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Summary. We argue that real uncertainty itself causes long-run nominal inflation.
Consider an infinite horizon cash-in-advance economy with a representative agent
and real uncertainty, modeled by independent, identically distributed endowments.
Suppose the central bank fixes the nominal rate of interest. We show that the equilib-
rium long-run rate of inflation is strictly higher, on almost every path of endowment
realizations, than it would be if the endowments were constant.

Indeed, we present an explicit formula for the long-run rate of inflation, based on
the famous Fisher equation. The Fisher equation says the short-run rate of inflation
should equal the nominal rate of interest less the real rate of interest. The long-run
Fisher equation for our stochastic economy is similar, but with the rate of inflation
replaced by the harmonic mean of the growth rate of money.
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1 Introduction

Our goal is to understand the behavior of prices and money in a simple, station-
ary economy with exogenous production subject to independent and identically
distributed shocks. We show that there is a unique, neutral stationary equilibrium,
both for the case when the economy has no loan market and also when there is a
central bank that sets an interest rate ρ, the same for both savers and borrowers. If
the economy has no loan market, then the money supply remains constant and, in
equilibrium, prices are independent and identically distributed.

For the economy with a central bank, inflation (or deflation) is possible. We
calculate exactly the long-run rate of inflation as a function of the interest rate ρ
and the distribution of the random shocks. Surprisingly, we find that larger pro-
ductivity shocks lead to higher long-run inflation. We couch our analysis in terms
of a representative agent with an arbitrary concave utility function u(·), a single
good, and independent, identically distributed endowments. We prove that there is
a unique neutral, stationary equilibrium, and derive explicit formulae for it.

According to the famous Fisher equation, the rate of inflation should depend
on the monetary rate of interest and on the time-preference of the agents, and on
nothing else. In a nonstochastic, stationary economy, this is precisely the case:

pn+1

pn
=
mn+1

mn
= β(1 + ρ). (1.1)

Here β denotes the discount rate of the agents (its reciprocal is the rate of time-
preference), 1+ρ denotes the gross monetary rate of interest, pn is the price on day
n, andmn is the money supply on day n. If the central bank sets the rate of interest
(the same for borrowers and for depositors) equal to the rate of time-preference for
agents, the equilibrium rate of inflation and of monetary growth will be zero.

In a stochastic stationary economy with well-informed agents, who know the
value of their endowment before deciding on expenditures, no simple formula like
(1.1) can hold at each moment in time. Indeed, denoting consumption at time n by
Yn, we must have that

u′(Yn)
pn

= (1 + ρ)β · E
[
u′(Yn+1)
pn+1

]
,

and since Yn+1 and pn+1 are not independent, one cannot hope for a clean expres-
sion for E[pn+1/pn]. However, in our stochastic economy we do derive a precise
formula for the long-run rate of inflation limr→∞[ r

√
pn+r/pn]. A Fisher-like equa-

tion still holds, but with the one-period rate of inflation replaced by the harmonic
mean of the one-period money growth rate, giving an inflationary bias:

lim
r→∞

r

√
pn+r

pn
>

{
E

[
mn

mn+1

]}−1

= β(1 + ρ) almost surely. (1.2)

In case β(1+ρ) = 1, the harmonic mean ofmn+1/mn, the gross rate of monetary
growth, is one. As long as there is any random variation in the rate of monetary
growth, its geometric mean must therefore be greater than one. With independent
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draws, the law of large numbers guarantees that the long-run (geometric) growth
rate of the money supply is greater than one, on almost every path. Since the long-
run rate of inflation must be equal to the long-run rate of growth of the money
supply, this shows that when β(1+ρ) = 1, the slightest bit of monetary fluctuation
typically1 creates an inflationary bias, irrespective of the utility function of the
representative agent.

There is some historical evidence that periods of stable output are associated
with low inflation. Our analysis linking inflation with real uncertainty provides a
modest reason for that empirical association. On the other hand, it can easily be
shown in our model that money cannot grow faster than the nominal interest rate,
and hence the long-run inflation is bounded from above by 1 + ρ. The inflationary
bias is therefore at most (1−β)(1+ρ), which should be small, since β is ordinarily
close to 1. We give a precise formula in Section 4. A bigger inflationary bias from
real uncertainty might be generated in a model in which the central bank adjusts
the interest rate, but we do not pursue that question here.

Suppose that physical endowments Yn are independent and identically dis-
tributed (iid) and that Y u′(Y ) is not constant, where u′(Y ) is the marginal utility
of consumption. We show that no matter what fixed interest rate ρ the central bank
maintains, monetary stocks mn and prices pn must fluctuate unboundedly. Even if
Y takes on just two values, prices pn will eventually become unboundedly large
or small, or both. Only by active management, making ρ a function of the physical
endowment Y , can the central bank ensure that prices will stay bounded. Even such
an active bank, however, cannot maintain absolutely fixed price levels pn = p for
all n.

We show that if agents do not know their endowment before they are called
upon to commit themselves to expenditures, then the original Fisher equation is
restored irrespectively of the agents’ utility function, and setting the rate of interest
equal to the rate of time preference will result in an expected rate of inflation equal
to zero.

Our model is in the spirit of the representative agent approach of Lucas (1978);
we use dynamic programming methods in a microeconomic model of money, in the
tradition of Shubik (1972), Shubik and Whitt (1973), Lucas (1980, 1990), Lucas
and Stokey (1983), Stokey and Lucas (1989), Woodford (1994), and Karatzas,
Shubik and Sudderth (1994). The microeconomic tradition of analyzing policy and
money in a market-clearing model is vast; see, for example, Phelps (1967, 1970,
1973), Kydland and Prescott (1977), Barro (1990), Chari et al. (1991), Mankiw
(1992), Sargent (1987, 1999), Alvarez, Lucas and Weber (2001), and Dubey and
Geanakoplos (1992, 2003). To the best of our knowledge, however, the connection
between real uncertainty and long-run inflation addressed in this paper seem to be
treated here for the first time. The model of Lucas (1990), for instance, is extremely
close to ours, but analyzes the case where the central bank interest rate is random
and output is fixed. Models of Mehra and Prescott (1985), Weil (1992) and others

1 The sole exception occurs when there is no variation in the rate of growth of the money supply. We
show that this can only happen if yu′(y) is constant over all random endowments y. Thus logarithmic
utility turns out to be the exception to our inflationary bias paradigm, rather than the archetypical example
it often is in other contexts.
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examine the real interest rate, that is, the interest rate on bonds that pay one unit of
good in each period. They find that real uncertainty might increase or decrease the
real rate of interest, depending on the third derivative of utility.

There are precedents for our conclusion that prices must wander to either infinity
or to zero no matter what fixed nominal interest rate ρ the central bank fixes.
For example, Matsuyama (1991) showed that even for a nonstochastic economy,
cyclical or chaotically fluctuating prices are possible. (But that is in a nonstationary
equilibrium.)

An alternative generalization of the Fisher equation to stochastic economies
is derived for models with exogenous prices by Benninga and Protopapadakis
(1983) and Sarte (1998). These authors express the one-period deviation for the
classic equation in terms of the covariance between the ratio of marginal utilities
u′(Yn+1)/u′(Yn), and pn+1/pn.

We derive an explicit formula for the long-run rate of inflation, for arbitrary util-
ityu, iid endowments {Yn}, and nominal interest rateρ, without any approximation.
Over the last decade it has become fashionable to investigate the properties of mon-
etary economies by using log-linear approximations around the riskless steady state
economy (see, for example, Woodford, 2004). We have been able to avoid the need
for such shortcuts by confining our attention to a representative agent economy. We
do not know how to compute explicit formulas for heterogeneous agent economies.
We also confine our attention to (what we prove) is the unique neutral stationary
equilibrium, ignoring sunspot equilibria and nonstationary equilibria. These latter
are studied in Woodford (1994) in an economy without real uncertainty.

Lastly, we note that our interest rate pertains to the trading period; an agent who
wishes to sell in order to raise the revenue to make a simultaneous purchase must
borrow the money at rate ρ. This embodies a genuine cash-in-advance constraint.

1.1 Preview

The derivation of the harmonic Fisher equation (1.2) will be undertaken in a com-
pletely specified general equilibrium model with a representative agent. It may be
instructive to see briefly how to derive the harmonic Fisher equation in a reduced-
form model based on two premises, stationarity and money-neutrality. First, we
suppose that prices at time n are proportional to the supply of money at time n,
namely

pn = p(Yn)mn (1.3)

for an appropriate function p(·) to be determined (see equation (4.6′)), where Yn

is the random endowment of the perishable good at time n. Secondly, we suppose
that the money supply at time n + 1 is proportional to the supply at time n, with
a proportionality constant that depends only on the random endowment at time n,
namely

mn+1 = τ(Yn)mn (1.4)
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for an appropriate function τ(·), to be determined (see equation (4.8)). In equi-
librium, the agent is indifferent between spending a dollar on consumption and
depositing it in the bank with interest to consume during the next period:

u′(y)
pn

= β(1 + ρ) · En

[
u′(Yn+1)
pn+1

]
, on {Yn = y}.

Here and in the sequel, En[·] = E[·|Fn] denotes conditional expectation with
respect to the information Fn available to agents at timen; this information includes
Yn and mn. Substituting for pn, pn+1 and mn+1, gives

u′(y)
p(y)mn

= β(1+ρ) · En

[
u′(Yn+1)

p(Yn+1)mn+1

]
= β(1+ρ) · En

[
u′(Yn+1)

p(Yn+1)τ(y)mn

]
=
β(1 + ρ)
τ(y)mn

· En

[
u′(Yn+1)
p(Yn+1)

]
, on {Yn = y}.

Let z(y) � u′(y)/p(y). Cancelling mn from both sides, bringing τ(y) to the left,
and then inverting both sides, gives

1
τ(y)

=
1

β(1 + ρ)
z(y)

En[z(Yn+1)]
, on {Yn = y}.

Assuming that theYn+1 is independent of Fn for alln ≥ 1, and taking expectations,
we obtain

E

[
mn

mn+1

]
= E

[
1

τ(Yn)

]
=

1
β(1 + ρ)

E[z(Yn)]
E[z(Yn+1)]

=
1

β(1 + ρ)
, (1.5)

because Yn and Yn+1 have the same distribution. This is the harmonic Fisher equa-
tion of (1.2).

2 Equilibrium

2.1 The model

We consider a representative agent model extending over days or time-periods
n = 1, 2, .... On each day the agent receives a random endowment Yn(ω) of a single
perishable commodity, where Yn is a random variable on a given probability space
(Ω,F ,P) andω is an element ofΩ. The random variablesY1, Y2, ..., corresponding
to the successive random endowments of the agent, are assumed to be independent
with a common distribution λ. We often use Y with no subscript to denote a generic
random variable with this distribution. We further assume that the support Y of the
endowment variables is bounded away from both zero and infinity.

The total payoff to the agent in state ω from consumption (x1(ω), x2(ω), ...) is

∞∑
n=1

βn−1u(xn(ω)),
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where β ∈ (0, 1) is the discount factor and the utility function u : R+ → R is
concave, strictly increasing, and differentiable on (0,∞).

The agent in the economy must sell his entire endowment Yn(ω) for money in
each period n at price pn(ω), thereby receiving pn(ω)Yn(ω) units of fiat money. He
consumes only by purchasing commodities with the money he already has on hand
(cash in advance). The monetary prices of the commodity are random variables
(p1(ω), p2(ω), ...). The agent regards himself as so small as to be unable to affect
these prices by his actions.

In period 1 the agent begins with a quantity of fiat money m1 (his “liquid
wealth”). A governmental central bank stands ready to loan or borrow money at a
given interest rate ρ ≥ 0. The agent can lend an amount up to m1 or borrow up to
a limit L1(ω) that we shall specify. Having chosen to borrow or lend m̃1(ω) with
−m1 ≤ m̃1(ω) ≤ L1(ω), the agent spends b1(ω) = m1 + m̃1(ω) on commodities
and consumes the amount x1(ω) = b1(ω)/p1(ω). At every subsequent period
n = 2, 3, ..., the agent begins with liquid wealth

mn(ω) = (1 + ρ)[mn−1(ω) − bn−1(ω)] + pn−1(ω)Yn−1(ω) (2.1)

and by choosing to borrow or lend m̃n(ω), with −mn(ω) ≤ m̃n(ω) ≤ Ln(ω), the
agent spends bn(ω) = mn(ω)+m̃n(ω) and consumes xn(ω) = bn(ω)/pn(ω). For
notational simplicity we shall avoid using m̃n and xn, since they are determined at
every stage by bn and pn.

2.2 Equilibrium

At the beginning of period n, the agent knows the interest rate ρ, the past and
present values of liquid wealth m1,m2, ...,mn−1,mn; prices p1, p2, ..., pn−1, pn;
and endowments Y1, Y2, ..., Yn−1, Yn. (Notice that the agent is assumed to know
pn and his endowment Yn for period n at the beginning of the period. Eventually
we shall consider a model in which the agent does not know either pn or Yn when
he chooses his bid in the period.) The agent must choose his bid bn in period n to
be a function of these variables, or, equivalently, to be measurable with respect to
the sigma-field Fn generated by them.

The agent’s budget set is

B(m1, p, L, ρ) = {bn(ω) : 0 ≤ bn(ω) ≤ mn(ω) + Ln(ω) for almost all ω ∈ Ω

and bn is Fn-measurable, for all n ≥ 1}, (2.2)

wheremn is determined by (m1, ρ, p1(ω), ..., pn−1(ω); b1(ω), ..., bn−1(ω);Y1(ω),
..., Yn−1(ω)) as in (2.1) above. Thus, the random interval [0,mn(ω) + Ln(ω)]
corresponds to the set of actions available to the agent in period n.

The economy is in equilibrium at {pn(ω) : n ≥ 1, ω ∈ Ω}, if the representative
agent is optimizing in his budget set while consuming Yn(ω), for all n ≥ 1. More
precisely, letting

b∗n(ω) ≡ pn(ω)Yn(ω) for all n ≥ 1, ω ∈ Ω, (2.3)
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the sequence {b∗n(ω) : n ≥ 1, ω ∈ Ω} attains the maximum of

E

[ ∞∑
n=1

βn−1u(bn(ω)/pn(ω))

]

over the set B(m1, p, L, ρ) of (2.2).
We distinguish two cases for the borrowing limits Ln(ω). Setting

Ln(ω) =
pn(ω)Yn(ω)

1 + ρ
, (2.4)

we get an economy with a bank that permits the agent to borrow up to the amount
he is sure to receive in income. By setting Ln(ω) = 0 and ρ = 0, we effectively
obtain an economy without a central bank.

In the following two sections we construct equilibria for each of these two cases.
Afterwards we shall consider a model in which the bank chooses an interest rate
ρn(ω) in period n that need not be constant. We shall also construct equilibria with
and without a bank, for the case in which the agent does not know his endowment
Yn(ω) or the price pn(ω) when he is called upon to borrow and bid at time n.

We are primarily concerned with the behavior of the prices pn(ω). For the
models with a bank we shall give conditions on the interest rate ρ that result in
inflation, deflation, or neither. Consumption in our models is trivial in equilibrium,
with the agent consuming his endowment Yn(ω) in each period n.

2.3 Neutral, stationary equilibrium (NSE)

We shall focus our attention on stationary equilibria in which prices pn(ω) and
bids on expenditures bn(ω) at time n can all be expressed in terms of functions
P : R++ × Y → R and B : R++ × Y → R that depend only on the liquid wealth
mn(ω) and the endowment Yn(ω) in the period, namely

pn(ω) = P(mn(ω), Yn(ω))
bn(ω) = B(mn(w), Yn(ω)). (2.5)

The liquidity constraints Ln(ω) at time n can be expressed as a function

Ln(ω) = L(Yn(ω), pn(ω)) (2.5′)

of current endowment Yn(ω) and price pn(ω), where L : Y × R++ → R is given
by

L(y, p) =


p · y
1 + ρ

, if there is a bank

0 , if not

 . (2.6)
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In fact, we shall construct stationary equilibria in which fiat money is neutral
(doubling the liquid wealth doubles prices and bids without changing consumption):

pn(ω) = mn(ω) p(Yn(ω))
bn(ω) = mn(ω) b(Yn(ω)) (2.7)

where p : Y → R++ and b : Y → R++ are given functions. Clearly in equilibrium
we must have

b(y) = p(y)y, for all y ∈ Y , (2.3′)

from (2.3). It is evident from the monotonicity of u that there can be no equilibrium
in which pn(ω) = 0 happens with positive probability for some n ≥ 1. Hence in
neutral stationary equilibrium we must have b(y) > 0 and p(y) > 0 for all y ∈ Y ,
and mn(ω) > 0 almost surely, for all n ≥ 1.

2.4 Dynamic programming

In neutral, stationary equilibrium the macroscopic variables (m, y, p) follow a sta-
tionary Markov process defined by the price function P(m, y) = mp(y). Let Γ
be the graph of the function P , namely Γ = {(m, y, p) ∈ R++ × Y × R++ :
P(m, y) = p}. Then the law of motion of the macroscopic variables is given by
the transition mechanism Γ → ∆(Γ ) indicated below for each (m, y, p) ∈ Γ :

m′ = (m− py)(1 + ρ) + py

= m(1 + ρ) − ρpy

= m(1 + ρ− ρb(y))
y′ ∈ Y , distributed as Y

p′ = P(m′, y′) = m′p(y′). (2.8)

Note thatm′ is determined without any uncertainty by (m, y, p), whereas y′ and p′

are stochastic. Note also that in order to have m′ > 0, we must impose

b(y) = P(m, y)y/m < (1 + ρ)/ρ, for all y ∈ Y.

Facing this dynamic system, the representative agent with liquid wealth smust
choose an expenditure rule at each macroscopic state (m, y, p) to maximize his
utility. In stationary equilibrium, when s = m, the expenditure rule (s,m, y, p) �→
py must be optimal.

In this case there must be a value function V : R+ × Γ → R satisfying the
Dynamic Programming Equation

V (s,m, y, p) = max
0≤b≤s+L(y,p)

[
u

(
b

p

)
+β · EY V ((s−b)(1+ρ)+py,m′, Y, p′)

]
(2.9)
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and such that, for all (m, y, p) ∈ Γ and s = m, we have

p · y ∈ arg max
0≤b≤m+L(y,p)

[
u

(
b

p

)
+ β · EY V ((m− b)(1 + ρ) + py,m′, Y, p′)

]
(2.10)

i.e.,

V (m,m, y, p) = u(y) + β · EY [V (m′,m′, Y, p′)]. (2.11)

3 Constructing neutral, stationary equilibrium without a bank

In the absence of a bank we have L(y, p) = 0 and the money supply does not
change, so the representative agent will begin each period with the same liquid
wealth m = m1. We can see that m′ = m by taking ρ = 0 in the law of motion
(2.8).

The representative agent always has the choice of spending his money at time
n, or saving it to spend in the future. In neutral stationary equilibrium, 0 < py ≤ m
for all (m, y, p) ∈ Γ . Hence the agent could spend ε less, saving the money until
next period, and spending it there on consumption. In equilibrium it is optimal for
him not to do so, giving in the notation of (2.8):

u′(y)
p

≥ β · E
[
u′(Y )
p′

]
for all y ∈ Y. (3.1)

If py < m, the agent can spend ε more (and then ε less next period), giving the
opposite inequality. Succinctly combining these observations gives

[1 − yp(y)] ∧
[
u′(y)
p(y)

− β · E
[
u′(Y )
p(Y )

]]
= 0, for all y ∈ Y . (3.2)

(The notation a ∧ b is used here and below for the minimum of a and b.)
We must find a function p (or equivalently b) such that (3.2) is satisfied.
One natural (but generally insufficient) guess is that the agent will spend all

his money in every period, namely B(m, y) = m, b(y) = 1, P(m, y) = m/y,
p(y) = 1/y. Plugging this candidate p(y) = 1/y into (3.2) gives

yu′(y) ≥ β · E[Y u′(Y )] (3.3)

for all y ∈ Y . This indeed is an equilibrium if yu′(y) is a constant (as it will be for
u(y) = log(y)). But if there is enough variation in yu′(y) over y ∈ Y , then (3.3)
will fail for some y, and p(y) = 1/y will not give rise to an equilibrium.

Another plausible (but insufficient) guess, is to set price always proportional to
marginal utility, namely p(y) = 1

au
′(y) for some constant a > 0, for all y ∈ Y .

But plugging this into (3.2) gives a strictly positive second term on the left-hand
side, for all y ∈ Y , implying that p(y) = 1/y, b(y) = 1 for all y ∈ Y . Hence we
must have then 1/y = u′(y)/a or yu′(y) = a for all y ∈ Y , which can happen
if u is logarithmic or if there is no endowment uncertainty. In general, however,
p(y) = u′(y)/a is also insufficient.
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Let a ≡ βE[u′(Y )/p(Y )].Any solution p(y) to (3.2) must make either the first
term or the second term on the left equal to zero, for all y ∈ Y . Hence p(y) can take
on only two possible values, 1/y oru′(y)/a. If yu′(y) < a, then clearlyp(y) = 1/y
will not work (since the second term would be negative), hence p(y) = u′(y)/a.

Suppose now that yu′(y) > a. Since the first term on the left is nonnegative,
p(y) ≤ 1/y. Hence u′(y)/p(y) ≥ yu′(y) > a making the second term positive.
Thus we must have p(y) = 1/y.

If yu′(y) = a, then both choices for p(y) are the same. In summary

p(y) =


1/y , for yu′(y) ≥ a

u′(y)
a

, for yu′(y) < a

 =
(

1
y

∧ u′(y)
a

)
. (3.4)

Observe that p(y) depends on a, namely, is of the form pa(y) =
min{1/y, u′(y)/a}. Plugging this into the definition of a, we get

a = β · E[max{a, Y u′(Y )}]. (3.5)

It is evident that at a = 0, the right-hand side of (3.5) dominates the left, since
Y u′(Y ) > 0 for all Y ∈ Y , while for a > 0 very large the left-hand side of
(3.5) dominates the right since β < 1 and E[Y u′(Y )] < ∞. Hence there must
be an a ∈ (0,∞) solving (3.5). Indeed, it is evident that near any a solving (3.5),
the right-hand side increases less quickly in a than the left, so there is a unique
a ∈ (0,∞) solving (3.5).

Theorem 3.1. With a ∈ (0,∞) defined as in (3.5), the function p of (3.4) gives
rise to a neutral stationary equilibrium for the economy without a bank. This is the
unique neutral stationary equilibrium.

Proof. This candidate equilibrium uniquely satisfies (3.2) by construction. We
leave to the Appendix the proof that the implied bidding strategy b∗n(ω) ≡
m1p(Yn(ω))Yn(ω) is optimal in the representative agent’s budget set. 	


In the equilibrium just constructed, liquid wealth remains constant at m1, bids
are given as

bn(ω) = b(Yn(ω)) ·m1, where b(y) ≡ yp(y) = min
(

1,
yu′(y)
a

)
(3.6)

and prices fluctuate independently and identically across periods, according to the
rule

pn(ω) = P(m1, Yn(ω)) = min
{

1
Yn(ω)

,
u′(Yn(ω))

a

}
m1. (3.7)

No matter what the discount rate β, there is no inflation. If the endowment random
variable Y is bounded away from zero and infinity, so are the prices.

In the special case where there is no real uncertainty, Yn(ω) = ȳ for all ω
and yu′(y) = ȳu′(ȳ) for all y ∈ Y , (3.3) shows that in the unique equilibrium
pn(ω) = m1/ȳ for all ω, and bn(ω) = m1 for all ω. The agent always spends all
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his liquid wealth every period on goods. He wishes he could spend more, but since
he cannot borrow, he is unable to do so.

Even when there is uncertainty, if utility u is logarithmic, (3.3) shows that
pn(ω) = m1/Yn(ω) for all ω and again the agent spends all his money each
period: bn(ω) = m1 for all ω.

In general, we see that with positive probability pn(ω) = m1/Yn(ω); the agent
spends all his money and wishes he could borrow (at zero interest) and spend more.

4 Constructing neutral, stationary equilibrium with a bank

In the presence of a central bank, there may well be inflation. We wish to study how
inflation depends on the bank interest rate ρ and on the real economy.

In the presence of a central bank that maintains a constant interest rate, the
money supply is endogenous and the representative agent may well begin each
period with different liquid wealth. We suppose that the bank stands ready to accept
deposits or give loans at an exogenous interest rate ρ > 0. We shall construct a
neutral stationary equilibrium (b,p). From the law of motion (2.8) we have

m′ = τ(y)m

p′ = m′p(y′) =
m′b(y′)
y′ (4.1)

where

τ(y) ≡ 1 + ρ− ρb(y) ≤ 1 + ρ for all y > 0. (4.2)

As noted earlier, neutrality implies that the growth rate τ of liquid wealth be-
tween periods n− 1 and n depends only on Yn−1, and therefore that mn is Fn−1-
measurable.

Note that as long as b(y) ≤ (1 + ρ)/ρ, the agent’s borrowing constraint is
satisfied; and as long as b(y) < (1 + ρ)/ρ, his future liquid wealth stays strictly
positive, which is necessary in neutral, stationary equilibria.

In neutral, stationary equilibrium, if there is one, the agent could always have
borrowed (deposited) a little more or a little less. Hence we must have

u′(y)
p

= (1 + ρ)β · E
[
u′(Y )
p′

]
, for all y ∈ Y . (4.3)

(This is the analogue to equation (3.1) when there was no bank.) Plugging in our
formulas for p and p′, and recalling mb(y) = py, gives

yu′(y)
mb(y)

= (1 + ρ)β · E
[
Y u′(Y )
m′b(Y )

]
=

(1 + ρ)β
τ(y)m

· E
[
Y u′(Y )
b(Y )

]
, for all y ∈ Y . (4.4)
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Cancelling m from both sides, and using (4.2), we have

yu′(y)
b(y)

=
(1 + ρ)β

1 + ρ− ρb(y)
· E

[
Y u′(Y )
b(Y )

]
, for all y ∈ Y. (4.5)

Note that ρ > 0 is now necessary for the existence of neutral, stationary equi-
librium with a bank. Indeed, if ρ = 0, then by (4.1), τ(y) = 1 for all y, giving
yu′(y)/b(y) = βE[Y u′(Y )/b(Y )] for all y ∈ Y , by (4.4). Integrating with respect
to the distribution λ of Y on both sides we obtain a contradiction to β < 1.

Lemma 4.1. If ρ > 0, there is a unique function b : Y → R+ that simultaneously
satisfies the optimality condition (4.4) and the condition 0 < b(y) < (1 + ρ)/ρ
for all y ∈ Y:

b(y) =
1 + ρ

ρ

[
(1 − β)yu′(y)

(1 − β)yu′(y) + βE[Y u′(Y )]

]
, y ∈ Y. (4.6)

Theorem 4.2. Defining b(y) as in (4.6), and letting P(m, y) = mb(y)/y and
B(m, y) = mb(y), gives the unique neutral, stationary equilibrium for the econ-
omy with a bank that sets the interest rate equal to ρ in every period. In particular

p(y) =
b(y)
y

=
1 + ρ

ρ

(1 − β)u′(y)
(1 − β) · yu′(y) + β · E[Y u′(Y )]

, y ∈ Y. (4.6′)

The proofs are given in the Appendix.
Having described the unique neutral, stationary equilibrium, we now proceed

to study the growth rate of liquid wealth and price. When there is no uncertainty,
and Y = {ȳ}, formulas (4.6), (4.6′), and (4.2) become

b(ȳ) =
(1 + ρ)(1 − β)

ρ

p(ȳ) =
(1 + ρ)(1 − β)

ρȳ

τ(ȳ) = 1 + ρ− ρb(ȳ) = β(1 + ρ).

It follows that

pn(ω) = mnp(ȳ) = m1[τ(ȳ)]n−1p(ȳ) = βn−1(1 − β)
m1

ȳ

(1 + ρ)n

ρ
.

The rate of inflation is then

pn+1(ω)
pn(ω)

= β(1 + ρ),

which is the classical Fisher equation.
Clearly, increasing the interest rate ρ gives a higher growth rate to prices. An

interesting point is that by choosing a higher ρ the central bank will start the
economy at a lower initial price p1 = [(1 − β)(1 + ρ)/ρȳ]m1, but eventually
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Figure 1. Certainty case

the price level will become higher. If ρ′ > ρ, then letting p′
n denote the price level

with interest rate ρ′, we get

p′
n(ω)
pn(ω)

=
(1 + ρ′)n

(1 + ρ)n

ρ

ρ′ .

(As we observe in Corollary 4.8 below, this formula continues to hold when we do
have real uncertainty.) Going from ρ = 3% to ρ′ = 6% will cut the initial price
level almost in half. If β = .99, then after about 14 periods the price level will be
back to where it would have been at time 1, and after 24 periods the price level with
ρ′ = 6% will have caught up to where it would be with ρ = 3%.

The “natural” choice for the central bank interest rate is 1+ρ = 1/β.When there
is no uncertainty, the standard Fisher equation shows that this natural ρ generates
zero inflation.

We also can look at expected growth rates of money and prices when there is
real uncertainty. It turns out that the harmonic mean of money growth is β(1 + ρ),
as it was in the certainty case. Since along a path the growth rate is measured by the
geometric mean, which is higher than the harmonic mean, it follows that uncertainty
introduces an inflationary trend into observed price changes.

Theorem 4.3 (Harmonic Fisher Equation). In neutral, stationary equilibrium
the expected gross rate of future money growth has harmonic mean β(1 + ρ):

E

[
1

τ(Y )

]
=

1
β(1 + ρ)

= En

[
mk

mk+1

]
(ω), (4.7)

for all k > n and almost all ω ∈ Ω. In particular, if (1 + ρ)−1 = β, the harmonic
mean of gross future money growth is one.

Proof. An argument for this result was presented in the Introduction. (Notice that
(1.5) corresponds to the conclusion of the theorem. The argument for (1.5) in
Section 1 was based on (1.3) and (1.4), which correspond to (4.1).)
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Here is an alternative argument, based on the formula

τ(y) = β(1 + ρ)
E[Y u′(Y )]

(1 − β)yu′(y) + βE[Y u′(Y )]
(4.8)

which follows from (4.2) and (4.6) by trivial algebra. Invert both sides of (4.8) to
get a formula for 1/τ(y). Then integrate with respect to the distribution of Y to
obtain (4.7). 	


The standard Fisher equation relates the rate of inflation to the short-run nominal
and real interest rates (which in a risky steady state are the same as the long-run
real and nominal interest rates). With uncertainty, the short-run real rate of interest
in any period n will fluctuate, depending on the realization of Yn. The real rate of
interest ρ̄r in period r will similarly fluctuate, solving

u′(Yn) = (1 + ρ̄r)rβrE[u′(Yn+r)].

Since the random variable {Yn} are iid and bounded from above and away from
zero, limr→∞(1 + ρ̄r) = 1/β will hold a.s. Thus, our harmonic Fisher equation
relates the growth rate of the money supply to the long-run nominal and real interest
rates.

We just saw that when Y is almost surely constant (so Y consists of a single
point), the classical Fisher equation holds. Surprisingly, the same formula is restored
even with real uncertainty, provided that utility is logarithmic. We get:

τ(y) = β(1 + ρ), ∀y ∈ Y
from (4.8), if y �→ yu′(y) is constant.

Corollary 4.4. If y �→ yu′(y) is constant, then the unique neutral, stationary
equilibrium with a bank satisfies

mn(ω) = m1[β(1 + ρ)]n−1, pn(ω) =
(1 − β)(1 + ρ)m1

Yn(ω)
[β(1 + ρ)]n−1

for all n and almost all ω ∈ Ω.
In particular, provided that β(1+ ρ) = 1, there is no inflationary trend. In that

case, liquid wealth stays constant and prices pn(ω) are iid and bounded away from
both zero and infinity.

But the next two corollaries show that the logarithmic case is very exceptional.
In every other case, there will be inflation with probability one, if the central bank
sets ρ = (1/β) − 1.

Corollary 4.5. Liquid wealth grows at the (continuously compounded) rate
E[log τ(Y )] along almost every path. This is faster than it would grow in the
riskless economy obtained by replacing Yn(ω) with Ȳ for all n and ω, provided
that Y u′(Y ) is not almost surely constant. In the “natural” case, i.e., where the
central bank sets ρ = (1/β)− 1, liquid wealth grows at a strictly positive rate and
limn→∞mn = ∞ almost surely.
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Proof. By repeated application of (4.1), we obtain

mn(ω) = m1

n−1∏
k=1

τ(Yk(ω)), (4.9)

thus also

logmn(ω) − logm1

n− 1
=

1
n− 1

n−1∑
k=1

log τ(Yk(ω)).

By the law of large numbers, (logmn − logm1)/(n− 1) converges almost surely
toE[log τ(Y )]. Now we use the fact that the geometric mean is greater than the har-
monic mean whenever there is nontrivial randomness. Indeed, Jensen’s inequality
with Theorem 4.3 implies

e−E[log τ(Y )] < E[e− log τ(Y )] = E

[
1

τ(Y )

]
=

1
β(1 + ρ)

,

and so E[log τ(Y )] > − logE[1/τ(Y )] = log β(1 + ρ). When β(1 + ρ) = 1, we
get E[log τ(Y )] > 0 and the growth rate of liquid wealth must be positive. Hence
logmn → ∞ almost surely. 	


The random sequence {pn} of prices is more complex than {mn}, the random
sequence of liquid wealth, since pn is a function of Yn while mn is not. Knowing
Yn(ω), the rate of inflation between periods n and n+ 1 depends on Yn+1(ω) and
is not determined simply by τ(Yn(ω)). But since Y is assumed to be bounded away
from both zero and infinity, we can prove that prices grow at the same rate as liquid
wealth in the long run.

Corollary 4.6 (Inflationary bias). Assume that Y u′(Y ) is not almost surely con-
stant. Then on almost every path we will observe a long-run inflation rate higher
than we would have in the same economy without uncertainty (in which Y is re-
placed by its expectation ȳ � E(Y ) =

∫
yλ(dy)). In particular, we have

log(1+ρ) ≥ lim
r→∞

log[pn+r(ω)]− log pn(ω)
r

= E[log(τ(Y ))] > log(β(1+ρ))

for almost all ω, and

1 + ρ ≥ lim
r→∞

r

√
pn+r(ω)
pn(ω)

= eE[log τ(Y )] > β(1 + ρ)

for almost all ω ∈ Ω.
In particular, when β(1+ρ) = 1, we have: limn→∞ pn(ω) = ∞ almost surely.

Proof. From (2.7) and (4.9), we obtain

pn(ω) = p(Yn(ω))mn(ω) = p(Yn(ω))m1 ·
n−1∏
κ=1

τ(Yk(ω)). (4.10)
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Replacing n with n+ r, we get

pn+r(ω)
pn(ω)

=
p(Yn+r(ω))
p(Yn(ω))

·
n+r−1∏

k=n

τ(Yk(ω)), for n ≥ 1.

Take the logarithm of both sides and divide by r − 1. The strong law of large
numbers, the boundedness of p(Y ), and the independence of τ(Y1), τ(Y2), ... gives
the equality. The final inequality follows from the geometric-harmonic comparison,
as in the proof of Corollary 4.5. The first inequality is immediate from (4.2). 	


In view of Corollary 4.6, one would expect that an increase in real uncertainty
will lead to increased long-run inflation. This is the case if by increased uncertainty
we mean that the random variableZ = Y u′(Y ) is replaced by Z̃ = Ỹ u′(Ỹ ), where
the transformation from Z to Z̃ is a mean-preserving spread: E(Z) = E(Z̃).

Corollary 4.7. Suppose that the random variable Z̃ = Ỹ u′(Ỹ ) can be written in
the form Z̃ = Z + ε, where Z = Y u′(Y ) and ε is a random variable such that
the conditional distribution of ε given Z is nontrivial and has mean zero almost
surely. Then E[log τ(Y )] < E[log τ(Ỹ )].

Proof. By Jensen’s inequality,

E[log τ(Y )] − E[log τ(Ỹ )] = E

[
log

(
τ(Y )
τ(Ỹ )

)]
< logE

[
τ(Y )
τ(Ỹ )

]
.

But

E

[
τ(Y )
τ(Ỹ )

]
= E

[
(1 − β)(Z + ε) + βµ

(1 − β)Z + βµ

]
= E

[
1 +

(1 − β)ε
(1 − β)Z + βµ

]
= 1 + E

[
1 − β

(1 − β)Z + βµ
· E(ε|Z)

]
= 1,

where µ = E[Y u′(Y )] = E[Ỹ u′(Ỹ )]. 	

Corollary 4.8. Under the same hypotheses as Corollary 4.6, there exists 0 < ρ∗ <
1/β − 1 such that:

(i) for ρ > ρ∗, limn→∞ pn(ω) = ∞ almost surely, and
(ii) for ρ < ρ∗, limn→∞ pn(ω) = 0 almost surely.

Furthermore, when ρ = ρ∗, we have lim supn→∞ pn(ω) = ∞ almost surely
and lim infn→∞ pn(ω) = 0 almost surely. Thus, no constant interest rate ρ can
keep prices bounded away from both zero and infinity.

Proof. Let us denote by τρ(y) the function of (4.8), to make explicit its dependence
on the parameter ρ. Clearly then,E[log τρ(Y )] is continuous and strictly increasing
in ρ. When ρ = 0 we have τρ(y) < 1 (thus log τρ(y) < 0) for all y, and when
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ρ = 1/β − 1 we have E[log(τρ(y))] > 0, as shown in Corollary 4.5. Hence there
is a unique ρ∗ with

E[log(τρ∗(Y ))] = 0.

By Corollary 4.6, limn→∞ pn(ω) = 0 or ∞, according to weather ρ < ρ∗ or
ρ > ρ∗, respectively. But if ρ = ρ∗, then by (4.9), logmn is a random walk without
drift, and so lim supn→∞mn(ω) = ∞ and lim infn→∞mn(ω) = 0 almost surely.
By Corollary 4.6, the same must be true of pn. 	


It is interesting to note that when ρ is low enough, so that we have both
E[τρ(y)] = 1 and E[log(τρ(y))] < 0, then pn(ω) → 0 almost surely. But
Var(pn) → ∞, so with smaller and smaller probability a price path might shoot to
a higher and higher level, before eventually falling to zero.2

When the central bank changes the interest rates, it affects prices but not real
consumption (since that is always Yn(ω)). It is somewhat surprising to note that
though prices depend on Yn(ω), the price change resulting from different interest
rates does not.

Corollary 4.9. Consider two interest rates ρ and ρ′ with corresponding equilibrium
prices pn(ω) and p′

n(ω). Then

p′
n(ω)
pn(ω)

=
[
(1 + ρ′)
(1 + ρ)

]n
ρ

ρ′

for all ω and all n.

Proof. This follows immediately from (4.10), (4.8), and (4.6′) and their
interaction. 	


5 Model with an active bank

Suppose that we are in exactly the same situation as the one studied in Section 4,
and under exactly the same assumptions, except that now the bank sets an interest
rate ρ(y) ∈ [0,∞) in each period based on the observed value y of the endowment
variable Y in the period, where ρ(Y ) > 0 holds with positive probability. As in the
previous section, we assume that the agent’s expenditure

B(y,m) = b(y)m

2 To see that Var(mn) → ∞ when E[τρ(y)] = 1, observe that

Var(mn) = E(m2
n) − (E(mn))2 = E(m2

n) − m2
1

and

E(m2
n) = m2

1

n−1∏

k=1

E(τ(Yn)2) = m2
1[E(τ(Y )2)]n−1

where
E(τ(Y )2) > [Eτ(Y )]2 = 1.
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is proportional to his liquid wealth m, when the observed endowment value is y.
The old calculation (4.1) shows that

mn+1(ω) = τ(Yn(ω)) mn(ω)

where now the rate of growth of liquid wealth is

τ(y) � 1 + ρ(y) − ρ(y)b(y). (5.1)

We shall construct an equilibrium for this model, which generalizes that of The-
orem 4.2. Then we shall consider the question of whether the bank can select the
interest rates ρ(y) in such a way that prices are bounded away from zero and infinity
for all n. (In the next section, we shall consider the more difficult problem, where
the bank strives to maintain constant prices. We shall conclude that this is typically
impossible to achieve in our models.)

The optimality condition (4.5) is replaced in this section by

yu′(y)
b(y)

=
β(1 + ρ(y))

1 + ρ(y) − ρ(y)b(y)
· E

[
Y u′(Y )
b(Y )

]
, ∀ y ∈ Y . (5.2)

Theorem 5.1. Given the interest rate function ρ(·), with λ{y ∈ Y : ρ(y) > 0} > 0,
there is a unique function b(·) such that equation (5.2) holds, namely

1
b(y)

=
ρ(y)

1 + ρ(y)
+

β

1 − β
· 1
yu′(y)

· E
(

ρ(Y )
1 + ρ(Y )

· Y u′(Y )
)
, y ∈ Y. (5.3)

Defining B(m, y) = mb(y) and P(m, y) = mb(y)/y gives the unique neutral,
stationary equilibrium.

Proof. The proof is similar to the proofs of Lemma 4.1 and Theorem 4.2, which
can be found in the Appendix. 	


5.1 Stabilizing prices

Is there some interest-rate policy ρ(·) = {ρ(y)}y∈Y for the central bank, that
stabilizes prices, keeping them bounded away from both zero and infinity forever?
If the interest rate ρ is fixed for all time, and if τ(y) is not identically 1 (almost
surely), then the arguments of Corollaries 4.6–4.7 show that equilibrium prices
cannot remain bounded away from both zero and infinity forever. But in the next
theorem we show that by taking ρ(y) = 0 or ρ(y) just high enough that b(y) = 1,
the active central bank can stabilize prices. It does so effectively by putting itself out
of business, reducing the equilibrium to the no-banking equilibrium of Section 3.

Theorem 5.2. Suppose Y is bounded away from both zero and infinity, almost
surely. Then there is indeed an active interest-rate policy ρ(·) for the central bank,
that stabilizes prices {pn}n∈N: there exists K > 0 such that in the unique neutral
stationary equilibrium corresponding to ρ(·), we have

0 <
1
K

< pn(ω) < K < ∞ for all n ≥ 1 and almost all ω ∈ Ω.
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Proof. Consider the equilibrium without a bank given in Section 3; in particular,
with b(y) = 1 ∧ (yu′(y)/a). Define

ρ(y) =


yu′(y)
a

− 1 , if yu′(y) ≥ a

0 , if yu′(y) < a


where a ≡ βE[u′(Y )/p(Y )]. Recalling from (3.6) that b(y) = 1 if yu′(y) � a,
this gives τ(y) = 1 for all y ∈ Y . Recalling that 1/p(y) = y/b(y), we see that the
optimality condition (5.2) is also satisfied. By Theorem 5.1, this is an equilibrium.
(The reader can check that the set {y ∈ Y : yu′(y) > a} has positive λ-measure,
hence so does the set {y ∈ Y : ρ(y) > 0}, and then the explicit equilibrium
constructed here corresponds to the equilibrium given by Theorem 5.1.) By (3.7)
these prices are indeed bounded away from zero and infinity. 	


5.2 Fixed prices

Another possible goal for an active bank might be to hold prices exactly constant,
rather than holding prices within finite bounds as in Theorem 5.2. However, if
the endowment variable Y is not itself constant, it is typically impossible for the
bank actively to adjust interest rates so as to hold prices constant. To avoid un-
enlightening technicalities, we shall give a proof only for the special case where
the endowment variable Y takes three values a, b, and c with positive probabilities
where 0 < a < b < c. We assume this special structure for the rest of the sub-
section. Our proof applies to all stationary equilibria, not just to neutral stationary
equilibria.

Suppose that we want the price pn to be the same in every period n, say pn ≡ 1.
Thus, for each value y ∈ Y ≡ {a, b, c}, if Yn = y, we require

pn = bn/y = 1,

thus

bn = y,

for all y ∈ {a, b, c}. The optimality condition (5.2) takes the form:

u′(y)
1

= β(1 + ρ(y)) · E
[
u′(Y )

1

]
, y ∈ {a, b, c},

or equivalently

1 + ρ(y) =
u′(y)

β · E[u′(Y )]
, y ∈ {a, b, c}.

Suppose u′(c) < u′(b) < u′(a). If ρ(c) ≥ 0, then ρ(a) > ρ(b) > 0.
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Next, we look at the behavior of the liquid wealth of the agent. The law of
motion gives

mn+1 = (1 + ρ(Yn)) · (mn − Yn) + Yn.

An easy proof by induction shows that, if Y1 = Y2 = · · · = Yn = y, then,

mn = (1 + ρ(y))n−1 · (m1 − y) + y.

Now consider possible values for the initial money-supply m1. If m1 < a and
Y1 = Y2 = · · · = Yn = a, then for very large n we have

mn = (1 + ρ(a))n · (m1 − a) + a < 0,

a contradiction. On the other hand, if m1 > a, and Y1 = Y1 = · · · = Yn = a, then
mn = (1 + ρ(a))n(m1 − a) + a > c for sufficiently large n. But then following
the rule b(y) = y, the agent will never spend more than c < mk for all k ≥ n,
which cannot be optimal, another contradiction. Thus there is no equilibrium unless
m1 = a. Applying the same argument, there is no equilibrium unless m1 = b, a
contradiction.

6 Equilibrium with low information

Suppose now that the agent does not know Yn(ω) or pn(ω) when he visits the bank
or decides on his expenditure bn(ω) at time n. We shall show that the classical
Fisher equation is restored in this case.

Formally, the only change we need to make in the model is to leave Yn and pn

out of the set of random variables generating the σ-field Fn. Hence the agent’s bid
must be

B(m, y) = mb, (6.1)

where b > 0 is now constant. Equilibrium prices P(m, y) will now satisfy

P(m, y) = B(m, y)/y = mb/y. (6.2)

Since b is now a constant, so is the rate of growth of liquid wealth, namely:

τ = 1 + ρ− ρb. (6.3)

6.1 Low information equilibrium without a bank

First, we study the case without a bank. The first-order condition (3.2) now becomes

(1 − b) ∧
(
E

[
Y u′(Y )

b

]
− βE

[
Y u′(Y )

b

])
= 0. (6.4)

It follows immediately that b = 1 in neutral, stationary equilibrium. The next
theorem implies that B(m, y) = m and P(m, y) = m/y is indeed an equilibrium.
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Theorem 6.1. In the low information model without a bank, there is a unique
neutral, stationary equilibrium P , in which

P(m, y) = m/y.

Proof. We only need verify that B(m, y) ≡ m is optimal for the agent, given the
prices above. The proof is short so we provide it here, rather than deferring it to the
Appendix.

Consider more generally a single agent with initial wealth s ≥ 0, but who will
receivem as revenue each period. The agent can bid any amount b ∈ [0, s], receive
u(b/P(m,Y )) in utility, and then move to s− b+ Y P(m,Y ) = s− b+m at the
next stage. Let V (s) be the optimal reward for this agent. Then the function V (·)
satisfies the Bellman equation

V (s) = sup
0≤b≤s

[
E

(
u

(
b

P(m,Y )

))
+ β · V (s− b+m)

]
(6.5)

= sup
0≤b≤s

[ũ(b) + β · V (s− b+m)],

where

ũ(b) ≡ E

[
u

(
b

P(m,Y )

)]
= E

[
u

(
bY

m

)]
, b ∈ [0,∞)

is concave, and can be regarded as another utility function. Standard arguments
show that V (·) inherits from u(·) the properties of continuity, concavity and strict
increase. Consequently,

ψ(b; s) ≡ ũ(b) + β · V (s− b+m), 0 ≤ b ≤ s,

has a point of maximum, namely

c(s) ∈ arg maxψ(·; s).
We need to show that c(m) = m. Of course, c(m) ≤ m, by the rules of the

game. Suppose, by way of contradiction, that c(m) < m. Now

V (m) = ũ(c(m)) + β · V (2m− c(m)),

and clearly,

V (c(m)) ≥ ũ(c(m)) + β · V (c(m) − c(m) +m) = ũ(c(m)) + β · V (m),

from (6.5). Subtracting the expression for V (c(m)) from V (m) gives the first
inequality below, and the strict increase of V (·) and the assumption c(m) < m
then imply

V (m) − V (c(m)) ≤ β[V (2m− c(m)) − V (m)] < V (2m− c(m)) − V (m),

contradicting the concavity of V (·). 	

In the equilibrium of Theorem 6.1, the money supply stays fixed and the succes-

sive prices are m1/Y1,m1/Y2, .... Although they fluctuate randomly, these prices
have the same distribution, and are bounded away from zero and infinity. There is
no inflation or deflation in this economy.
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6.2 A low-information model with a bank

Again, agents must bid without knowledge of their endowment in each period.
However, they are now permitted to borrow or make deposits in a bank. The bank
charges borrowers and pays depositors at a fixed rate of interest ρ ∈ (0,∞).

The first-order condition (4.5) now becomes

E

[
Y u′(Y )

b

]
= β(1 + ρ) · E

[
Y u′(Y )
τb

]
. (6.6)

This can only be satisfied if

τ = β(1 + ρ), (6.7)

restoring the old Fisher equation. Combining (6.3) and (6.7) gives

b = (1 − β)(1 + ρ)/ρ (6.8)

Theorem 6.2. The low-information economy with a bank has an equilibrium (p,b)
at which

B(m, y) = =
(1 − β)(1 + ρ)

ρ
m,

P(m, y) =
(1 − β)(1 + ρ)

ρ

m

y
.

Proof. See Appendix.

7 Extensions

7.1 Production

We considered a simple representative agent economy in which equilibrium con-
sumption was always the same, xn(ω) = Yn(ω), independent of central bank pol-
icy. It would be interesting to consider a model with heterogeneous agents, or with
a representative agent with production, in which the central bank had to balance
the twin goals of price stabilization and efficient consumption.

7.2 Heterogeneous agents

The harmonic Fisher equation was derived from the premise that

mn+1 = f(Yn)mn, (7.1)

where Yn represented the endowment variable at time n. In a heterogeneous agent
economy, we could take Yn to represent the real shocks to all the agents. But
equation (7.1) would not hold in general, because the distribution of liquid wealth
would also matter. It would be very interesting to work out whether there is an
analogue nevertheless for the Fisher equation.
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7.3 Differential information

We present in this subsection a simple example involving two types of agents,
who differ only in the information they receive about their respective endowments.
As the example illustrates, differences in information may result in differences in
wealth and consumption.

Example 7.1. Assume that there is no bank, that every agent is risk-neutral with
utility function u(x) ≡ x, and that the endowment variable Y takes on the values
1 and 5 with probability 1/2 each. Let the discount factor be β = 1/2 and let the
supply of money held by the agents be m = 1. Finally, suppose that half of the
agents, called type 1, have low information in that they have no knowledge of the
endowment variable Y before bidding in each period; and that the other half of the
agents, called type 2, have high information in that they do know Y before bidding.

Then there is an equilibrium with two wealth states: In the first, type 1 agents
have wealth s = 1, and type 2 agents have the same wealth s̃ = 1; in the second
type 1 agents have wealth s = 3/5 and type 2 agents have wealth s̃ = 7/5. It can
be shown that, in equilibrium, an optimal strategy for type 1 agents is always to bid
their entire wealth, and an optimal strategy for type 2 agents is to bid all if Y = 5,
but to bid 1/5 if Y = 1 and s̃ = 1 and to bid 3/5 if Y = 5 and s̃ = 7/5. The price
depends on the value of Y . For example, if s = s̃ = 1 and Y = 1, then the total
bid is

1
2

· 1 +
1
2

· 1
5

=
3
5

and the price is

p1 =
3/5
1

= 3/5.

The law of motion gives the new wealth values for the two types as

s1 = 1 − 1 +
3
5

· 1 =
3
5
, s̃1 = 1 − 1

5
+

3
5

· 1 =
7
5
.

If s = s̃ = 1 and Y = 5, then the price is

p2 =
1
2 · 1 + 1

2 · 1
5

=
1
5
,

and the new wealth values are

s1 = s̃1 = 1 − 1 +
1
5

· 5 = 1.

Similar calculations show that for s = 3/5, s̃ = 7/5, and Y = 1, the price
is p1 = 3/5 and the next wealth values are s1 = 3/5, s̃1 = 7/5; while for
s = 3/5, s̃ = 7/5, Y = 5, the price is p2 = 1/5 and s1 = s̃1 = 1. If the economy
is equally likely to start in either of the two wealth states (1,1) and (3/5,7/5), then
another easy calculation shows that the average daily utility earned by type 1 agents
is 8/3 and that earned by the better-informed type 2 agents is 10/3.
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8 Appendix: The proofs

Here we supply the proofs that were omitted from the main body of the paper.

8.1 Proof of Theorem 3.1

We must show that, if prices are given by (3.4) and (3.5), then it is optimal for an
agent with wealth m and endowment y to bid B(m, y) = yP(m, y) in any given
period. To show that this is so, consider more generally an agent with initial wealth
s ≥ 0 and endowment y. The agent can bid any amount b ∈ [0, s], and begin the
next period with wealth s− b+ yP(m, y) = s− b+ B(m, y). By assumption, the
agent is so small that his actions do not affect the price or the total wealthm, which
remains constant in this economy with no bank. Thus, for simplicity of notation,
we write

p(y) ≡ P(m, y) = m · min
[
1
y
,
u′(y)
a

]
and

b(y) ≡ B(m, y) = y · P(m, y) = m · min
[
1,
yu′(y)
a

]
throughout this subsection.

The agent with wealth s and endowment y faces a dynamic programming prob-
lem with optimal reward function V (s, y) satisfying the Bellman equation:

V (s, y) = sup
0≤b≤s

[
u

(
b

p(y)

)
+ β · E[V (s− b+ b(y), Y )]

]
, s ≥ 0, y ∈ Y.

Notice that this dynamic programming problem has state space [0,∞) × Y , action
sets A(s, y) = [0, s], law of motion

(s, y) �→ (s− b+ b(y), Y )

under action b, and daily reward r((s, y), b) = u(b/p(y)). It suffices to show that
the optimal bid b at state (m, y) is b(y), for every y ∈ Y .

To prove that this is so, we introduce another dynamic programming problem
with the same states (s, y) and the same law of motion, but with larger action sets
Ã(s, y) = [−m, s] and with daily reward for taking action b at (s, y) equal to

r̃((s, y), b) = uy(b) ≡ Ay + λyb, −m ≤ b < ∞,

where

λy ≡ u′(y)
p(y)

≡ 1
m

· max{a, yu′(y)}, Ay ≡ u(y) − λyb(y). (8.1)
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Notice that

uy(b(y)) = u(y) = u

(
b(y)
p(y)

)
,

u′
y(b(y)) = λy =

1
p(y)

u′(y) =
1

p(y)
u′

(
b(y)
p(y)

)
.

Thus, the affine function uy(·) is the tangent line to the graph of the concave
function b �→ u(b/p(y)) at the point b = b(y). In particular, uy(b) ≥ u(b/p(y))
for all b ∈ [0, s]. Consequently, the expected return from any strategy π, which is
available in both problems, will be at least as large in the modified problem as it
was in the original problem.

Let π∗ be the strategy that, at each state (s, y), uses action

B∗(s, y) ≡
{
s ; if yu′(y) ≥ a

b(y) + s−m ; if yu′(y) < a

}
∈ Ã(s, y) . (8.2)

Notice that, for every y ∈ Y , we have

B∗(m, y) ≡
{
m ; if yu′(y) ≥ a

b(y) ; if yu′(y) < a

}
= b(y),

and that under the law of motion

(m, y) �→ (m− B∗(m, y) + b(y), Y ) = (m, y).

Thus, for an initial state (m, y), the return from π∗ is the same in both problems;
namely,

u(y) +
β

1 − β
E[u(Y )].

It now suffices to show that the strategy π∗ is optimal in the modified problem, for
it must then be optimal at states (m, y) in the original problem as well.

Let W (s, y) be the optimal reward function in the modified problem. Then W
satisfies the Bellman equation

W (s, y) = (TW )(s, y),

where T is the operator

(TΦ)(s, y) ≡ sup
−m≤b≤s

[uy(b) + β · EΦ(s− b+ b(y), Y )], (8.3)

whose domain is the collection of functions Φ : [0,∞) × Y → R for which the
right-hand side of (8.3) is well-defined.

Define Q(s, y) to be the expected return in the modified problem from the
strategy π∗ at the initial state (s, y), and let

v(y) ≡ Q(m, y) = u(y) +
β

1 − β
E[u(Y )]. (8.4)
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Clearly Q(s, y) ≤ W (s, y), and E[v(Y )] = (1 − β)−1E[u(Y )], so

v(y) = u(y) + β · E[v(Y )]. (8.5)

Lemma 8.1. For every initial state (s, y), we have: (i)Q(s, y) = v(y)+λy(s−m),
and (ii) (TQ)(s, y) = Q(s, y).

Proof. From (8.2), we have s− B∗(s, y) + b(y) = m. Hence,

Q(s, y) = uy(B∗(s, y)) + β · E[Q(m,Y )] (8.6)

= Ay + λyB∗(s, y) + β · E[v(Y )]
= Ay + λyb(y) + λy(s−m) + β · E[v(Y )]
= u(y) + λy(s−m) + β · E[v(Y )]
= v(y) + λy(s−m),

thanks to (8.4), (8.5), and (i) is verified. To verify (ii), let

ψy(b) ≡ uy(b) + β · E[Q(s− b+ b(y), Y )] (8.7)

= Ay + λyb+ β · E[v(Y ) + λY (s− b+ b(y) −m)].

The coefficient of b in this expression is

λy − β · E[λY ] =
u′(y)
p(y)

− β · E
[
u′(Y )
p(Y )

]
.

By (3.2) and (3.4), this coefficient is positive for λy > a, and the maximum ofψy(·)
on the interval [−m, s] is then attained at B∗(s, y) = s ; whereas for λy = a, the
coefficient is zero and in this case every point of the interval, including B∗(s, y),
attains the maximum. In either case, we have:

(TQ)(s, y) = max
0≤b≤s

ψy(b) = ψy(B∗(s, y))

= uy(B∗(s, y)) + β · E[Q(m,Y )] = Q(s, y) . 	


Lemma 8.2. There is a real number k such that uy(b) ≥ −k > −∞ for all y ∈ Y
and b ≥ −m.

Proof. This is a simple calculation based on (A.1) and (3.4):

uy(b) = Ay + bλy ≥ Ay −mλy

= u(y) − [m+ b(y)]
u′(y)
p(y)

≥ u(y) − 2m
u′(y)
p(y)

=

{
u(y) − 2yu′(y) , for yu′(y) ≥ a

u(y) − 2m , for yu′(y) < a

}
.
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By assumption, y is bounded away from zero and infinity. Hence, u(y) and −yu′(y)
are bounded away from negative infinity. 	


To complete the proof of Theorem 3.1, first notice that, by adding the constant k
from Lemma 8.2 to the daily reward r̃((s, y), b) = uy(b), we obtain an equivalent
problem with positive daily rewards. Indeed, by adding k to the daily reward, we
merely add k/(1 − β) to the total discounted reward. For a dynamic programming
problem with positive daily rewards, a theorem of Blackwell (1966) states that the
optimal reward functionW is the least nonnegative fixed point of the operator T of
(8.3). By Lemma 8.1, Q, is such a fixed point and, being the expected reward from
π∗, Q ≤ W . Hence, Q = W and π∗ is optimal. The proof of Theorem 3.1 is now
complete.

8.2 Proof of Lemma 4.1

Set θ ≡ E[Y u′(Y )/b(Y )] and rewrite (4.5) as

yu′(y)
b(y)

=
(1 + ρ)βθ
τ(y)

=
(1 + ρ)βθ

1 + ρ− ρb(y)

or, equivalently,

yu′(y)
b(y)

=
ρ

1 + ρ
· yu′(y) + βθ. (8.8)

Integrate with respect to the distribution of the random variable Y , to get

θ =
ρ

1 + ρ
E[Y u′(Y )] + βθ

or equivalently

θ =
ρ

(1 − β)(1 + ρ)
E[Y u′(Y )].

Substituting for θ in (8.8) and dividing by yu′(y), we get

1
b(y)

=
ρ

1 + ρ

[
1 +

β

1 − β
· E[Y u′(Y )]

yu′(y)

]
=

ρ

1 + ρ

[
(1 − β)yu′(y) + βE[Y u′(Y )]

(1 − β)yu′(y)

]
.

Take the reciprocal to obtain (4.6).
We have shown that bids b(y) that satisfy (4.5) must be given by formula (4.6).

The argument reverses to show that, if we define b(·) by (4.6), then (4.5) holds.
Thus (4.6) gives the unique solution to the functional equation (4.5).
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8.3 Proof of Theorem 4.2

The proof is similar to that of Theorem 3.1. Let b(y) be defined by (4.6) and suppose
prices satisfy P(m, y) = mb(y)/y. We must show that B(m, y) = mb(y) is
the optimal bid for an agent with wealth m and endowment y. For the proof we
consider the more general situation of an agent with wealth s ≥ 0 and endowment
y ∈ Y . The agent can bid any amount b ∈ [0, s+ B(m, y)/(1 + ρ)], borrowing or
lending the difference between s and b according as s is smaller or larger than b.
The agent receives u(b/P(m, y)) in utility and begins the next period with wealth
(1 + ρ)(s − b) + yP(m, y) = (1 + ρ)(s − b) + B(m, y). The total wealth in the
economy becomes τ(y)m as in (4.1) and (4.2). Thus the agent faces a dynamic
programming problem with optimal reward function V (s, y,m), which satisfies
the Bellman equation

V (s, y,m) = sup
0≤b≤s+B(m,y)/(1+ρ)

(8.9)

×
[
u

(
b

P(m, y)

)
+ βEV ((1 + ρ)(s− b) + B(m, y), Y, τ(y)m)

]
.

This dynamic programming problem has state space [0,∞) × Y × [0,∞), action
sets A(s, y,m) = [0, s+ B(m, y)/(1 + ρ)], law of motion

(s, y,m) �→ ((1 + ρ)(s− b) + B(m, y), Y, τ(y)m)

under action b, and daily reward function r((s, y,m), b) = u(b/B(m, y)). What
must be shown is that an optimal bid b at states of the form (m, y,m) is B(m, y).

As in the proof of Theorem 3.1, we introduce a modified dynamic programming
problem with the same states (s, y,m) and the same law of motion, but with larger
action sets Ã(s, y,m) = [−m, s+ B(m, y)/(1 + ρ) and with daily reward

r̃((s, y,m), b) = uy,m(b) = Ay,m + λy,mb,

where

λy,m ≡ u′(y)
P(m, y)

=
yu′(y)
mb(y)

, Ay,m = u(y) − λy,mB(m, y). (8.10)

The affine function uy,m(·) is tangent to the concave function b �→ u(b/P(m, y))
at the point b = B(m, y). Thus uy,m(y) ≥ u(b/P(m, y)) for all b; so the return
from any strategy available in both problems is at least as large in the modified
problem as in the original problem.

Let π∗ be the strategy for the modified problem that, at each state (s, y,m),
uses the action

B∗(s, y,m) = B(m, y) + (s−m). (8.11)

Since

B∗(m, y,m) = B(m, y),
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and, under the law of motion,

(m, y,m) �→ ((1 + ρ)(m− B(m, y)) + B(m, y), Y, τ(y)m) (8.12)

= (τ(y)m,Y, τ(y)m),

the strategy π∗ chooses the same actions and has the same expected return in both
problems, for an initial state of the form (m, y,m). Thus, if π∗ is optimal in the
modified problem, then it must be optimal in the original problem as well for initial
states (m, y,m).

Therefore, it suffices to show π∗ is optimal in the modified problem. To do so,
let W (s, y,m) be the optimal reward and let Q(s, y,m) be the expected return
from π∗ for an initial state (s, y,m). The Bellman equation can be written as

W (s, y,m) = (TW )(s, y,m),

where

(TΦ)(s, y,m) ≡ sup
−m≤b≤s+B(m,y)/(1+ρ)

∆(b; s, y,m)

with

∆(b; s, y,m) � [uy,m(b) + βE[Φ((1 + ρ)(s− b) + B(m, y), Y, τ(y)m)]

is an operator acting on function Φ : [0,∞) × Y × [0,∞) → R for which the
right-hand side of the equation above is well defined.

By analogy with (8.4), we also define

v(y) ≡ Q(m, y,m) = u(y) +
β

1 − β
E[u(Y )] (8.13)

and observe that

v(y) = u(y) + βE[v(Y )]. (8.14)

Lemma 8.3. For every initial state (s, y,m), we have

(i) Q(s, y,m) = v(y) + λy,m(s−m),
(ii) (TQ)(s, y,m) = Q(s, y,m).

Proof. (i) By (8.11),

(1+ρ)(s−B∗(s, y,m))+B(m, y) = (1+ρ)(m−B(m, y))+B(m, y)) = τ(y)m.

Hence, by definition of Q, (8.12), (8.13), and (8.14),

Q(s, y,m) = uy,m(B∗(s, y,m)) + βEQ(τ(y)m,Y, τ(y)m)
= Ay,m + λy,mB∗(s, y,m) + βE[v(Y )]
= u(y) − λy,mB(m, y) + λy,m(B(m, y) + s−m) + β · E[v(Y )]
= v(y) + λy,m(s−m).
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(ii) Define

ψ(b) ≡ uy,m(b) + β · E[Q((1 + ρ)(s− b) + B(m, y), Y, τ(y)m)].

Part (i) implies that

ψ(b) = Ay,m+λy,mb+ β · E[v(Y )+λY,τ(y)m((1+ρ)(s−b)+B(m, y)−τ(y)m)].

The coefficient of b on the right-hand side is

λy,m − β(1 + ρ)E[λY,τ(y)m] =
u′(y)

P(m, y)
− β(1 + ρ)

τ(y)
E

[
u′(Y )

P(m,Y )

]
=

1
m

[
yu′(y)
b(y)

− β(1 + ρ)
τ(y)

E

[
Y u′(Y )
b(Y )

]]
= 0,

by (4.5). Thus ψ is a constant function and (ii) is a trivial consequence. 	

Lemma 8.4. There is a real number k such that uy,m(b) ≥ −k > −∞ for all
y ∈ Y , m ∈ [0,∞), and b ≥ −m.

Proof. Calculate as follows:

uy,m(b) = Ay,m + λy,mb ≥ Ay,m − λy,mm

= u(y) − λy,m[m+ B(m, y)] = u(y) −m[1 + b(y)]
yu′(y)
mb(y)

≥ u(y) − yu′(y)
b(y)

[
1 +

1 + ρ

ρ

]
= u(y) − 1 + 2ρ

1 + ρ

[
yu′(y) +

β

1 − β
E[Y u′(Y )]

]
.

The inequality is by (4.6), and the last two equality by (4.5). The desired result
follows because u(Y ) and Y u′(Y ) are each bounded away from negative infinity.

	

The proof of Theorem 4.2 can now be completed by the same argument that

was used to complete the proof of Theorem 3.1 following Lemma 8.2.

8.4 Proof of Theorem 6.2

Consider the situation of an agent with wealth s ≥ 0 at the beginning of a period
when the total wealth in the economy is m > 0. The agent can bid any amount
b ∈ [0, s + b/(1 + ρ)] where b is defined by (6.8). The agent does not know
the value of his endowment Y or the price P(m,Y ) prior to choosing his bid
b, but can calculate the expected utility E[u(b/P(m,Y ))] that he will receive
from consumption. He also knows that he will begin the next period with wealth
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(1+ρ)(s−b)+Y P(m,Y ) = (1+ρ)(s−b)+bm. Thus the agent faces a dynamic
programming problem with optimal reward function V (s,m) satisfying:

V (s,m) = sup
0≤b≤s+bm/(1+ρ)

Θ(b; s,m), (8.15)

where

Θ(b; s,m) �
[
Eu

(
b

P(m,Y )

)
+ β · V ((1 + ρ)(s− b) + bm, τm)

]
.

It suffices to show that the optimal bid at states (m,m) is b = bm.
This dynamic programming problem corresponds to a special case of the one

studied above in Section 8.3. To obtain the special case, replace the utility function
of (8.9) by

ũ(x) ≡ E[u(xY )]

and then replace Y by the constant variable Ỹ ≡ 1. The Bellman equation (8.15)
is then equivalent to (8.9). In particular, the optimal bid at states (m, 1,m) is
B(m, 1) = bm, where the b of (4.6) is the same as that of (6.8) because Ỹ is
constant.
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