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ABsTRACT. Irving Fisher long advocated inflation-indexed bonds. But
with what index? I prove in the context of a multicommodity CAPM
world that the best welfare-improving bond pays the minimum money
needed to achieve the same utility, and not the minimum needed to
buy an ideal commodity bundle.

Irving Fisher also developed and advocated the impatience theory
of interest. But in OLG economies, the rate of interest is determined
by population growth, not impatience. [ reconcile this contradiction
by proving that in stationary OLG economies with land, the interest
rate at the unique steady state does depend on impatience. Indeed,
the proposition that greater impatience creates higher interest rates
holds more generally in OLG with land than in Fisher’s two-period
model, because then income effects and substitution effects naturally
work in the same direction.

Irving Fisher viewed the real rate of interest as the most important
price in the economy, since it gives the relative value of consump-
tion today in terms of consumption in the future. He proposed a
theory of impatience to explain what the rate of interest should be
in a finite horizon economy. He lamented that many people did not
directly trade off consumption today for consumption tomorrow but
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instead traded money today for money tomorrow, thus enabling
unexpected inflation to garble the real rate of interest. In this paper
I examine whether Fisher’s impatience theory of interest holds in an
infinite horizon world with overlapping generations, and I derive the
optimal indexed bond in a two-period economy with uncertainty and
quadratic utilities,

Irving Fisher was profoundly interested in the correct measurement
of inflation and was a lcading proponent of inflation-indexed bonds.
He created an inflation index and meticulously published its values.
Hec insisted his secretary sign an inflation-indexed contract linked to
his index, and his company Rand Kardex issued an inflation-indexed
bond on the same day it officially opened for business under its new
name.! He evidently regarded the proper inflation-indexed bond as
an important policy question with significant welfare implications. But
he did not explain precisely what the welfare benefits are of choos-
ing the right inflation-indexed bond.

The problem is that as prices evolve over time, no household will
maintain exactly the same consumption or the same utility. Indeed,
no household will even maintain the same ratio of consumption
goods; it will substituie goods that become relatively cheaper for
goods that become relatively more expensive. Neither a bond that
promises the money required to purchase the same commodity bundle
nor a bond that promises the money required to achieve the same
utility will be sufficient by itself to provide for the needs of the holder.
On what theoretical basis is there to choose one over the other?

Practically speaking, it is much simpler 10 measure inflation by the
cost of buying a fixed commodity bundle. As Fisher pointed out, then
one does not have to worry about inferring what utility is or how to
deal with agents with heterogeneous utilities. And indeed, in actual prac-
tice in the United States and elsewhere, inflation-indexed bonds make
payments that guarantee the purchase of the same commodity bundle.

But current practice should not necessarily be the last word on the
subject. From a theoretical point of view, however, it is not obvious
what the right indexed bond is or even what the criterion should be.
(Fisher proposed 40 tests that an inflation index should satisfy.)
Perhaps the best indexed bond should guarantee each agent the same
marginal utility? Perhaps it should be tied to the growth of the
economy? Fisher himself modified his view and suggested as an ideal
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inflation index the geometric average of the Laspeyre (1871) and
Paasche (1874) indices of inflation. Since the Laspeyre index is greater
than the Koniis (1939) index and the Paasche index is smaller, their
geometric average is likely to be near the Konus index. The Kons
index is meant to measure the increase in cost necessary to achieve
the same utility as prices change. Thus, Fisher in the end advocated
a practical index that could be used to create a bond that guarantees
nearly the same utility. But that still leaves the theoretical question:
What difference does it make?

Fisher's 40 criteria for the best index were mostly mechanical. For
example, doubling all current prices ought to double the indexed price
level. By contrast, I argue that the question of the correct indexed
bond ought to become a portfolio welfare question: What additional
asset will enable consumers operating in an economy with incomplete
markets to best hedge the uncertainty caused by changes in relative
prices and in future income? From this welfare point of view, I show
that the ideal riskless bond should pay the Konlis index; that is, it
should have a monetary payoff in each state equal to the minimum
cost of achieving a given utility for the representative consumer. [ show
that the welfare consequences of adding this asset are dramatically
superior to those of adding the so-called inflation-proof bonds we
have in practice, even if every consumer’s final equilibrium con-
sumption necessarily gives a completely different utility in each state.

Irving Fisher was the inventor of the modern impatience theory
of interest. Shortly after Fisher died, the great French economist
Maurice Allais (1947), followed by the great American economist Paul
Samuelson (1958), introduced the overlapping generations model, in
which time goes on indefinitely into the infinite future. In that world
there is always a steady state equilibrium in which the real rate of
interest is equal to the rate of growth of the population and has
nothing to do with impatience. This apparent contradiction has often
troubled me, though it does not seem to have been much discussed.
The resclution I propose is simple: if an infinitely lived asset like land,
which yields a steady dividend forever, is added to the model, the
old lessons of Fisher are restored, and the equilibrium interest rate
does depend on the rate of impatience. Indeed, Fisher's lessons can
be shown to hold under weaker conditions in the setting of OLG and
land than they do in his original two-period setting.
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In Section I, I describe an intertemporal model of stocks and bonds
without uncertainty. I show, much like Fisher did in the appendix to
his 1907 book on the rate of interest, that it can be reduced to a time-
less Walrasian model. In that model it is easy to show that the real
rate of interest increases with increased impaticnce, increases as the
distribution of wealth shifts toward impatient people, increases as
future endowments increase relative to current endowments, and
increases as productivity improves, if aggregate demand for current
consumption declines with the rate of interest and increases with
wealth. However, the premise that aggregate demand declines in the
real interest rate is not universally applicable; even if utilities are addi-
tively separable, it may not hold, since at least for one agent the sub-
stitution and income effect will go in opposite directions.

In Section 11, T describe an intertemporal model with uncertainty. 1
begin by specializing to the famous capital asset pricing model
(CAPM) pioneered by Markowitz (1952, 1958) and Tohin (1958),
which has only one good per state. I show that in this model, as long
as there is an asset (1, . . ., 1) that pays one unit of the good in every
state, the equilibrinm allocation is Pareto efficient, even if many assets
are missing, and even if every agent’s final consumption is very risky.
(This result is due originally to Mossin 1977.) Without the (1,..., 1)
asset, the final equilibrium would be dreadful. Then 1 review Tobin’s
famous mutual fund theorem (1958) that says that in this situation,
everybody will hold the (1,..., 1) asset in his or her portfolio,
together with only one other asset (the market). Thus the (1,..., 1)
asset makes a dramatic difference to the welfare of the economy, and
it is the unique asset that will do so. On this welfare basis, one could
rigorously advocate introducing (1, ..., 1) as the ideal riskless asset.
But since there is only one good, the ideal riskless asset can be
described equivalently as an asset that guarantees a constant con-
sumption or a constant utility.

To distinguish these two I add many goods to the CAPM model,
as I did in my paper with Martin Shubik (Geanakoplos and Shubik
1990). Now I find that there is still one asset that will bring the equi-
librium to full efficiency (provided that every agent can sell shares in
his or her future income). But it is not an asset that pays a fixed
bundle in every state. Instead, it is a contingent bundie, calibrated to
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achieving the same utility at minimum cost, just as in the Konts index.
Once again it can be shown that all the agents will hold this in their
portfolios, together with only one other asset.

Finally, in Section 1II, I consider the overlapping generations model
of Allais and Samuelson. In the conventional presentation of that
model, all goods are perishable, and there is always a steady-state
equilibrium with rate of interest equal to the rate of population growth
(and thus independent of impatience). I show that by adding land,
or some other durable good that produces a fixed dividend in per-
petuity, one gets only steady-state equilibria in which the rate of inter-
est does depend in the usual way on impatience, on the distribution
of wealth and endowments, and on productivity, provided only that
agent utilities are additively separable and that all agents accumulate
some savings for old age.

I
A Model of Bonds and Stocks in the Spirit of Fisher

THE YALE ECONOMIST IRVING FisHER (1867-1947) was the first person to
develop a rigorous model of interest rates and the stock market. In
order to do so he had to include stock markets, bond markets, com-
modity markets, money, and production in an intertemporal model.
He then reduced this model to a timeless model without assets, in
which the rate of interest becomes simply a relative price between
two goods. Though assets are missing from the model, their prices
can nevertheless be deduced from the present value of their dividends.
In this timeless model it is easy to do comparative statics, showing
how the equilibrium interest rate is affected by changes in impatience,
productivity, the growth of endowments, and the distribution of wealth
between patient and impatient households. We give a modern version
of Fisher's models, providing sufficient conditions to sign unambigu-
ously the effects of these four factors on the real rate of interest.

LA The Intertemporal Economy

TA. I Time

In order to explain interest rates one needs a model with several time
periods. For ease of exposilion we assume that there are two times
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s=0,1. In cach period there is a set £ of goods traded; we denote
the price of good € traded at time s by p, = 0, and the vector of all
goods traded at time sby p,e Rf We assume that there are /7 house-
holds » € H that live for both time periods. The households have
time-separable utility functions of the form

Ub(.X') = Mb(xﬂ) + abub(-x])}

where x, € Rf and 1 € R and o Rf - R is increasing concave
and continuous,

1A.2 Imipatience

Following Fisher, we assume that households are impatient, in other
words, that &, < 1 for all b e F. Fisher tells long stories of why this
is a realistic assumption and why the level of impatience differs
among households.

Il is surprising how few people have challenged Fisher's view that
by introspection we know that we are all impatient. One of the most
interesting critiques of impatience was given by Yale student George
Loewenstein, who argued in his dissertation (1985) that utility
stemmed from anticipation, not from consumption. If that were true,
people would tend to postpone pleasant experiences, to increase the
excitement of anticipating them, and get bad things over with as soon
as possible, both of which are the opposite of what Fisher would
predict.

1.A.3 Endowments

We suppose that each household b is endowed with goods when
young and when old:

e’ ={(ef, ef) e Rf xRE,

The greater is the endowment of households in the latier part of their
lives relative to the early part of their lives, the greater we say the
rate of growth of endowments.

Fisher believed there is a correlation between the size of the
endowments and the rate of impatience across people. In short, he
felt that patient types of people accumulated wealth and passed both
their wealth and their proclivity for patience on to their children.
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1A 4 Money

We suppose that the set of goods is £=10, 1, ..., I}. Good 0 repre-
sents money; it gives no utility to any agent, and is in zero supply:
ek = 0 for all agents and time periods. A full-fledged model of money
would require it to be in positive supply and to play a special role
in transactions and so on. Fisher never developed such a model, and
we shall not do so either in this paper. Nevertheless, even in our
simple model, money takes on significance if assets promise payments
in money.

1.A.5 Firms

We assume that there are Ffirms fe Fthat are characterized by their
production sets ¥ = Rf x Ri. We write a production plan 3¢ ¥ as
= (y({ , ylj) and follow Debreu’s convention that inputs are nega-
tive. Assuming that ¥/ < RZ x R% therefore implies that the firm has
to invest in period 0 and produces in period 1; in other words, pro-
duction takes time. The greater the outputs relative to the inputs, the
more productive the economy is.

The firms are traded on a stock market and we denote by o? the
amount of shares household b buys of firm fin period 0. This enti-
tles the household to O'?y,f of the firm’s output in period 1, and no
dividend or obligation at time 0. This is in keeping with practice in
American capital markets, where there is always an ex-dividend date.
It is impossible that the instant a stock is purchased all the dividends
can be redirected to the new owner. Instead, a reasonable amount
of time must be left to transfer all the accounts, during which time
the original owner maintains the responsibilities and benefits. Of
course, the price the stock sells for will reflect this Fact; if a new buyer
realizes he has bought too late to receive the next dividend check,
he will pay less for the stock.

We denote the price of the share by #; Households have initial
ownerships in firms & }’, where Z,0 f = 1. We assume that the initial
owners of firm fbuy the inputs y{ before the shares of the firm are
traded on the stock market. We assume that each firm is controlled
by only one household, which chooses the production plan y/, and
we write F(h) for the set of all firms controlled by household 4.
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The controller of a firm fis assumed to hold shares ¢ 7 > 0 that he
is not allowed to sell. This maintains his incentive to choose a good
production plan 3. For simplicity we also prohibit the controller from
buying more shares. Note that if some asset j promises the same
payment, /= y{, then the controller can effectively adjust his expo-
sure to p/ by selling or buying 4’

1.A.G Bonds

A bond is a promise made at time 7= 0 to deliver goods or money
at time #= 1. We collect all bonds in a set 3. We assume that bond
0 promises to pay $1 in the second period and denote its price by
my. All other bonds je J are real bonds and promise to pay a bundle
of goods 4’ € R}, Their prices are denoted by T, We assume that the
first bond pays one unit of every good.

We denote the amount of bond j household b holds by 7. If
67 > 0, the household purchases the bond; if 8% < 0, the household
sells the bond. Since there is no government in the model, the bonds
must be in zero net supply and there can be trade in a bond j only

when some household sells it short, that is, when 6‘;’ < 0 for some
household b.

1.A.7 The Real Rate of Interest

With these definitions, the (gross) nominal interest rate 1 + 7 is
just 1 + = 1/m,. Under the simplifying assumption that there is only
one good, L= 1, we have that the (gross) real interest rate 1 + 7,
which measures how many of the good an investor gets in the second
period by giving up one unit in the first period, is given by 1 + r=
po/m. Infladon is defined by 1 + i = p/p,. When there is more
than one good, the definition of inflation and the real rate of inter-
est requires a theory of the proper index. We come to this in Section
II.

1A8 The Economy

The economy can now be described as a vector



Geanakoplos on Bonds and Interest 265

B =(((eb, e U5, FB), s (47),00, (1))

Prices are given by (g, p, (Ten, (Mrex), and each household b's
choices are given by

(2, (0) o @) oy ¥ O ) o)

1.A4.9 The Budget Set

Agent b’s budget set is defined as
Bb( (s y f)fem)
_ ‘
= {(xo: X1, (O-f)fﬁf(b}) (9_)")]@3, (yf{: »n )fE.T(b)) s.1.

Do Xo+ Q0+ Y RO,

= FeF(n

J2 Z yt{a'_}zspu -e) + Z nfajb'
JEF(B SEFH

™ 'X]Spl '6’14‘28_};}91'/1‘{*‘

7l

—t
2 Y4 'J"{O'f"' Z J 2 '}’{Gf‘}'
FeFh JeF

1A 10 Equilibrium

A Fisher equilibrium is a collection of prices and choices (p, 7,
(x", 6", 6%ers, e, with 6% = G} if fe F(h), such that

+ Markets clear:
Good markets:

PIECED YN Pt

heH heH feF
ho_ ) f

2 oxl= D el + )

beH heH feF

Bond markets:

> ot =0

heH
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Stock markerts:

B p—]
Yo'=>7o
hedl bheFH
« Agents maximize their utility functions subject to their budget
sets.

LA 11 Some Observdations

Fisher made the following obhservations about the nature of intertem-
poral equilibrium,

1. Default: In the definition of equilibrium nobody is allowed to
default. If a person buys an asset or the shares of a firm, he thinks
for sure he will get the promised payoffs. Similarly, if he sclls an asset,
he never contemplates not paying what is owed, at least according
to the budget constraint we have written. This is obviously unrealis-
tic, and the analysis should be extended. Fisher never constructed a
profound theory of default, but he did observe that the promised
interest rate would be higher for assets that had a higher chance of
default.

2. Fisher’s equation: If there is only one real good, then in equi-
librium it must be true that

1+n=Q0+rXl+=r+i+i (1)

This follows from what is called the absence of arbitrage. If Equation
(1) did not hold we would have 1/m, # p/m, - pi/py, or &/7 # /1.
However, in this case, households could buy the nominal bond and
sell the real bond (or the other way around) and would make money
today without having to pay anything on net tomorrow.

Note that in general one would expect 7- i to be very small, In this
case Equation (1) can be written as nn= »+ #, which is what is usually
called the Fisher equation.

3. Stock prices: By the same logic as above, the absence of arbi-

trage opportunities also implies that 7, = z,p, -y{f = =7 P y,f

Therefore, the price of a stock is nothing else than the discounted
value of its dividends.
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This holds incidentally for any bond as well. According to Fisher,
the price of every asset is the discounted value of its dividends. Thus,
even if there are many goods in the model, if we take the ratio of
the value of any bond’s payoffs to its price, we will always get the
same number 1 + 71. The nominal rate of interest is thus well defined
by the equilibrium. The real rate of interest is not well defined by
itself with many goods because it depends on the rate of inflation,
which also depends on an index. If potato inflation is much
higher than apple inflation, then the potato cost today of one potato
tomorrow will be higher than the apple cost today of one apple
tomorrow,

4. Endogenous share prices: Since the price of a share depends
on the firm’s future output, it will change if the controller of the firm
decides to change the production plan. This raises the question of
whether there is an easy way (o characterize the production plan that
the controller of the firm chooses.

5. Separation principle: Inspecting the budget constraint reveals
that every controller (who takes commodity prices as given) would
like to see a production plan chosen that maximizes py3y, + Ty As
long as the controller is at least a partial owner, & 7> 0, he will there-
fore optimize his utility by choosing 3/ to maximize total discounted
profits, or profit for short, and it is in fact irrelevant for the produc-
tion choices who controls the firm. This is Fisher's so-called princi-
ple of separation (between production choices and consumption
choices).

LB A Simple Reformulation of the Fisher Model us o Walrasian Model

with the above insight that the owners of the firm will always choose
production plans to maximize profits, we can simplify the model. Let
us now define a Walrasian equilibrium for the economy:

Yf)fef )

We denote by g, the price at time O of goods consumed at time ¢ 2
0, but traded at time 0. We then have the following budget set for
household h e H:

E=(((et, e?), U*,5%), ;. (
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B*(q)

={x: Go Xo+q -xiSqy-el +q el + 2(% vl +q y{)&}‘}
feF

An equilibrivm (g, (x"e35 (7)) is then characterized by (1) goods-

market clearing, by {2) households maximizing utilities subject to their

budget sets, and by (3) firms maximizing profits:

> xt= 3 e+ Yy
beH

[l jeF
x” & arg max U "(x)
xeBYy)

y/ eargmaxq - y.
yey/

Notice that the Walrasian budget set has only one constraint. Fur-
thermore, the Walrasian model and its equilibrium make no explicit
mention of time (treating goods x; exactly symmetrically with goods
%), no mention of bonds, no mention of who controls the firm, and
no mention of trading shares of stock. Thesc omissions make the
model much simpler. Notice finally that the Debreu notation, meas-
uring inputs as negative and outputs as positive, makes it very easy
to express the idea of profit as a simple dot product g - y, which
further simplifies the exposition of theWalrasian model.

The following theorem proves that essentially nothing real is lost
in this simplification by showing that there is no difference between
the production and consumption choices in the Fisher model and in
the Walrasian model and, furthermore, that there is no difference in
price ratios between contemporaneously traded objects in the two
models. In particular, we can recover the bond and stock prices
(relative to the price of some consumption good at time 0) from the
Walrasian model, because stocks and time 0 goods are traded at the
same time in the Fisher model. We cannot, however, recover the rate
of inflation or the nominal rate of interest from the Walrasian model.

Theorem 1 Consider any Fisher economy

£ = ((leb, o) U &% F),.p0 (A7), (7)) )

and the corresponding Walrasian econony
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E=((ef,ef) U, &), 0. (V") oy )

Suppose the Fisher economy has at least one asset or stock with
nonzero price. Then, given a Fisher equilibrium (p, 7, (x", 8", 6" 45
Dy there is a Walrasian equilibrium (q, (X" ez (V)pep) that bas
the same equilibrium consumpiion and production choices and where
G = po and g, = mp,. Conversely, given a Walrasian equilibrium (q,
(Ppests 9 ep) there is a Fisher equilibrium (p, &, (x°, 8", 6
g that bas the same consumption and production choices and
such that p, = q, and such that for all je 3 and fe F,

beH?

Ty=q - A
Rr=qo v

9o 14 r(f L=1)
41
The proof is left as an (easy) exercise.
Suppose there is no production. Then in this certainty model it
makes no difference what the assets are, as long as there is at least
one. We always get a reduction to the Walrasian model.

1.C Four Determinants of the Interest Rate

We now show how impatience, the distribution of wealth between
patient and impatient agents, the distribution of endowments between
the present and future, and the productivity of the firms affect the
real rate of interest in a one-good economy. We start with an example
and then generalize it to the case where excess demand for current
consumption is normal and decreases as the rate of interest increases.

Production Example
Suppose we have two time periods, 0 and 1, one good per period,
and two agents A and B with utilities:
U4y, 1) = log x, + 6 log x,
U*%(x,, x1) = log x, + 6 % log x,
08"<8"<1

and with endowments:
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e’(ed, ef') = (3/4, 1/4)
e’lel, ef’) = (3/8, 1/8)
Suppose there is a firm, owned entirely by agent A4 with production
function:
Y = C(—yu)“
cz0
O<a<l.
Let the prices be given by (qi,45) = (1,4). lrving Fisher was the first

one to recognize clearly that one could think of g as the discount
rate,

_ 1
T 1+

q

where ris the real rate of interest.
For simplicity of notation, let us replace —, with & In equilibrium
we must have that the firm maximizes profit:

ﬂ:(q, k) = ‘?f(k) - k,

where f(k) = Ck% giving us the condition that marginal revenue
product equals price:

qaCk® ' =1,
This in turn gives:
k= 1/gacC
BN = goC

kq) = cﬁ;(oeC)ﬁ

giving for maximum profit:

L @ L 1
MNig) = qC[q e (ac)ﬁ:| — g™ (@C)re

o 1 1 1

= — = — 1
=al—aql—-o:c]-a __ql—a(acv);
« 1y o
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The excess demand for the time 0 good is given by:

relir o[ e - (343)

When C= 0 and there is no production, one can easily see that z(q)
is monotonically increasing in g.° In general, the excess demand with
two agents could be arbitrary (and thus nonmonotonic in ¢, as
Debreu’s decomposition theorem assures us.

When we add production, taking €'> 0, we can confirm from our
formulae that z(g) is still increasing in ¢. Even without the formulae,
it is evident that TI(g} increases as g increases, giving the firm’s owner
more wealth. The firm’s owner A spends more on good 0 when his
wealth increases. And clearly the firm’'s demand for good 0, k(¢g), is
increasing in g, since the marginal revenue product increases in g.°

zylg) =

1.C.1 Some Comparative Statics

Suppose we have an economy with one good today and tomorrow,
for which aggregate excess demand for current consumption, z(g),
is strictly increasing in g = q./ ¢, that is, strictly decreasing in the real
interest rate. Suppose also that all individual demands for current con-
sumption are normal; so that increased wealth increases the demand
if prices are held constant. These hypotheses will hold if all the con-
sumers have Cobb-Douglas utilities, and if production is strictly
concave, as we saw in our example. In this situation we can derive
unambiguous comparative statics.

* When any agent, such as 4 in the example, becomes more impa-
tient, the real rate of interest rises.

At the old prices the excess demand for good 0 will become
positive. Therefore, to clear the market, g must fall. Therefore,
the real interest rate 1/q — 1 must increase. Intuitively, we can
describe this comparative statics result by saying that if people
care less about the future, they will demand a higher interest in
the bank in order to save. A shift in population attitudes toward
more impatience (the Now Generation supposedly ushered in
by Reagan) ought to raise real interest rates.
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» If the distribution of wealth shifts from an impatient agent to a
patient agent, such as from Bto A in the example, that is, if ef
decreases but ef increases by the same amount, then the real
rate of interest goes down.

The argument is as above, but in reverse. Al the old equilib-
tium prices, there must now be less demand for good 0 because
agent A will spend 1/(1 + % of his new money on the good,
but agent B will reduce his expenditure on the good by
1/(1 + 8 of the money he lost. The only way to clear the market
is to increase g. This lowers the real rate of interest. In words,
we can say that if wealth in the economy shifts from people who
are impalient to people who are patient, the interest rate the
banks must give will go down. Fisher believed that the wealthy
tended to be more patient, so during a period when the rich get
richer, as has happened since 1980 in the United States, the real
interest rate should go down, according to Fisher.

e If future endowments increase, all else equal, the real rate of
interest will rise.

At the old equilibrium prices, excess demand for good 0 must
go up (since wealth has gone up and current consumption is a
normal good). But to restore cquilibrium, ¢ must go down.
Hence the interest rate goes up.

¢ If productivity and marginal productivity increase, the real rate
of interest will rise. If the firm becomes more profitable at the
old prices, income to its owners will rise and so demand for
period 0 goods by its owners goes up (by agent A in the
example). If marginal productivity goes up, then at the old
prices the firm itself will also demand more input at the same
prices. Together this creates excess demand for good 0 ar the
old prices. Hence g must go down.

It is worth mentioning that even if all utilities are of the form /*(x)
= wP(q) + §,1'(x), excess demands may not be monotonic in aq,
because price substitution effects and income effects may go in oppo-
site directions (and definitely will go in opposite directions for at least
one agent). Thus Fisher's comparative statics conclusions depend on
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additional restrictions on utilities, such as the Cobb-Douglas utilities
of our example, where substitution effects always dominate.

II
Time and Uncertainty: The Ideal Inflation-Proof Bond

I A The GEI Model

Now we add uncertainty to the model. To keep things simple, we
stick with pure exchange. The analogue of the Walrasian model from
last section is the Arrow-Debreu model, in which agents face only
one budget constraint. The analogue of the Fisher temporal model is
the GEI (general equilibrium with incomplete markets) model. The
canonical GEI model ((U®, €)1, 4) has two time periods, period 0
and period 1, and § different states of the world (s=1, ..., 8 in
pericd 1.

Agent utilities and endowments (U°, €y are as in the Arrow-
Debreu model. In case agents have von Neumann-Morgenstern pref-
erences, we can write the utilities as

kY
UHx) = wdoo) + 3, v u(x,),
=1

where y? is the subjective probability agent 4 attributes to the state
s. A matrix of asset payoffs 4 € R}¥ is also given. The payoff A,
represents the quantity of good € promised for delivery in state s by
asset 7 As in the Fisher model, it will often be convenient to assume
that agents are impatient, and to embody that with the hypothesis
that #"(") = 8"ul(*), with the discount factor satisfying 0 < & < 1.

The model preserves the same methodological premises of the
Fisher intertemporal model and the Arrow-Debreu world: agent opti-
mization, market clearing, rational expectations (in the sense that
everybody anticipates what price will arise in the different states of
the world), and perfect competition (in the sense that nobody can
affect the prices by whatever he or she does). But it adds uncertainty,
something Fisher never formally did in a state-space setting.

The GEI economy is analogous to the Fisher economy (without
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production), but with many states of nature. It cannot be reduced to
an Arrow-Debreu economy, however, because in the Arrow-Debreu
model, agents can exchange commoditics at time O for any onc of
the state contingent commodities in the future, whereas in the GEI
model, agents are restricted to exchange commodities at time O for
assets, and the assets are limited to payoffs specified by the matrix
A. Of course, by buying and sclling assets an agent can influence
wealth in different states. But if there are only a very few assets, the
agent can arrange very limited wealth transfers, For example, if there
is only one asset, which pays one apple in all states at time 1, then
by buying this asset an agent can effectively loan money (giving
money today in exchange for a repayment tomorrow), while by
selling the asset he can borrow money, getting money today but
paying in the future. However, that single asset does not provide
insurance, because it does not help to transfer wealth from, say, state
1 to state 5.

To keep our notation consistent with the standard GEI literature,
we shall drop money from the set of explicitly named commodities,
leaving us with £ ={1,..., I}. The budget set for agent b is given
by

B"(p, )= B(p, r, e” A)

= {(x, 8 e R xR py (o —el)+ 7 -0 =0

and vs =13"‘7 S! ps (x¢ _esb)=p5 EASIBJ}

i

Individuals choose among nonnegative consumption plans x,
specifying the consumption of each commodity € € I in each state
se $*=1{0,1,..., Sl at time 0 and in the future. A consumption plan
can be chosen only if it can be financed by a portfolio of asset hold-
ings, 6, which can be positive or negative. An agent who wants to
consume beyond his endowment in state 0 can sell assets; this will
require him to make deliveries in the future. We are still assuming
that everybody keeps his or her promises so that default is not
allowed. There are §+ 1 budget constraints in the GEI model instead
of just one budget constraint as in the Arrow-Debren model.
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Equilibrium is defined by:
(p, T, (x?, B’J)bey) is a GEI iff

i

Y (x"=e?)=0 Q.1
=1
H
Y or=o0 (2.2)
=1
(x" 0" e BYp,m\b=1. H (2.3)
(x,0)e B*(p,m) =2 Uy < U (x"), b=1,... H. (2.4

As it is clear from Equations {2.1)+2.4), equilibrium is a price vector
for commodities (at all date-event pairs), a price vector for the assets,
and then plans for individuals that are optimal in their budget sets,
such that supply equals demand for goods and assets.

Equations (2.1)=(2.2) translate aggregate feasibility, Equation (2.3)
says that each agent chooses plans in his budget set, and Equation
(2.4) adds that there is nothing in the budget set that is better than
the selected plan.

If.A.1 Some Notation

Let us introduce a few pieces of notation. Given a vector x € R*, we
take x to be the (uncertain) period 1 components of x

P= (pm pla---,px) = (po, }5)
\_v._f
}‘)ER'U'
y=(}’n;y1:---,}’s)‘—‘(yo,j!).
\-—,—.—J

FeRSE

The box notation p [ # means the money value of the bundle y in
every state (therefore, it is an Sdimensional vector).

POy =(p Vi Ps-ys) e R
For the whole matrix A € (R*) we can take
pOA=(pO A4, .. pLia)eRY,

where A4 is the fth column of A
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Each column jof p [J A corresponds to the money payoff in each
state for asset f each column jof p [ A collapses the SI dimensions
of column j of 4 into § dimensions.

Let us introduce a piece of notation to designate an inner product
that will be used in the sequel. If it € R® and z € R® and yis a prob-
ability measure on §, then we write:

b
i y TS zy.nu'szs-
=1

It goes without saying that all the usual projection theorems hold
for this inner product. Given an arbitrary S x f matrix V, an artbitrary
vector b € R/ and an arbitrary strictly positive probability measure y
on S, there is a unique vector y* € spaniV] = (V8 : 6 € ®} such that
u*- v/ = b for each column jof V. In particular, given an arbitrary
vector g € R, the projection of u onto span[V is the unique vector
g € spaniV] such that u*- V= g, V' for each column jof V.

I1LA.2 Linear Pricing Lemma for GEI

The following lemma is fundamental in the theory of incomplete
markets. For the sake of a briefer proof, we assume that some U”
is differentiable, even though the same conclusion holds without
differentiability.

Unique Linear Pricing Lemma Suppose (p, @, (x", ) is a
GEI equilibrium for the GEl economy ((U”, &)y A such that for
some agent h € H, the ulility U” is differentiable, and such that
po-xf > 0 for all s € S*. Let v be a strictly positive probability
measure. Then there is a unique wvecior (* € spanl p [ A] such that
= pr, 1 p O A) for all assets j.

Proof We know that for each state s € §*, there is some commod-
ity £, € L such that x,_ > 0. Define

b_ 11 oU(x")
) y.s psl.’_q (9-%'515

{(where we take % = 1). From the first-order conditions of agent #’s
optimization, we must have



Geanakoplos on Bonds and Interest 277

_ 1
IiHe

;

g’ [pa A/l forall jey.

1 . .
Define p* as the projection of ‘_u_”ub into span(p [J Al Then g* has
o

the right inner product with each asset payoff, and it is the unique
vector 1o do so, since any other vector in spanl p [ 4] would neces-
sarity make a different inner product with at least one vector. Since
the prices of the assets do not depend on the agent 4, the projection
u* also does not depend on the agent b.

1IL.A.3 Riskless Rate of Interest with Uncertainty

When there is uncertainty and more than one state of nature in the
second period, how should we define the riskless rate of interest?
The answer, of course, depends on how we define a riskless asset.
The traditional answer, given by Fisher and others before him, is 1o
look for an asset that always gives the same purchasing power. If
there is only one good and agents have common priors and von
Neumann-Morgenstern utilities, the answer seems straightforward.
The riskless asset should simply pay off enough money in each state
to enable the holder to buy one unit of the commodity in every state.
Such an asset would always give the same purchasing power, by con-
struction. It also gives the same utility in each state to an agent for
whom it is the sole source of income.

Why is it important that it give the same utility in each state to any
owner who holds no other asset, since no consumer will hold only
that single asset? Typically, no consumer will end up with exactly the
same utility in each state. Why shouldn't the ideal asset pay enough
money to guarantee the same marginal utility in each state? Or why
shouldn’t the ideal asset pay a constant fraction of aggregate income
(i.e., of GNP)?

Thus, even for the simple case of one consumption good, it is
essential to make clear why it is important to have a riskless asset.
This can be done in the capital asset pricing model, which we now
review.
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LB CAPM with one commodity

We are going to show that when there is only one consumption good,
the assct that pays off one unit of the good in every state does play
a special role, at least under the conditions of the capital asset pricing
model (CAPM). Let 1=(1,..., 1) € R®. We shall show that:

(1) As long as every agent can sell off his future income today, the
presence of the (1, ..., 1) asset guarantees that interior equi-
libria are fully Pareto optimal.

(2) Everybody does indeed hold the (1, ..., 1) asset in their port-
folio, and in fact just one other asset, even though final con-
sumption may be very risky.

We shall then show that even when there are multiple goods per
state, there is still an asset that satisfies properties (1) and (2).

Capital Asset Pricing Model
Assumptions

L=1 (1

S M 1
U) = uf(o) + Y, () = ullng) + 3, T.?(xs - Ea”xf) )]
s=1 s=1

ri=v, Vhs (3

1—a’e, >0 Vb s wheree, = 2 el (4)
bheif

é?espan[d] VheH ()

1 & span[ 4] (6)

Equation (1) says that there is only one good (we are also drop-
ping money). In fact, it is only important that there is one good for
each s € §in period 1. There could be many goods in period 0. Equa-
tion (2) says that people have von Neumann-Morgenstern quadratic
utilities, and Assumption (3) says that agents have objective proba-
bilities ¥ Quadratic utilities guarantee that agents only care about the
mean and variance of their consumption. That could also be achieved
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by assuming normality of endowments and asset payoffs. But in that
context, the Pareto efficiency theorem below is not true.

Assumption (4) guarantees monotonicity. Since quadratic utility
eventually declines with more consumption, we must suppose that
the utilities are chosen such that agents still want to eat more even
if they consume the whole endowment.

The fifth, crucial assumption is that agents’ initial endowments are
in the span of the assets (they are tradeable); this is a nongeneric
assumption that is necessary to ensure Pareto optimality. This is
perhaps not realistic, in view of real-life asymmetries of information
and moral hazard issues that normally prevent people from selling
their future income. We assume away all these problems.

Finally, Equation (6) says that the (1,..., 1) asset is tradeable in
our economy. In this one-good model, the natural definition of a risk-
less asset is that of an asset that pays one unit of the good in every
state of nature, and we shall see that the presence of 1 in the economy
is very important,

Let us state the following Pareto efficiency theorem. This was first
proved by Mossin (1977), but we give the proof provided in Geanako-
plos and Shubik (1990).

CAPM Efficiency Theorem Let(p, 7, (xt, 07 ,c) be an equilibrium
with x* >> 0 Vb € H at a CAPM economy satisfying Assumptions
(1)~(6), including that (1, ..., 1) € spanldl. Then (x" ey is Pareto
optimal,

This theorem says that even if the number of assets is much smaller
than the number of the states (so that it is impossible to insure most
risks), equilibrium allocations are fully Pareto optimal, if the (1, . . .,
1) asset is tradeable, and if every agent can sell shares in his future
income. Without the (1, ..., 1) asset, equilibrium allocations may he
terrible. By adding the (1,...,1) asset, equilibrium jumps to the
Pareto frontier, even though there are many other missing asset
markets that have not been added.

Proof Let the marginal utilities of consumption (unweighted by
probabilitics) be denoted, as in Lemma 1, by:
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(3ub(x.e)

=4t =1-a’x"
ox, \
SES

Then from the first-order conditions of agent b, we know that:

7c1=%ﬁ"-y[ﬁfﬂAJ‘] forall je /.

{

But:

1 € span[A]
x? =" + A0” e span[A]

1 ¥
= — (1" € span[A]
Ho

=>ib,&"’=u* Vh e H.
Ha

The last implication follows from the unique linear pricing lemma
proved in the last section. But now we know all individuals’ marginal
utilities of income across all states are equal, up to a proportionality
coefficient. Hence the equilibrium is fully Pareto efficient.

The next theorem shows that the (1, ..., 1) asset not only will be
held by every consumer, but that in fact it is virtually the only thing
that every consumer holds. This mutual fund theorem was first proved
by Tobin (1958). The proof presented here follows Geanakoplos and
Shubik (1990).

CAPM Mutual Fund Theorem Iet X° >> 0 Vb € H at a CAPM equi-

librium arising from a GEI economy satisfying Assumptions (1)-(6).
Then

#"espan[L,é] VheH

where

o

i

&= é"

1

i

This theorem says that, at least in the CAPM model, even though
all individual consumptions X" might turn out to be risky, every
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agent will hold a combination of the market portfolio and the
(1, ..., D asset. The (1, ..., 1) asset is thus indispensable to agent
optimization,

Proof From the last theorem, we know there is a scalar A” = 1/uf
> 0 such that

,'lb( ahxb) }1* Vh
1 ~ 1

- bl_ bab

o oA

w,

So, everybody’s final consumption is a combination of just two pay-
off vectors. Summing over all the agents we get:

s=3 =Y =3| Lol =al-purarop >0

=1 =1

= u* =1/ Yal- &) e span|[l, é]
= %" € span[1, &].

Before moving to the next section, we note in passing that we can
give a more gripping interpretation of the GEI linear pricing theorem
in the special case of CAPM. The following theorem is originally due
to Sharpe (1964) and Lintner (1965).

CAPM Security Market Line Jet x° >> 0 Vb at a CAPM GEI Then
Ar> -1 and B> 0 such thatVje J

E Al N
M= 1:_ i BCov, (e, A?).

More generally, if z € span|Al
Ez .
n(z) = ryr — BCov, (¢, z).

Proof Letting 8= 1/8" > 0, and recalling from the last proof that
o> 0,
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Ej == H* '}; A‘f
=plal-¢é)- 4%, e, >0
= ﬁai y Al _ﬁé y Al
= BaE,A’ - Bé -, A’
= Blo — E,&)E, A, — BCov, (&, A').
Similarly,
n(z) = Bla — E,€)E,z — BCov, (&, z).

Since m(é) > 0, o — E@é > 0, hence letting 1/(1 + » = Ho - Eé) > 0,

Eyz -
T(z)= — pCov,le, z)
() T+, B V?’( )

I.C Multicommodity CAPM

The main lesson of CAPM for us is that if we just add the asset
(1,...1), everybody is as well off as possible. The form this asset
takes gives us a blueprint for what we should mean by a riskless
asset. Not surprisingly, when there is only one good, the ideal risk-
less asset pays the same quantity of the real good in each state of
nature. (This does rule out paying the same marginal utility in each
state.) The surprise is that even when everybody ends up with risky
consumption, everybody trades almost exclusively in the riskless
asset, and social welfare is thus dramatically improved.

Once we go over to a multicommodity world, the form of the ideal
riskless asset becomes much less obvious. Should it allow for the pur-
chase of the same “ideal” consumption bundle in every state? Or
should it alow each agent to achieve the same utility in every state?
If every agent regarded consumption as twice as pleasurable in state
1 as in state 2, should the ideal riskless asset pay off the same bundle
in hoth states, or twice as much in state 1, or half as much in state
1? We shall answer these questions by investigating whether in the
multicommodity world, under some circumstances, there is again a
special asset whose introduction guarantees the Pareto optimality of
equilibrium. If there is, we shall take its form to define what we mean
by the ideal riskless asset.
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The practical world has already spoken on this issue. Inflation-proof
bonds almost invariably take the form of guaranteeing the same
consumption bundle in every state. Thus in the United States the
so-called TIPs (Treasury inflation-protected bonds) are designed to
enable holders to purchase the same CPI commodity bundle. But I
shall demonstrate that an asset that guarantees the same utility is much
more helpful. To see why, consider the following multicommodity
CAPM model.

Multiple Commodity CAPM We now move to a world with many
goods in each state, L > 1. If we allow for completely general utili-
ties, it is hard to say anything concrete. So we specialize to a simple
generalization of CAPM, keeping as many of the Assumptions (2)-(5)
as possible. A crucial assumption will be made about utilities:

Assumption 2": Let
] 1
Ub(x) = u{f\?(xu) + Z:=] ’},f(vs(xs) - Eab{v:(xs)]zjt

where v, : R® - R is smooth, concave, homogeneous of degree 1
Vse S Vb e H(y is the same across agents).

This utility is the composition of an (idiosyncratic) quadratic func-
tion with a (common) homogenous of degree 1 function. We will be
relying very heavily on the hypothesis that there is a common z,. This
allows us to define one asset whose payoffs give each agent an equal
utility across every state.

Because of the quadratic aspect, this utility also declines eventu-
ally with more and more consumption. So we need the natural coun-
terpart of old Assumption (4) in this new selup:

Assumption 4’ 1 - a“zfe) > 0.

Having made the previous assumption, we can formally prove the
following theorem. This theorem was first stated in Geanakoplos and
Shubik (1990). The proof here is new.

Multiple Commeodity CAPM Efficiency Theorem Consider a GEI
satisfying Assumptions (2'), (3), (4), and (5). Let (p, &, (x*, 87)er) be
a GEI for which 3 >> 0 Vb € H. Suppose there is an assel r € spanlAl
of the form



284 The American Journal of Economics and Sociology

?"_( 1 e 1 e }
- vile) ]5”.’05(9.9) )

Then (x")yen is Pareto optimal.
Nolice that by homogeneity of degree 1,

v( 1 e)_va(eé)_l
Novde) *) vdey)

so that the “ideal” asset r vields the same utility of consumption

1
[1 - EabJ in every state to any agent # who consumes exclusively

its payoff. But what is more important, it gives the cheapest possible
bundle in each state achieving that utility, given the prices prevailing
in that state. A fixed commodity bundle also gives the same utility in
every state (assuming ¢, does not depend on §), but it is not the
cheapest bundle to achieve that utility, given changing prices. Thus
the appropriate riskless asset does reflect what is available; in other
words, it is not a fixed bundle. In general, no fixed commodity bundle
would do as well.

Proof Let us begin by examining the given multicommodity CAPM
equilibrium (p, &, (x”, 87,.,). In equilibrium we know that in each
state, prices will be proportional to each agent’s marginal utilities:

b b [
po = 22 200 _ g 100 O0sl)
ax“ axsg C?.X'N
= h avs(x;b)
) ax.u‘ ’

where u? = A2yl - a,ulx)] > 0.

Since v, is homogeneous of degree 1 and common to all A, it follows
from a standard theorem in aggregation that in equilibrium every x?
is proporticnal to g, (see Deaton and Mullbauer 1980). Since the deriv-
atives of ¢, must be homogeneous of degree 0, du{x))/dxy =
dvle)/dx, does not depend on A. Furthermore, since scaling p, up
or down by itself does not affect equilibrium, we might as well assume
D= DZ/L(G‘S)

Finally, by homogeneity, we conclude that p;- e, = v{e,) and for any
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scalar multiple of ¢, such as any x?, p,- x? = v(xP. For any y, with
P ¥ = p- xf, we know from the fact that x? is equilibrium con-
sumption that {3 € v{xD = p,- x2 = p,- ». By homogeneity, v{y,) £
Py, Vse § Vy e RE

We shall now prove the theorem by reducing the economy to a
one-commodity CAPM in which CAPM Assumptions (1)-(6) hold.

Now we define a related one-good CAPM economy ({ 0% 6% e A)
where we maintain the same number of states and agents as in the
multicommeodity CAPM. Let

A s R . S .~ 1.
Ub(y()ayla---:ys)=u(?(yﬂ)""z‘}’s[ys_Eabyg] VbEH:
5=t

where the u§ and ¢, parameters are the same as in the multicom-
modity CAPM utility. Define

I+5

éb:(e(?sp]'eib:"'apé‘.eif)eu%ﬁ-‘l- VbEH?
where the p, are taken from the multicommeodity equilibrium. Define
Ay=p,- Ay, VseS, je.

Observe that since 7€ span(4], (1,..., 1) = p O r e span{Al. More

generally, for any vector y € RI*" define the vector y € R

by ¥» = w and 3, = poy, Vs e S Conversely, for any vector y =
FANY

(e, Yoo, ¥ € RYS define the vector 3 € REYS by

-~

ps'es

Note that vy = ywle/pe) = 3, and p- V. = y.

Define the price vector g in the CAPM economy by ¢, = py, and g;
=1 for all s e S First let us see that (g, @, (x", ).z} is an equilib-
rium for the economy (T, é"eir. Adser, where the mand 6” are as
in the original multicommodity equilibrium. Since x? is proportional
to e for all b, Xf = py x? = vx?. Thus (¥ = T &7 for all b e
H

Clearly, for all vectors (3", @,

(v", ") € B"(p, 7, e*, A) & (p*, "y B(g, 7, 6", A)
< (3%, 0%) e BY(p, &, e”, A).

Yo =Yo; Vs = e, forall seS.
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Thus (3%, 8 e BYq, m, é", A). Moreover, if some (&, §) ¢ Bq,
T, & A), then (x, ) e Bi(p, &, " A). By virtue of the fact that (&%,
@) are equilibrium demands, U %" = UNx? 2 UAX) = 0% %), so
(x*, @) are equilibrium demands in the one-good CAPM.

Our CAPM economy satisfies all Assumptions (1)-(6). Hence by our
one-good Pareto efficiency theorem, (x"),,, is fully Pareto efficient
in the one-good CAPM.

If (pDpery Pareto dominates (x”),ey in the nmulticommodity CAPM,
and if £,e;0" = Epene’, then (3", must Pareto dominate (%7, and
still be feasible in the one-good CAPM, a contradiction.

Multicommodity CAPM Mutual Fund Theorem Under the
assumptions of the last theorem, let X* >> 0 Vb € H at a multicom-
modity CAPM GEI. Then

Xtespan[r,é] VhbeH,
where 1 is the appropriate ideal assel defined above.

The proof is given by combining the one-commodity CAPM proof
with the proof given above for the multicommodity CAPM efficiency
theorem. Once again we are able to prove that there is a crucial asset
that is necessary and sufficient for the economy to achieve full effi-
ciency (assuming every agent can sell off his future endowment).

I1.D The Ideal Inflation-Proof Bond

In the context of the multicommodity CAPM, we can positively
describe the ideal inflation-proof bond. It does not pay the same
amount of money in each state. It does not guarantee the same con-
sumption in each state. It does not guarantee the same marginal utility
in each state. On the contrary, it guarantees the same utility in each
state. 1F agents feel twice as good about consumption in state 1 as
in state 2, the ideal riskless asset will pay half as many goods in
state 1,

I1.D.1 What Would Fisher’s Ideal Index Give?

The Koniis index measures inflation as the ratio of the cost of achiev-
ing the same utility between this period and a previous base period.
Our ideal bond corresponds to a Koniis inflation-indexed bond. In
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Fisher’s proposal of 1925 for an indexed bond, he suggested using a
fixed commodity bundle chesen in some previous base period. This
corresponds to the Laspeyre index of inflation. As Fisher recognized
clearly, using a fixed bundle to measure inflation tends to overesti-
mate it (assuming the bundle chosen in the base year was utility max-
imizing) because, when the price of some commodities go up, agents
substitute other cheaper commodities. His later recommendation for
the ideal inflation index was more sophisticated than the Laspeyre
index. He suggested taking the geometric average of the Laspeyre
index and the Paasche index as an ideal index. The Paasche index
is formed by taking the ratio of the cost of buying today’s consump-
tion bundle at today’s prices to the cost of buying today’s consump-
tion bundle at yesterday’s prices. Assuming that today’s bundle was
utility maximizing at today’s prices, the Paasche index always under-
estimates the Konls inflation. Averaging the two can give an index
that is close to the Koniis index. It can be shown that if the functions
v are all equal to Cobb-Douglas utilities with exponents 1/L for every
commodity, then the Fisher index reduces precisely (o the Koniis
index (see Diewert 1970). The Fisher index would then provide for
Pareto-efficient trade under the multicommodity CAPM assumptions
of this section.

D2 An Open Question

This result leaves open the question about what the ideal riskless
bond should be in case there is more agent heterogeneity. For
example, if v; also depends on b, there may be no single asset that
provides every agent with a state independent utility. Further analy-
sis is required to see whether in this case it is helpful to have more
than one inflation-proof bond, or whether there is indeed any par-
ticular advantage to introducing a bond linked to some consumer
price index.

III

Overlapping Generations Economies (OLG)

IRVING FISHER ARGUED THAT the rate of interest depends on impatience,
on productivity, on the distribution of endowments between today
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and tomorrow, and on the distribution of wealth between patient and
impatient agents. In 1947, Maurice Allais of France introduced a model
of overlapping generations in which he showed that neither impa-
tience nor any of the other aforementioned factors has anything o
do with the rate of interest, at least for some equilibria. He found that
the rate of interest is equal to the rate of growth of population. In
1958, Paul Samuelson of MIT rediscovered the OLG model and added
a new twist. He showed that there could be assets whose prices
exceed the present discounted value of all their future dividends, thus
contradicting another central tenet of Fisher. Samuelson concentrated
on just one such asset, namely, green pieces of paper called fiat
money, which provided no utility whatsoever and yet sold for a pos-
itive price. The situation in which an asset sells for more than its fun-
damental value is called a bubble.

OLG models have an infinite number of agents and an infinite
number of goods. Each agent lives for two periods, when he is
“young” and “old.” In the simplest version of the model, which we
shall concentrate on here, there is one good in each time period.

In Samuelson’s original paper, he gave an endowment of 1 to the
young and nothing to the old in each generation. He also assumed
one agent per generation. See Figure 1.

Notice that at a given date, ¢ the old have nothing to offer the
young, so according to Samuelson there could be no trading. Samuel-
son ascribed the inefficiencies we will see in this model to a lack of

Figure 1

OLG Endowments in Samuelson Economy.

— O

time (past) 0|1 2 3 time (future)
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a double coincidence of wants. He suggested that one way to deal
with this was to introduce money.

We will begin to analyze the OLG model as if it could be thought
of as a Walrasian or Arrow-Debreu model with one budget constraint
per agent, and infinity in a few places. That immediately rules out
the lack of double coincidence of wants explanation for any of the
OLG properties, since in Arrow-Debreu all goods and agents are
directly linked. This is exactly analogous to the transformation of the
temporal Fisher economy into the timeless Walrasian economy that
we saw in Section I. We shall find that when agents have endow-
ments for just a finite set of goods, there are typically two steady-
state equilibria. One we call F after Fisher, since the rate of interest
there depends on the impatience of the consumers, though the equi-
librium real rate of interest is negative, and the equilibrium is ineffi-
cient. In the other steady state equilibrium, 8, as Allais and Samuelson
claimed, the rate of interest is equal to the growth rate of the popu-
lation (namely, zero in our example), completely independent of the
impatience of the consumers.

After examining the Allais-Samuelson case, we add land, which we
interpret as an endowment of an infinite set of goods, and find that
now there is only one steady-state equilibrium, which is efficient, and
in which the rate of interest depends exactly as before on impatience
and the other factors mentioned earlier in Fisher's two-period model.

1A Description of the Basic OLG Model

The set of commodities and agents are now both infinite: L= 7 =
{...,=1,01,..); H=s{th: (1, b) e Z x H), where we think of one
commodity per period and H agents per generation. Each period is
regarded as the time of a generation (say 30 years). Each agent lives
for two periods, and has an endowment e” = (..., e/, e%,.. ),

where ¢ is the endowment of an agent born at ¢ in period s. Thus

e/ is the endowment of agent th when young and e;% is the endow-
ment of agent th when old. In the basic model without land, we
assume there is no endowment other than these two. Payoffs depend
only on consumption while alive 7. .., %, X, ... = U, X..).

We shall assume that U* is strictly concave and strictly increasing in
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goods corresponding to periods in which the agent is alive, and sim-
ilarly that the endowments when young are positive, e/ > 0.
A Walrasian OLG equilibrium is a price vector g = (..., g4, G,

@, .. .) and an allocation {x” = (.. ., x2, x%,, .. ) the H} such that

(1) market clearing: TpepxX? = Zpepxs P + Tpepx?® = Tpesel, Vs

(2) value of individual endowments are finite: I3ge? < oo
Vihe H

(3 x” e BNg = {x: Togx, < Tgel), Vihe H

(4 xe B¢ = UMx) < UNx"), Vihe H.

§~1.h

In case there is no land, Z .52 = Z,0e0 " + Zpeed?, and Z¥gel
= ge + guels, so Condition (2) is trivial. Actually, Condition (2)
follows from Conditions (1), (3), and (4) for economies in which
agents are only interested in a finite number of goods, for if an agent
had infinite wealth, he would still have money left over to spend after
buying the whole of the aggregate endowment of the goods that he
liked, and then he would want to buy still more, contradicting market
clearing.

As in the two-period Walrastan equilibrium described earlier, the
prices g, represent the price that would be paid at time 0 to obtain
one unit of consumption at time £

In the following four examples we shall assume there is only one
agent per generation, and drop the superscript b. In our theorems,
however, we shall allow for multiple agents per generation,

Example 1 Let U .., x., %, Xu,...) = logx + logx.,
and let ef = 3, ¢/,; = 1, and e! = 0 otherwise, for all te H

It can easily be seen that there are two stationary equilibria, where
qui/q; is the same for all # In one g, = 3, —= < < =, 50 gui/q = 3.
Each agent optimizes by consuming her endowment, Thus, x! = 3,
xin =1, for all t e H, and clearly the markets clear. We call this equi-
librium F, after Fisher.

In the other stationary equilibrium, ¢, = 1, ~e < [ < so. This clears
all the markets because demand becomes (x/, x!,) = (2, 2) for all
re H. We call this the $ equilibrium, after Samuelson.

Since the consumers’ utility function is concave, consumers are
better off smoothing consumption:
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U2,2)>U'(3, 1).

Thus Equilibrium F is #ot Pareto efficient.
In the F equilibrium 1 + = g/q.; = 1/3 = r,= -2/3, while in the
S equilibrium,

=0
equal to the rate of population growth.

Example 2 Consider again the utility functions in Example 1,
UXx, x4) = logx, + logx,,, but now let the endowments for each
generation ¢ be (ef, e/,;) = (6, 1). It is easy to find two steady-state
equilibria as before. In Equilibrium 2F, we let g=( .., 1, 6, 36, .. )
and (x{, x/.) = (6, 1) = (e}, ¢/.,). The interest rate is 1 + = 1/6,
r= —5/6, so an increase in endowments when young decreases the
rate of interest, just as Irving Fisher predicted. On the other hand,
there is also an Equilibrium 28 in which g= (..., 1, 1, 1,...) and

. 1
(x!, xl) = [35, 35) for all ¢ In this “Samuelson equilibrium,” the

interest rate is still 0 despite the change in endowments. The
Samuelson equilibrivm confirms the view of Allais that the distribu-
tion of endowments across the lifecycle will not change the interest
rate.

Example 3 Suppose now that U(x, x,,) = logx, + 0.5logx,.;, and
that (e;, e/,.)) = (3, 1). Compared to Example 1, the agents have gotten
more impatient. Again we can calculate that there are two stationary

1
equilibria. In the Fisher equilibrium, g = ( 5 2 ) and

" E’ E? Z! "
b . . 2
(x/, x{4) = (@3, D for all ¢+ The interest rate has risen to 1 + = g,
1 . s
n o= —g. But in the other Samuelson equilibrium, g = (..., 1, 1,

4
1,...0 and (x}, x/,) = (g, g} Again the interest rate remains at 0
despite the increase in impatience of every agent.

in all three examples, the real interest rate in the Samuelson

equilibrium was equal to the population growth rate, namely,
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zero.! Samuelson actually considered a variation of the economy we
have been working with, in which time has a beginning at = 1. He
added a positive endowment of fiat money to the endowment of old
agents at time = 1. Then he showed that what we called the §-
equilibrium could be realized as an equilibrium in his truncated
model by giving money a positlive value, Money is a durable good
that vields no dividends and provides no utility, yet in the Samuel-
son model it has a positive value, contradicting another of Fisher's
central tenets,

III.B Adding Land to the OLG Model

Land is meant to be an asset that yields a steady dividend forever.
The owner of the land effectively owns all its dividends, and hence
has an endowment stream that goes on forever, even though he will
die after at most two periods. We start, as Samuelson suggested, at
time 1, with the old agents from time 0 and the young agents born
at time 1, but with no money and with all the land in the possession
of agents born at time 0. The definition of Walrasian OLG equilib-
rium given above also applies with land, except that now we restrict
to 2 0 and s2 1. The only other difference is that in the basic OLG
economy, each agent owns goods in at most two periods, while with
land, some agents 0/ might own endowments of goods in every
period. In fact, we shall always assume that in OLG with land, at least
one agent’s endowment includes a nonnegligible fraction of the
aggregate endowment of every good.

Example 4 We assume individual endowments of fruit are (3, 1)
when young and old, as in Examples 1 and 3.

Now we add an infinitely durable good to the OLG model that
yields real dividends forever. In addition to the other endowments,
we assume that the person born in time 0 owns a durable good called
land or trees that yields one unit of the perishable consumption good
per period, forever. We can write the effective endowments of the
perishable goods as in Figure 3.

To solve for the Walrasian OLG equilibrium, we write the budget
sets:
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Figure 2
OLG Endowments in Examples 1 and 3.
1
3 1
3 1

1 2 3 4 time

Figure 3

OLG Endowments with Land in Example 4.

2111
3 1
3 1
3 1
1 2 3 4 time

] ) {J
BYg)={xi:qix} £ q1+q: + Zq;
=2
S —
value of
the land

Bg) = {{x], x}n)} g.x! + qixtn €3g, + g} forallt 21,

Market clearing now requires that x/'+ x/=e/7 + e/ +1=1+3 +
1=5¢=1,2 .. .We defer computing the stationary equilibrium
until the next section.

Note that consumer 0 solves: max log x{ s.t. x{ € B%p), so x? =
(g + Z7g9)/ ¢ We know that x{ <5 (to satisfy market clearing), so

iq, < 4y < oo,

=1
Thus in any equilibrium in Example 4, the value of the aggregate

endowment 5X7,4, must be finite. In Examples 1-3, it was infinite in
every equilibrium.
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H1.B.1 Temporal OLG Eguilibrium with Land

We have described the OLG model with land by adding the dividends
of the land to the endowments of the time 0 generation, in accor-
dance with how much land each of them owns to start. In the
Walrasian (or Arrow-Debreu) equilibrium described in Section TI1LA,
consumption goods in every period are traded simultaneously at some
mythical place and time where the souls of the unborn and dead all
meet. With durable goods like land, we can define a more realistic
temporal OLG equilibrium by allowing trade to occur only between
living agents. At any given time, two generations are living, and they
can exchange fruit (consumption goods) and land, just as in the two-
period temporal equilibrium described in Section I. And again we
shall see that the temporal equilibrium is identical to the Walrasian
equilibrium.
Define:

K" = acres of land owned initially by consumers 05.

K! = acres of land purchased in year s 2 1 by consumer th. We allow
K < 0, but require K " > 0.

x® = number of fruit consumed in year sby consumer th. We require
x¥ > 0.

p: = price of a time ¢ fruit paid at time 1.

I, = price of a time ¢t acre of land paid at time t.

f = output of fruit per acre of land in each period.

f =fZ.uKd" = total output of fruit from all land, in each
period.

In the Walrasian setting, ¢, was the price paid at time 0 for fruit at
time f. That was the present value price, whereas p, here is the current
value price. Allowing K}" < 0 is analogous to allowing short sales of
assets in the two-period model. Insisting on K{™"* 2 0 is necessary,
since we do not allow for default, and the agent cannot pay back
after he is dead.

Recalling that the owner of land at time £ has the right to consume
the fruit it bears at time (¢#+ 1), we define the temporal budget con-
straints for each agent Ob and th, he H 1= 1:
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an;(p, ]_l)= (x] ’Kl()b) pxnh_l_an}mS ple; + leSbf +T,K§*
[ ———— —_—

endowed fruir from endowed
fruit endowed land land

Bm(pr H) = {(x;br Kafb! x;il» ﬁ;]) pl’x.‘{b + n Ktb < p eib and

P:+1x:i1 + I, K5 < p:+1€£1 + PHIK:‘bf + nr+1K:w}-
(2)

A consumer born in year ¢ = 1 has two budget constraints. The first
limits his purchase of fruit and land in year # The second limirs his
purchase of fruit and land in year (¢ + 1}. Increasing K, has no direct
effect on the consumer’s utility, but allows him to increase x!%,.
Increasing K%, does not benefit the consumer in any way, so in equi-
libriwim, K/, =

A temporal OL(_r equilibrium with land ((p, [z, (0", K™z
satisfies

(1) market clearing in commodities:

ih Z s—1h s !.l‘) >
Zrbe}f Xy IheH Xs + Z‘benxs ZH 3’( + f Vsz1

(2) market clearing in land: TpesK P = K" Vs 1
(3) (x"* K™ e B*p, D, Vthe H
4) (x, K) € BAp, ID = U"(x) < U™x™), Vibe H.

In our next theorem we shall prove that temporal OLG is identical
to Walrasian OLG. The idea is that the return on land in the tempo-
ral equilibrium implicitly defines the tradeoff between consumption
at times tand £+ 1, and thus the rate of interest at time ¢:

+ +n+
1+I_p:1f ;1/
PHI p.r

The denominator describes how much fruit can be acquired from the
sale of one acre of land at time ¢, and the numerator describes how
much fruit can be acquired at time ¢+ 1 from the dividends and sale
of the land.
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Walrasian-Temporal Equilibrium Equivalence Theorem for OLG
with Land  Let E= (U, e"yest, (KM pets, [ be an OLG economy
with productive land [ = fL,,K§" > 0. Then there is a temporal OLG
equilibrium ((p, T1Dg, (X", KMyesr) for E if and only if there is a
Walrasian OLG equilibrium (g, (™) o3 for E, where for all t 2 1

q: _me'*'nm /E"’_

g P P
— g:f
p: g, 1-;.1 "

Proof We prove first that the two equations above are equivalent.
Suppose first that T1,/p, < e is defined for all 72 1 by the bottom equa-
tion. Then

o

1
+ -
Pnf + 1y i _ 4 Gy SO 9/

“+ B 1 i
p 1 pt zrzﬁ_lqrf
q:

_ g qt+1f+2:=mqff: q.
g Z;m g.f G i1 .

Conversely, suppose the top equation holds for all = s2 1. Rewrit-
ing it and iterating it back to 1< s, we get

Hs z@[f-f' HHIJ
pS qS ps+l

ns q.s+1 [ l_Es-i-l ]J 1 [ le )
i/t s Tdsn) T qs
p.s—l q;—l (f s ‘ ps‘+1 q.c—l q f q ]f q ' ps+1

p T=t+1 q: q: e Psn .

Lelling s — e shows that £7,¢g, < «. Hence gu(IMu/pu) = i qef
— 0, giving the bottom equation.

Next we show that given these two equations, the temporal and
Walrasian budget sets contain exactly the same feasible consumption
vectors for any individual. Observe that doubling both I, and p, for
any fdoes not affect any agent’s budget set. Hence we can scale up
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1, and p; so that I, = p,; f+ I1,,. Then from the top equation, g,/g,,
= D/bwi. And adding consumer #'s budget constraints
P:xfb + an{b = P;es’b
Duwxin + Kb < p:+19§f1 + PmK:wf + I, K"
gives
pex” + Pwxty < pel” + Pm€inn.

This shows that if (x, K) € B*(p, ID), then x € B*g) for every agent
g

din

with ¢ 2 1. Conversely, if x € B¢, then (el — x!h = (xl, -

el). Define

I1,
K, =(e" - x;‘")/—.
P

Using the first equation, the additional consumption this allows in
period t+ 1 is

DS + 1y K = Puf +114 (" —x_f”)/%—
4

!

pfﬂ Pm

= ool — ) = (x2i —elh),
q 1
Hence (x, K) € B%(p, I1). For agents Oh, simply apply the bottom
equation for T1,/p,.

Corollary Let ((p, g1, (x*, K™ pes) be a temporal equilibrium
Jor an OLG economy (U™, €™ yes, (K3 pers [ with productive land,
f = Z0enK " > 0. Then (x™)pezr is Pareto efficient, and land is always
priced as the discounted value of its future dividends.

Proof From the previous theorem, the temporal equilibrium is
equivalent to a Walrasian equilibrium. From Condition (2) of Wal-
rasian OLG equilibrium, when there is land, the requirement that the
income of every individual agent be finite also guarantees that the
total value of the aggregate endowment will be finite, since the latter
is no more than a finite multiple of the former for some agent
born at time O. Hence the usual proof of the Pareto efficiency of
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competitive equilibrium goes through, as was pointed out by Wilson
(1981).° By introducing a durable good whose payoff is a nonnegli-
gible fraction of aggregate endowment, we have assured that there
are no Pareto-inefficient competitive equilibria.® Furthermore, the
proof of the last theorem also showed that the price of land must be
equal to the present discounted value of its dividends.

In fact, it can easily be shown that if we add other durable goods,
like paper money, to the OLG economy with land, then all of these
will bbe priced at the present discounted value of their dividends.” This
gives us a first indication that the OLG model with land will behave
much more like the Fisher two-period model.

HI.B.2 Stationary OLG Equilibrium with Land

If UCx, xu) = U, &) and (e, ef2) = (ef, 1) do not depend on
¢, for t2 1, and if f > 0, then we have a stationary OLG economy
with (productive) land. A stationary OLG equilibrium is an OLG equi-
librium where the one-period rate of interest remains constant over
time, ¢y =1, ¢ =¢q ¢ = q° ... We call g= 1/(1 + # the market dis-
count rate and rthe one-period rate of interest.

For each agent b e H, let (x{(g, x3(q) € arg max{U"(x;, %) x +
gx; < el + gefn, x, % 2 0L Given our hypotheses on utilities, we
must have that (x{(qg), x2(g» is a uniquely defined, continuous func-
tion, and x{(g) + x¥(q) - was g— 0, for all 1217 Let (z{(g, z?¢
() = (xf(q) - e]), (3 — e)) be the excess demand of agent b,
and let (z(, 2 @) = Cper(zH P, 22X ) be the aggregate excess
demand of each generation.

Stationary OLG Equilibrium Existence Theorem Every station-
ary equilibrium for arny OLG economy with productive land 7 >0 has
a strictly positive interest rate, 0 < g < 1. Moreover, every slationary
OIG economy with productive land f > O such that U" is strictly
concave and sirictly monotonic, and such that ef > 0, forall b e H,
has a stationary equilibrium.

Proof TFrom the last theorem we know that the value of land is

1
finite, s0 0 < —X7.,4" f< e, Hence 0 < g < 1,
q
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In stationary equilibrium we must have that

2(q) + z,(g) = 7,

where z1(g) is the excess demand of one generation’s young and zy(g)
is the excess demand of the previous generation’s old. For any g,
each agent will spend all his money, and hence the budget set
inequality will be an equality and z(g) + gz(¢) = 0. Hence when
g=1Lz2(@+ 2(g) =0< f.Butas g > 0, z(q) + 2(g) — . By con-
tinuity there is some 0 < g< 1 with z1(g) + z(g) = f.

This clears all markets for time 2 2, What about ¢= 17 Luckily, we
do not need to check anything more. Since the value of the aggre-
gate endowment is finite, and since every agent spends all his money,
total expenditures must equal the total value of endowments. But
from the foregoing, for each good #2 2 total expenditures equal tota]
value. Hence also for the one remaining good f= 1, we must have
total expenditures equal total value. But since g, = "' = 1, that means
demand equals supply for time 1 goods as well.

Computing Stationary Equilibrium for Example 4 At each date
t 2 2, the young and the old must have demands that sum to all
the goods in the economy, namely, their joint endowments plus the
output of apples from the land. Consider the case = 2. Then the
present value (i.e., as of time 1) of income of the old (born at time
1} is 3 + g, while for the young born at time 2 the present value of
income (as of time 1 again) is 3¢+ ¢. Recalling the formula for Cobb-
Douglas demand, and recalling that the total supply of goods in every
time period is 3+ 1+ 1 =5, we can solve

-1
X, +xi=5

%BHJ %[3q+q2]
+ =3.
q q

Solving the quadratic equation gives two solutions, only one of
which has 0 < g< 1:{g= 055, (x{, x/,) = (1.78, 3.22), for all ¢ = 1}.

It must therefore be the stationary equilibrium.
By stationarity the same solution clears the markets for all time ¢ 2
2. It also clears the market for ¢= 1, as can easily be verified by noting
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that g/(1 — ¢ = 1.22. We must add the demand of the agent who is
born at time 1 and the demand of the agent who is old at time 1:

q

b=

=26 =2+

q

x¥=1+1+[q+q2+q5+---]=2+]

{assuming g < 1)

value of Tand

g =055

xt=24-Tm232
L1
x| =§(3+q):1.78

1
X = 5(3 +q)=3.22
r=1/g-1=(1/0.55)-1=82%.

Taking advantage of the Fisher capital value equation that the land
price must be equal to the present value of its dividends, we can
immediately translate this Walrasian equilibrium into a temporal OLG
equilibrium: (p, Ty = (1, 1.22) for all t= 1.

IIT B.3 Land Restores Marny Two-Period Lessons

Adding land solves several problems. First, Pareto optimality is
restored. Second, the value of every durable good is equal to the
present value of its dividends. Third, we can imagine that trades take
place between living agents, that is, we do not need a mythical
market where all of the generations of consumers trade all of the
goods simultaneously. Fourth, the interest rate is positive. And last,
but not least, the rate of interest is determined by impatience and by
the other factors mentioned earlier. (This last observation seems to
be new.)

IIT.C What Determines the Rate of Interest

If in Example 4 we make each generation more impatient, the real
rate of interest will go up. Taking U{(x, x.) = logx, + 0.5log x,,, we
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get r=139%. If we increase the productivity of the land, the rate of
interest will go up. For example, if we take [ = 2, then r= 154%. If
we increase the endowment when young, the rate of interest will go
down. For example, if we take e/ = 6, we get = 38%.

Thus the determinants of the rate of interest that we saw already
in the two-period model affect the rate of interest in same way in
OLG with land. We can prove this in a more general situation.

Before stating the next theorem, let us observe that in any station-
ary OLG equilibrium with productive land, the old agents at time
1 will consume their endowments of goods, plus all the dividends
of land (since they own all the land), plus the goods obtained
by selling off their land. From stationarity, it follows that in every
period the old collectively will eat more than the sum of their old
endowments.

.G 1 Impatience Theorem in OLG with Land

Theorem Consider any stationary OLG economy with productive
land > O such that Ux, xu) = t'(x) + 8u'(x.,), where 1’ is
strictly concave, increasing, and twice differentiable, for all th € H.
Suppose that in a stationary equilibrium every old ageni consumes
more than his old endowment, and every young agent consumes some-
thing positive. Then more impatience (decreasing any &) implies a
higher interest rate, as does higher productivity of land (greater f), as
does increasing any old endowment ef, or lowering any young
endowment e},

Proof In stationary equilibrium, we must have that

z(g)+ z.0q) - £ =0,

where the functions (z(q, z(g) also implicitly depend on
(8, ef, edpenr Under the hypotheses of the theorem, we shall show
that around the equilibrium, the left-hand side is differentiable in
(g, (&, €7, epesp and decreasing in ¢. The implicit function theorem
then tells us that any perturbation to the left-hand side of the above
equation will move equilibrivm ¢ in the same direction and move
equilibrium #= 1/~ 1 in the opposite direction.
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Yrom elementary consumer demand theory, we know that the indi-
vidual excess demands (z¥(g), z¥(@) are differentiable in all the
parameters at the equilibrium g (since they are positive there and
since the utilities are twice differentiable). Let us define the Hicksian
and Marshallian demands around the equilibrium price g. First we set
7= UNxi(g), x4 g), and 1" = ef + gef. Then the Hicksian excess

demands 2"(§) = argmaxix + Gx:U%x, x) 2 7 — (ef, e
Cx, %z}

and the Marshallian excess demands z"(g, [) = arg max{U/%(x,, x):
(a1, x2)

X + §x < Y = (e}, e are differentiable at ¢ = g, [* = I From
Slutsky’s equation, we know that we can decompose the derivative
of any individual excess demand into a Hicksian term and an income-
effect term

dzilg) _ 9zi"lq) _9z1"(g. I")

h
aq dq or z:()
ozNq)  0z0"(g) dzPM(g. 1) ,
= - z;(q),
oq dg ol

where the first term on the right-hand sides 0z}"(g)/dq is the Hick-
sian or compensated demand of agent A, and dz/"(g, I")/dl is the
income-effect term. We know that Hicksian own effects are negative,
50 9z (g)/dg < 0. We also know that Hicksian demand keeps utility
constant, so

dzi"q)  d="(q)
+q =
dq oq

0.

Since in stationary equilibrium g < 1, it follows that

oz g)  9z}"(g)
gy + 5 < 0.

From the fact that utility is additively separable, we know that
demands are normal, dz(q, I")/dI > 0, for i= 1, 2. By hypothesis,
we have that the old consume more than their endowments, so z4
(g} > 0. Therefore
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i21lq) 32l
q dq

dztq) 9z"(q) dz{Mig. 1) , . 9z3"(g,1")
= + - Z; (Q') T
aq aq af ol

z¥g) <0

when evaluated at equilibrium g Adding over all the agents in H, it
follows that

dz(q) azz(‘f)
aq + aq < 0.

It follows from the implicit function theorem that increasing -f
necessarily decreases g=1/(1 + #) and thus increases the interest rate.

Increasing the impatience of some consumers makes them want to
eal more today. But at the same prices, that means their total con-
sumption over time must decrease, since the value of future con-
sumption is less (g < 1). Hence to restore equilibrium, g must fall and
interest rates must rise.

Finally, switching young endowment to old endowment reduces
income at the old prices (since g < 1), thus reducing demand when
young and old, but not affecting total supply (which is the sum of
endowment when young and old). Hence to restore market clearing,
4 must again fall and interest rates rise. A similar argument can be
given if endowments when young or old are changed separately.

The proof that more impatience raises the interest rate can be proved
under weaker hypotheses in the case of OLG with land than it was
in the two-period case. Far from contradicting Fishers impatience
theory of interest, OLG economies confirm it more emphatically.

Notes

1. See Dimand (1999),

2. Thus in equilibrium we would have an interest rate that lies between
what would have prevailed with just agent 4 and the interest rate that would
have prevailed had the economy consisted only of agent B, but closer to the
former because A is richer.

3. Although it is not important for us, it is also true that demand for
good 1 is decreasing in g. The excess demand for the second good is given
by
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STk Jorrewl 3 -5l
Zl(q)_1+6"‘[4+4q+n(q)] 1+o°Ls 87])7

1 @
feeors] (13

Note that the extra term coming from production satisfies

M /g— flklg) =
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which is clearly decreasing in g. Thus excess demand in our example satis-
fies gross substitutes. But for some other utility functions, z;(g) would not
have been decreasing in g and gross substitutes would fail. However, with
Cobb-Douglas utilities, no matter what concave, smooth production function
we chose, we would find that z(g) increases in 4.

4. Another important point is that in all these economies the Fisher equi-
librium was not Pareto efficient. Welfare is improved if every young person
gives the contemporaneous old A > ( goods, much as happens in the U.S.
pay-as-you-go Social Security system. Samuelson once regarded this as a pow-
erful argument in favor of the U.S. Social Security system.

5. This proof works by arguing that if all agents could be made better off
by an alternative allocation, this alternative allocation would cost more o
each agent than his endowment; otherwise, he would have bought it. Adding
over all agents, the cost of the aggregate consumption of the new allocation
must be more than the aggegate value of endowments if both numbers are
finite, contradicting the feasibility of the new allocation. When aggregate
endowments have infinite value, this proof fails. (In the equilibria of Exam-
ples 1-3, the value of the aggregate endowment was infinite.)

6. Consequently, the rationale for Social Security must come from
elsewhere.

7. Otherwise, the owners of the asset would spend more on consump-
tion goods than the value of their endowments of consumption goods. Adding
over all agents, we would get that total expenditure on consumption goods
is greater than the total value of consumption goods, since the latter is finite,
contradicting market clearing.

8. The latter is true because as the price of the second good goes to 0,
holding fixed the price of the first good at 1, income is still bounded
away from 0. Hence the monotonic agent will demand arbitrarily more
of the second good, while the demand for the first good must remain
nonnegative.,
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