} (Q) - D] = A—,,,ruﬁ(e) —u"(eM)],

5
whenever Afj > @, for otherwise agent & would have done better not trading at all. (At any
GE(R, A, ), x" =¥, ¢” =) Hence if (,uj.'(Q) - 0,

[Ry9}(Q) — D] [Ryel{Q) — DL diQ) .
Eyee)] 2D ey
It follows that K;(Q) — 1 for all s € § with Ry > 0, provided that }_, , 0"(Q) =
> hen 9;'1(Q} — o0.

Furthermore, since relative prices p(Q)/pa{(Q) stay bounded,

2 K{ QRN - Y DQ)

ied jed

must stay bounded. Otherwise agent 2 would eventually be consuming a negative quantity in
state s, or a quantity exceeding the aggregate endowment e;, contradicting commodity market
clearing.

Putting these last statements together, we must have that

lim EJ;EJ KGJ(Q)RSJB?(Q) - Ejg] ij(Q)
forall he H,5€ 8.

Since 8" promises exactly the same value of deliveries as the portfolio ", no matter what the
relative prices p,, we know that #*((2) — # reduces the promised receipts by exactly the same
amount as ¢*((J) — " reduces promised deliverics, for any Q. (This would not be true if assels
delivered multiple goods.)

Consider any & with ¢" # 0, and hence 8" # 0. For sufficiently large Q0 = 1,

8" = 6*(Q) — 6" > 0,
¢ =M@ — " = 0.

=R.(6" - 5" =0
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At any large ©, the agent could feasibly have chosen 8*, ¢* and deliveries
Di=Dy(@) - Ry¢! =0 forall jel.
With these choices he would pay exactly the same penalty as in the equilibrium 1(Q). He would

receive exactly the same consumption at time 1 if K;(@) =1 for all j with éj‘ = (0 (for then his
receipts and deliveries both fall by R, - # = R, - ¢*) and strictly more consumption otherwise {for

then his receipts fall by 3_,_, K (OR8] <3, R;8"=R,- 0" =R, &").

1
In order for him not to prefer this deviation, we must therefore have

(D" —¢"1<0 forall heH.
But since #" and ¢* are limits of GE(R, A, Q) equilibrium portfolios,

ESNE

heH heH

hence we must have
w(H[F* — ¢*1=0 forall heH.

It now follows that household A would still prefer this deviationunless Vi< J,¥s < §,
[Ry>0,and 8 > 0 forany h e H] = [K,(Q) = 11.

Note finally that if :,Esjf = (0, there must be some agent { with é}l >0, hence K;(Q)=1forallse §
with R,; > ) and either 8 > G or ¢ > 0.

Replacing (P(‘Q), w(O), K(O), (x*(0), 0°(D), o™ (), D*(Q))nerr) with (p(Q), w(Q), K (D),
MO, 6, ¢, DMyicrr), we get another GE(R, A, () with $"(Q) < @ for all k and j. (Notice
that we are reducing sales and purchases only for assets with K; = 1, which therefore leaves the
K unchanged.} Q.ED.

On-the-Verge Equilibria

Solving equilibrium conditions (1)—(4) generally gives too many equilibria E and checking
which of them are refined seems at first glance to be a daunting task. It requires constructing an
infinite sequence of equilibria £{s} — £, as & — 0, satisfying (1*)—(4*).

Under certain circumstances, the task becomes dramatically simple. Suppose throughout this
scction that utilities u* are differentiable, and that at a (possibly unrefined) equilibrium (p, 7, K,
(x", 8" " D"yuo) we have® pg-x" > 0 for all 7 and all s. We shall show that there are algebraic
conditions on E that are easy to check and necessary for E to be refined. If it turns out that there is
a unique E satisfying the algebraic conditions, then from our existence theorem we can conclude
at once that E is a refined equilibrium without bothering with the sequence E(e). (In fact E will
then be the unigue refined equilibrium.)

We can define the marginal utility of money in state s to each agent h by p! = [gu(x*)/
%51/ pye Tor any £ with x%, > 0. The marginal utility to 4 of purchasing any asset j is then

5
MUT = ZF?KSJPS 'st
=1

and the marginal disutility of selling asset j is

§ E
AL
MDUY=3"py-Ry mm[ J ,;ﬂ:}.
D5 Vs

=1

¥This will be implied by Debreu’s smoothness condition of footnote 28.
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An agent is said to be on the verge of buying (selling) assct j if he is not buying {selling) it, but
would do so if the price @, were ever so slightly lowered (raised):

verge of buying: ;= MU'/,
verge of selling: 7, = MDU! juf.

If, in the refined equilibrium, p, . R; > 0 and K; < 1, then we know that in the perturbation
E(c), some agent k was actually sclling j and not fully delivering in state s (otherwise K;; =1 on
account of the external agent). It also follows that some agent was buying j (since markets clear
in the perturbation and the external agent buys and sells the same amount of asset j). Passing to
the limit, we conclude that at a refined equilibrium

7y = max{MU} / i)} = min{MDU /)

for all untraded assets j for which K; p; - Ry; < p, - Ry, for some s > 1. We call this the on-the-verge
of trading condition.

If pl > AU/ Ps - v for some untraded asset j, we say that agent & is stricdly conscientious for
asset j in state s. In any perturbation of the equilibrium, such an agent will fully deliver on asset
7 in state s, Thus if it turns out that all agents # on-the-verge of selling an untraded asset j are
strictly conscientious, then K,; must be 1. Furthermore, if every agent is strictly conscientious in
at least #m states on assetj, then K; > m/5§ for at least one state 5. We will call these requirements

“on-the-verge boosting.”

Any equilibrium satisfying the on-the-verge of trading and boosting conditions is called an an-
the-verge equilibrium. With smooth utilities, equilibrium conditions (1)—(4) can also be reduced
to equations. Hence every on-the-verge equilibrium is the solution of one of a finite collection
of systems of finite equations. As we have seen, every refined equilibrium is an on-the-verge
equilibrium.

The on-the-verge of trading condition appears not to leave any gap between the marginal
utility of buying and selling an asset j with default. If this were truly so, then one would generically
find that there was positive trade in all assets, But as we have emphasized, and as we saw in our
examples, equilibrium often involves inactive assets. The explanation of the paradox is that there
is a gap, but it is filled by the external agent. In E{£) delivery rates K () are boosted above
delivery rates K(&) of the real agents. If the marginal utility of buying were computed using K{z)
instead of K (), the gap would be visible.

PROOF OF THEOREM 4: We use the notation of Section 10.3. For each asset j € A4\ A, define
= min,,eHMDU" /uh. Let the set o; € H of traders on-the-verge of selling j consist of thosc A
who achieve the min just defined. For each £ € ¢; and each s € S, define K"‘ =0if z\*‘ < Py -ugph,
and K” = 1 otherwise.

Suppose E is A-efficient. For each j e Ay A, consider a sequence (qu’(s))hegj # 0 con-
verging to O for which a central planner cannot find a Pareto improvement. Define ¢}
lim,._,o(@? (&) Do, ¢i(e)), for all h € g;. Define K= Zhe” rp"K” We claim that at the macro
variables (p, (7;),c3, (7 }jea 4, (K Picds (K; 1)jear i), We cannot have MU” /,uL0 >, for any

(h*,jye H x (AN A). Otherwise the central planner could use asset j to Pareto lmprove on £
via the ((p (£))aca;- The planner could assign A* to buy zlw " qoj(s) units of asset j. Each seller
h with K" = 1 will deliver fully in state s (choosmg a bundie D with p, - D" = qo} (£) P, Ry). We
conclude that the value of deliveries p, - Eneaj v = Ps - Ehw qo} (a)Rj} o Ereq cpj(s)Kiij! .
R, no matter how the sellers 7 with K ”- =0 deliver. With smooth utilities consumption is inte-
rior, and the buyer 4* is almost mdlffercnt to the exact delivery 3., Dy solongas p, -3, Dy
is unaffected. Hence A* gains at least nearly Zseq qoj.(s)(MU;‘*) > Ziw] (,oj.(s)(,ug‘ ;) in utility,
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for small £. Let the central planner also adjust consumption at date ), taking away goods valued at
) ij qu(e) + 8, for very small 8 > 0, from agent 4*, and giving the fraction r,oj.’(s)/ Z{.E"J wi(8)
of these goods to each seller 7 € ;. Agent A* and all agents h € o; are strictly better off, for
small cnough & and 3, contradicting the hypothesis that E is A-efficient and confirming that
MU juh <y for all (b, ) € H x (AN A). I maxyey (MU /12t = a7}, set K; = K ;. Otherwise let
K.=(1—-wK; +a(l.1,...,1). Take the smallest « € [0, 1] for which maxhe,,{MU?/pg} =, if
such an « exists. Otherwise take « = 1. Set K; = K. Replacing K,- with K}, it is evident that the
on-the-verge conditions are satisfied. )

Conversely, suppose E is strongly A-inefficient and let j € A\ A be super beneficial at E.
Let E be a refined equilibrium of the A-economy, extending E, at which no asset in A\ A is
traded. Let (7}, K;) be defined by E. Clearly K,; < 1 for at least one s. Otherwise, even with full
deliveries, the maximurn marginal utility of buying j is less than or equal to #;, which is less than
or equal to the minimum marginal disutility of selling j. By separability, that would remain so after
rearranging goads at time 0, contradicting the hypothesis that j is super beneficial. Consider the
pertusbations E(e) refining E, and defining sales ¢(#), and deliveries D (e). (3., ehe)#0
for small &, for then K,; =1 for all 5 € §.) Delivery rates in E(e) are always at least Kq(s) =
(X hee, @)K/ Y e, @1 (), for small &, since strictly conscientious agents will fully deliver.
Hence K; > K, = lim, .o K,(&).

Now define (,Ej' =lim,_q q:f(e)/ Z,Ea: (,o;'(g) for # € o;. We shall argue that a central planner
cannot Pareto improve given sales sq?:?, using asset j with penalties (1 — 8)A;. If he did, delivery
rates would be no more than Kj < K; (where we have used separability between time ) and 1 and
the continuity of marginal utility of consumption). But then there is no Pareto improving trade,
since the marginal utilities of the potential buyer is less than or equal to the marginal utility of
the seller. QED.
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