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Abstract

The OLG model of Allais and Samuelson retains the methodological assumptions of agent optimization and market clearing from the Arrow–Debreu 
model, yet its equilibrium set has different properties: Pareto inefficiency, multiplicity, positive valuation of money, and a golden rule equilibrium in 
which the rate of interest is equal to population growth (independent of impatience). These properties are shown to derive not from market 
incompleteness, but from lack of market clearing ‘at infinity’: they can be eliminated with land or uniform impatience. The OLG model is used to 
analyse bubbles, social security, demographic effects on stock returns, the foundations of monetary theory, Keynesian vs. real business cycle 
macromodels, and classical vs. neoclassical disputes. 
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Article 

The consumption loan model that Paul Samuelson introduced in 1958 to analyse the rate of interest, with or without the social contrivance of money, 
has developed into what is without doubt the most important and influential paradigm in neoclassical general equilibrium theory outside of the 
Arrow–Debreu economy. Earlier Maurice Allais (1947) had presented similar ideas which unfortunately did not then receive the attention they 
deserved. A vast literature in public finance and macroeconomics is based on the model, including studies of the national debt, social security, the 
incidence of taxation and bequests on the accumulation of capital, the Phillips curve, the business cycle, and the foundations of monetary theory. In 
this article I give a hint of these myriad applications only in so far as they illuminate the general theory. My main concern is with the relationship 
between the Samuelson model and the Arrow–Debreu model. 
Allais’s and Samuelson's innovation was in postulating a demographic structure in which generations overlap, indefinitely into the future; up until 
then it had been customary to regard all agents as contemporaneous. In the simplest possible example, in which each generation lives for two periods, 
endowed with a perishable commodity when young and nothing when old, Samuelson noticed a great surprise. Although each agent could be made 
better off if he gave half his youthful birthright to his predecessor, receiving in turn half from his successor, in the marketplace there would be no 
trade at all. A father can benefit from his son's resources, but has nothing to offer in return. 
This failure of the market stirred a long and confused controversy. Samuelson himself attributed the suboptimality to a lack of double coincidence of 
wants. He suggested the social contrivance of money as a solution. Abba Lerner suggested changing the definition of optimality. Others, following 
Samuelson's hints about the financial intermediation role of money, sought to explain the consumption loan model by the incompleteness of markets. 
It has only gradually become clear that the ‘Samuelson suboptimality paradox’ has nothing to do with the absence of markets or financial 
intermediation. Exactly the same equilibrium allocation would be reached if all the agents, dead and unborn, met (in spirit) before the beginning of 
time and traded all consumption goods, dated from all time periods, simultaneously under the usual conditions of perfect intermediation. Indeed, in 
the early 20th century Irving Fisher (1907; 1930) implicitly argued that any sequential economy without uncertainty, but with a functioning loan 
market, could be equivalently described as if all markets met once with trade conducted at present value prices. 
Over the years Samuelson's consumption loan example, infused with Arrow–Debreu methods, has been developed into a full-blown general 
equilibrium model with many agents, and multiple kinds of commodities and production. It is equally faithful to the neoclassical methodological 
assumptions of agent optimization, market clearing, price taking, and rational expectations as the Arrow–Debreu model. This more comprehensive 
version of Samuelson's original idea is known as the overlapping generations (OLG) model of general equilibrium. 
Despite the methodological similarities between the OLG model and the Arrow–Debreu model, there is a profound difference in their equilibria. The 
OLG equilibria may be Pareto suboptimal. Money may have positive value. There are robust OLG economies with a continuum of equilibria. Indeed, 
the more commodities per period, the higher the dimension of multiplicity may be. Finally, the core of an OLG economy may be empty. None of this 
could happen in any Arrow–Debreu economy. 
The puzzle is: why? One looks in vain for an externality, or one of the other conventional pathologies of an Arrow–Debreu economy. It is evident 
that the simple fact that generations overlap cannot be an explanation, since by judicious choice of utility functions one can build that into the 
Arrow–Debreu model. It cannot be simply that the time horizon is infinite, as we shall see, since there are classes of infinite horizon economies 
whose equilibria behave very much like Arrow–Debreu equilibria. It is the combination, that generations overlap indefinitely, which is somehow 
crucial. In Section 4 I explain how. 
Note that in the Arrow–Debreu economy the number of commodities, and hence of time periods, is finite. One is tempted to think that, if the end of 
the world is put far enough off into the future, it could hardly matter to behaviour today. But recalling the extreme rationality hypotheses of the 
Arrow–Debreu model, it should not be surprising that such a cataclysmic event, no matter how long delayed, could exercise a strong influence on 
behaviour. Indeed, the OLG model proves that it does. One can think of other examples. Social security, based on the pay-as-you-go principle in the 
United States in which the young make payments directly to the old, depends crucially on people thinking that there might always be a future 
generation. Otherwise the last generation of young will not contribute; foreseeing that, neither will the second-to-last generation of young contribute, 
nor, working backward, will any generation contribute. Another similar example comes from game theory, in which cooperation depends on an 
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infinite horizon. On the whole, it seems at least as realistic to suppose that everyone believes the world is immortal as to suppose that everyone 
believes in a definite date by which it will end. (In fact, it is enough that people believe, for every T, that there is positive probability the world lasts 
past T.) 
In Section 1, I analyse a simple one-commodity OLG model from the present value general equilibrium perspective. This illustrates the paradoxical 
nature of OLG equilibria in the most orthodox setting. These paradoxical properties can hold equally for economies with many commodities, as 
pointed out in Section 4. Section 2 discusses the possibility of equilibrium cycles in a one-commodity, stationary, OLG economy. In Section 3, I 
describe OLG equilibria from a sequential markets point of view, and show that money can have positive value. 
In the simple OLG economy of Section 1 there are two steady-state equilibria, and a continuum of non-stationary equilibria. Out of all of these, only 
one is Pareto efficient, and it has the property that the real rate of interest is always zero, just equal to the rate of population growth, independent of 
the impatience of the consumers or the distribution of endowments between youth and old age. This ‘golden rule’ equilibrium seems to violate 
Fisher's impatience theory of interest. 
In Section 5 I add land to the one-commodity model of Section 1. It turns out that now there is a unique steady-state equilibrium that is Pareto 
efficient and that has a positive rate of interest, greater than the population growth rate, that increases if consumers become more impatient. Land 
restores Fisher's view of interest. In this setting it is also possible to analyse the effects of social security. 
In Section 6 I briefly introduce variations in demography. It is well known that birth rates in the United States oscillated every 20 years over the 20th 
century. Stock prices have curiously moved in parallel, rising rapidly from 1945 to 1965, falling from 1965 to 1985, and rising ever since. One might 
therefore expect stock prices to fall as the post-war baby boom generation retires. But some authors have claimed that these parallel fluctuations of 
stock prices must be coincidental. Otherwise, since demographic changes are known long in advance, rational investors would have anticipated the 
price fluctuations and changed them. In Section 6 I allow the size of the generations to alternate and confirm that in OLG equilibrium land prices rise 
and fall with demography, even though the changes are perfectly anticipated. 
In Section 7 I show that not just land but also uniform impatience restores the properties of infinite horizon economies to those found in finite 
Arrow–Debreu economies. 
Section 8 takes up the question of comparative statics. If there is a multiplicity of OLG equilibria, what sense can be made of comparative statics? 
Section 8 summarizes the work showing that, for perfectly anticipated changes, there is only one equilibrium in the multiplicity that is ‘near’ an 
original ‘regular’ equilibrium. For unanticipated changes, there may be a multidimensional multiplicity. But it is parameterizable. Hence, by always 
fixing the same variables, a unique prediction can be made for changes in the equilibrium in response to perturbations. In Section 9 we see how this 
could be used to understand some of the New Classical–Keynesian disputes about macroeconomic policy. Different theories hold different variables 
fixed in making predictions. 
Section 10 considers a neoclassical–classical controversy. Recall the classical economists’ conception of the economic process as a never-ending 
cycle of reproduction in which the state of physical commodities is always renewed, and in which the rate of interest is determined outside the system 
of supply and demand. Samuelson attempted to give a completely neoclassical explanation of the rate of interest in just such a setting. It now appears 
that the market forces of supply and demand are not sufficient to determine the rate of interest in the standard OLG model. In other infinite-horizon 
models they do. 
Section 11 summarizes some work on sunspots in the OLG model. Uncertainty in dynamic models seems likely to be very important in the future. 
An explanation of the puzzles of OLG equilibria without land is given in Section 4: lack of market clearing ‘at infinity’. By appealing to non-
standard analysis, the mathematics of infinite and infinitesimal numbers, it can be shown that there is a ‘finite-like’ Arrow–Debreu economy whose 
‘classical equilibria’, those price sequences which need not clear the markets in the last period, are isomorphic to the OLG equilibria. Lack of market 
clearing is also used to explain the suboptimality and the positive valuation of money. 

1 Indeterminacy and suboptimality in a simple OLG model 

In this section we analyse the equilibrium set of a one-commodity per period, overlapping generations (OLG) economy, assuming that all agents 
meet simultaneously in all markets before time begins, just as in the Arrow–Debreu model. Prices are all quoted in present value terms; that is, pt is 
the price an agent would pay when the markets meet (at time ��) in order to receive one unit of the good at time t. Although this definition of 
equilibrium is firmly in the Walrasian tradition of agent optimization and market clearing, we discover three surprises. There are robust examples of 
OLG economies that possess an uncountable multiplicity of equilibria, that are not in the core, or even Pareto optimal. This lack of optimality (in a 
slightly different model, as we shall see) was pointed out by Samuelson in his seminal (1958) paper. The indeterminacy of equilibrium in the one-
commodity case is usually associated first with Gale (1973). In later sections we shall show that these puzzles are robust to an extension of the model 
to multiple commodities and agents per period, and to a non-stationary environment. We shall add still another puzzle in Section 3, the positive 
valuation of money, which is also due to Samuelson. 
A large part of this section is devoted to developing the notation and price normalization that we shall use throughout. In any Walrasian model the 
problem of price normalization (the ‘numeraire problem’) arises. Here the most convenient solution in the long run is not at first glance the most 
transparent. 
Consider an overlapping generation (OLG) economy  in which discrete time periods t extend indefinitely into the past and into the future, 
t Z. Corresponding to each time period there is a single, perishable consumption good xt. Suppose furthermore that at each date t one agent is ‘born’ 
and lives for two periods, with utility 

 

 
defined over all vectors 

 

 
Thus we identify the set of agents A with the time periods Z. Let each agent t A have endowment



 

 
which is positive only during the two periods of his life. Note that 

 

 
An equilibrium is defined as a (present value) price vector 

 

 
and allocation 

 

 
satisfying  is feasible, that is, 

 
(1) 

 
and 

 
(2) 

 
and 

 
(3) 

 
The above definition of equilibrium is precisely in the Walrasian tradition, except that it allows for both an infinite number of traders and 
commodities. All prices are finite, and consumers treat them as parametric in calculating their budgets. The fact that the definition leads to robust 
examples with a continuum of Pareto-suboptimal equilibria calls for an explanation. We shall give two of them, one at the end of this section, and 
one in Section 4. Note that condition (2) becomes necessary only when we consider models in which agents have positive endowments in an infinite 
number of time periods. 
As usual, the set of (present value) equilibrium price sequences displays a trivial dimension of multiplicity (indeterminacy), since, if p is an 
equilibrium, so is kp for all scalars k>0. We can remove this ambiguity by choosing a price normalization , for all t Z. The sequence 

 and allocations (xt; t A) form an equilibrium if (1) above holds together with 

 
(4) 

 
Notice that we have taken advantage of the finite lifetimes of the agents to combine (2) and (3) into a single condition (4). We could have normalized 
prices by choosing a numeraire commodity, and setting its price equal to one, say p0=1. The normalization we have chosen instead has three 
advantages as compared with this more obvious system. First, the q system is time invariant. It does not single out a special period in which a price 
must be 1; if we relabelled calendar time, then the corresponding relabelling of the qt would preserve the equilibrium. In the numeraire normalization, 



after the calendar shift, prices would have to be renormalized to maintain p0=1. Second, on account of the monotonicity of preferences, we know 
that, if the preferences and endowments are uniformly bounded 

 

 
then we can specify uniform a priori bounds  and  such that any equilibrium price vector q must satisfy  for all t Z. Third, it is sometimes 
convenient to note that each generation's excess demand depends on its own price. We define 

 

 
for xt satisfying (4), as the excess demand of generation t, when young and when old. We can accordingly rewrite equilibrium condition (1) as 

 
(5) 

 
Let us now investigate the equilibria of the above economy when preferences and endowments are perfectly stationary. To be concrete, let 

 

 
and let 

 

 
where . Agents are born with a larger endowment when young than when old, but the aggregate endowment of the economy is constant at 
1 in every time period. Furthermore, each agent regards consumption when young as at least as important as consumption when old , but on 
account of the skewed endowment the marginal utility of consumption at the endowment allocation when young is lower than when old: 

 

 
If we choose 

 

 
for all t Z, then we see clearly that at these prices each agent will just consume his endowment;  is an equilibrium price vector, with 
xt=et for all t A. Note that if we had used the price normalization p0=1, the equilibrium prices would be described by 

 

 
where pt�� as t��. With a=1/2 and e=3/4, we get  and pt=3t. 

But there are other equilibria as well. Take q=(…,1,1,1,…), and 

 

 
This ‘golden rule’ Pareto equilibrium dominates the autarkic equilibrium previously calculated. With a=1/2 and e=3/4, we see that (1/2,1/2) is much 
better for everyone than (3/4,1/4). This raises the most important puzzle of overlapping generations economies: why is it that equilibria can fail to be



Pareto optimal? We shall discuss this question at length in Section 4. 
For now, let us observe one more curious fact. We can define the core of our economy in a manner exactly analogous to the finite commodity and 
consumer case. We say that a feasible allocation  is in the core of the economy E if there is no subset of traders A� A, and an allocation 

 for A� such that 

 

 
and 

 

 
A simple argument can be given to show that the core of this economy is empty. For example, the golden rule equilibrium allocation is Pareto 
optimal, but not in the core. Since a<e, every agent is consuming less when young than his initial endowment. Thus for any t0 A, the coalition 

 consisting of all agents born at time t0 or later can block the golden rule allocation. 

Let us continue to investigate the set of equilibria of our simple, stationary economy. Gale (1973) showed that for any , with , there is an 
equilibrium price sequence 

 

 
with . In other words, there is a whole continuum of equilibria, containing a nontrivial interval of values. Incidentally, it can also be shown 
that for all such equilibria  as t��, and qt�1 as t���. Moreover, these equilibria, together with the two steady state equilibria, constitute 
the entire equilibrium set. 
This raises the second great puzzle of overlapping generations economies. There can be a non-degenerate continuum of equilibria, while in finite 
commodity and finite agent economies there is typically only a finite number. Thus if we considered the finite truncated economy E�T,T consisting of 
those agents born between �T and T, and no others, then it can easily be seen that there is only a unique equilibrium , no 
matter how large T is taken. On the other hand, in the overlapping generations economy, there is a continuum of equilibria. Moreover, the differences 
in these equilibria are not to be seen only at the tails. In the OLG economy, as  varies from 1 to , the consumption of the young agent at time zero 
varies from a to e, and his utility from  (which for e near 1 is close to ��), all the way to . By 
pushing the ‘end of the world’ further into the future, one does not approximate the world which does not end. We shall take up this theme again in 
Section 4. 
It is very important to understand that the multiplicity of equilibria is not due to the stationarity of the economy. If we imagined a non-stationary 

economy with each at near a and each  near (e, 1�e), we would find the same multiplicity. One might hold the opinion that in a steady-state 
economy one should only pay attention to steady-state equilibria, that is, only to the autarkic and golden rule equilibria. In non-steady-state 
economies, there is no steady-state equilibrium to stand out among the continuum. One must face up to the multiplicity. 
Let us reconsider how one might demonstrate the multiplicity of equilibria, even in a non-stationary economy. This will lead to a first economic 
explanation of indeterminacy similar to the one originally proposed by Gale. Suppose that in our non-stationary example we find one equilibrium 

 satisfying: 

 
(6) 

 
Let us look for ‘nearby’ equilibria. 

We shall say that generation t is expectations sensitive at  if both  and . If the first inequality holds, then 
the young's behaviour at time t can be influenced by what they expect to happen at time t+1. Similarly, if the second inequality holds, then the 
behaviour of the old agent at time t+1 depends on the price he faced when he was young, at time t. Recalling the logarithmic preferences of our 
example, it is easy to calculate that the derivatives of excess demands, for any qt>0, satisfy 

 

 
and 



 

 
Hence, by applying the implicit function theorem to (1) we know that there is a non-trivial interval  containing  and a function Ft with 

domain  such that , and more generally, 

 

 
Similarly there is a non-trivial interval  containing , and a function Bt with domain  such that , and more generally, 

, for all . Of course, if , then Bt(qt)=qt�1. 

These forward and backward functions Ft and Bt, respectively, hold the key to one understanding of indeterminacy. Choose any relative price 

 between periods 0 and 1. The behaviour of the generation born at 0 is determined, including its behaviour when old at period 1. If , 
and generation 1 continues to expect relative prices  between 1 and 2, then the period 1 market will not clear. However, it will clear if relative 
prices q1 adjust so that q1=F1(q0). Of course, changing relative prices between period 1 and 2 from  to q1 will upset market clearing at time 2, if 
generation 2 continues to expect . But if expectations change to q2=F2(q1), then again the market at time 2 will clear. In general, once we have 

chosen , we can take qt+1=Ft+1(qt) to clear the (t+1) market. Similarly, we can work backwards. The change in q0 will cause the period 0 
market not to clear, unless the previous relative prices between period �1 and 0 were changed from  to q�1=B0(q0). More generally, if we have 

already chosen , we can set qt�1=Bt(qt) and still clear the period t market. 

Thus we see that it is possible that an arbitrary choice of  could lead to an equilibrium price sequence q. What happens at time 0 is 
undetermined because it depends on expectations concerning period 1, and also the past. But what can rationally be expected to happen at time 1 
depends on what in turn is expected to happen at time 2, and so on. 

There is one essential element missing in the above story. Even if , there is no guarantee that qt+1=Ft+1(qt) is an element of . Similarly, 

 does not necessarily imply that . In our steady state example, this can easily be remedied. Since all generations are alike, 

 

 
One can show that the interval , and that if , then , and . This establishes the indeterminacy we 
claimed. 
In the general case, when there are several commodities and agents per period, and when the economy is non-stationary, a more elaborate argument is 
needed. Indeed, one wonders, given one equilibrium  for such an economy, whether after a small perturbation to the agents there is any equilibrium 
at all of the perturbed economy near . We shall take this up in Section 8. 
It is worth noting that we can define two more complete markets OLG economies with present value prices. In the economy E0,� only agents born at 
time  participate. The definition of OLG equilibrium is the same as before, except that now the set of agents is restricted to the participants, and 
market clearing is only required for . In the q-normalized form, equilibrium is defined by q=(q1, q2,…) such that 

 

 
It is immediately apparent (with one agent born per period and one good) that E0,� has a unique equilibrium, at which no agent trades and which is 
Pareto inefficient. 

We could also define an economy  in which only agents  participate, but where we require (in the normalized price version) that 

 

 

Equilibrium in  is as if we gave an outside agent who had no endowment the purchasing power of M at time 1, and still managed to clear all 

markets . As long as ,  has an equilibrium. Take q0 solving , and q1=F1(q0) and qt=Ft(qt�1) for . We examine 
these two models more closely in Section 3. 

2 Endogenous cycles 



Let us consider another remarkable and suggestive property that one-commodity, stationary OLG economies can exhibit. We shall call the 
equilibrium  periodic of period n if  are all distinct, and if for all integers i and j, qi=qi+jn. The possibility that a 
perfectly stationary economy can exhibit cyclical ups and downs, even without any exogenous shocks or uncertainty, is reminiscent of 1930s–1950s 
business cycle theories. In fact, it is possible to construct a robust one-commodity per period economy which has equilibrium cycles of every order n. 
Let us see how. 
As before, let each generation t consist of one agent, with endowment  positive only in period t and t+1, and utility ut(x)=u1

(xt)+u2(xt+1). Again, suppose that . It is an immediate consequence of the separability of ut, that for , 

 

 

From monotonicity, we know that  as qt�0. Hence it follows that for any , there is a unique q�1=B0(q0) with 

 

 
From the fact that  for all q0, it also follows that there is some  such that if , then . 

Now consider the following theorem due to the Russian mathematician Sarkovsky and to the mathematicians Li and Yorke (1975). 
Sarkovsky–Li–Yorke Theorem: . Let  be a continuous function from a nontrivial closed interval into itself. Suppose that there exist a 
three-cycle for B, that is, distinct points q0, q1, q2, in  with q1=B(q0), q2=B(q1), q0=B(q2). Then there are cycles for B of every order n. 
Grandmont (1985), following related work of Benhabib and Day (1982) and Benhabib and Nishimura (1985), gave a robust example of a one-
commodity, stationary economy (u1, u2, e) giving rise to a three-cycle for the function B0. Of course a cycle for B0 is also a cyclical equilibrium for 
the economy, hence there are robust examples of economies with cycles of all orders. 
Theorem:  (Benhabib–Day, 1982; Benhabib–Nishimura,1985; Grandmont, 1985). There exist robust examples of stationary, one-commodity OLG 
economies with cyclical equilibria of every order n. 
This result is extremely suggestive of macroeconomic fluctuations arising for endogenous reasons, even in the absence of any fundamental 
fluctuations. Note first, however, that all of the cyclical equilibria, except the autarkic one-cycle , can be shown to be Pareto optimal 
(see Section 4), while the theory of macroeconomic business cycles is concerned with the welfare losses from cyclical fluctuations. (On the other 
hand, the fact that cyclical behaviour is not incompatible with optimality is perhaps an important observation for macroeconomics.) More 
significantly, it must be pointed out that Sarkovsky's theorem is a bit of a mathematical curiosity, depending crucially on one dimension. And of 
course non-stationary economies, even with one commodity, will typically not have any periodic cycles. By contrast, the multiplicity and 
suboptimality of non-periodic equilibria that we saw in Section 1 are robust properties that are maintained in OLG economies with multiple 
commodities and heterogeneity across time. The main contribution of the endogenous business cycle literature is that it establishes the extremely 
important, suggestive principle that very simple dynamic models can have very complicated (‘chaotic’) dynamic equilibrium behaviour. 
In the next section we turn to another phenomenon that can generally occur in overlapping generations economies, but never in finite horizon models.

3 Money and the sequential economy 

Money very often has value in an overlapping generations model, but it never does in a finite horizon Arrow–Debreu model. The reason for its 
absence in the latter model is familiar: money would enable some agents to spend more on goods than they received from sales of their goods. But 
that would mean in the aggregate that spending on goods would exceed revenue from the sale of goods, contradicting market clearing in goods. 
This argument can be given another form. Without uncertainty, Arrow–Debreu equilibrium can be reinterpreted as a sequential equilibrium with 
contemporaneous prices. But if the number of periods is finite, then in the last period the marginal utility of money to every consumer is zero, hence 
so is its price. In the second-to-last period nobody will pay to end up holding any money, because in the last period it will be worthless. By induction 
it will have no value even in the first period. 
Evidently both these arguments fail in an infinite horizon setting. There is no last period, so the backward induction argument has no place to begin. 
And with an infinite number of consumers, aggregate spending and revenue might both be infinite, preventing us from comparing their sizes. On the 
other hand, there are infinite horizon models where money cannot have value. The difference between the OLG model and these other infinite 
horizon models will be discussed in Section 7. 
Strictly speaking, the overlapping generations model we have discussed so far has been modelled along the lines of Arrow–Debreu: each agent faced 
only one budget constraint and equilibrium was defined as if all markets met simultaneously at the beginning of time (��). In such a model money 
has no function. However, we can define another model, similar to the first considered by Samuelson, in which agents face a sequence of budget 
constraints and markets meet sequentially, and where money does have a store-of-value role. Surprisingly, this model turns out to have formally the 
same properties as the OLG model we have so far considered. To distinguish the two models we shall refer to this latter monetary model as the 
Samuelson model. 
Suppose that we imagine a one-good per period economy in which the markets meet sequentially, according to their dates, and not simultaneously at 
the beginning of time. Suppose also that there are no assets or promises to trade. In such a setting it is easy to see that there could be no trade at all, 
since, as Samuelson put it, there is no double coincidence of wants. The old and the young at any date t both have the same kind of commodity, so 
they have no mutually advantageous deal to strike. But as Samuelson pointed out, introducing a durable good called money, which affects no agent's 
utility, might allow for much beneficial trade. The old at date t could sell their money to the young for commodities, who in turn could sell their 
money when old to the next period's young. In this manner new and more efficient equilibria might be created. The ‘social contrivance of money’ is 
thus connected to both the indeterminacy of equilibrium and the Pareto suboptimality of equilibrium, at least near autarkic equilibria. The puzzle, we 
have said, is how to explain the positive price of money when it has no marginal utility. 
A closer examination of the equilibrium conditions of Samuelson's sequential monetary equilibrium reveals that, although it appears much more 



complicated, it reduces to the timeless OLG model we have defined above, but with one difference, namely, that the budget constraint of the 
generation endowed with money is increased by the value of money. The introduction of the asset money thus ‘completes the markets’ in the sense of 
Arrow (1953), by which we mean that the equilibrium of the sequential economy can be understood as if it were an economy in which money did not 
appear and all the markets cleared at the beginning of time (except, as we said, that the incomes of several agents are increased beyond the value of 
their endowments). The puzzle of how money can have positive value in the Samuelson model can thus be reinterpreted in the OLG model as 
follows. How is it possible that we can increase the purchasing power of one agent beyond the value of his endowment, without decreasing the 
purchasing power of any other agent below his, and yet continue to clear all the markets? Before giving a more formal treatment of the foregoing, let 
me re-emphasize an important point. It has often been said that the paradoxical properties of equilibrium in the sequential Samuelson consumption 
loan model can be explained on the basis of incomplete markets. Adding money to the model, however, completes the markets, in the precise sense 
of Arrow–Debreu, but the result is the OLG model in which the puzzles remain. 

Let us now formally define the sequential one-commodity Samuelson model with money, . Consider a truncated economy in which there is a 
new agent ‘born’ at each date , whose utility depends only on the two goods dated during his lifetime, and whose endowment is positive only in 
those same commodities. At each date  there will be two agents alive, a young one and an old one. Let us suppose that trade does not begin until 
period 1, so that the date 0 generation must consume its endowment when it is young. To this truncation of our earlier model we now add one extra 
commodity, which we call money. Money is a perfectly durable commodity that affects no agent's utility. Agents are endowed with money 

, in addition to their commodity endowments. 
A (contemporaneous) price system is defined as a sequence 

 

 
of contemporaneous money prices �t and contemporaneous commodity prices pt for each . The budget set for any agent  is defined by 

 

 
For agent 0 the budget constraint is 

 

 
The budget constraints express the principle that in the Samuelson model agents cannot borrow at all, and cannot save, that is, purchase more when 

old than the value of their old endowment, except by holding over money mt from when they were young. Let  and  be the utility 

maximizing choices of money holdings by generation t when young and when old. As before, the excess commodity demand is defined by  

and . 
To keep things simple, we suppose that agent 0 is endowed with  units of money when he is old, but all other endowments  are zero. Since 
money is perfectly durable, total money supply in every period is equal to M. Equilibrium is defined by a price sequence (�, p) such that for all ,

 

 
At first glance this seems a much more complicated system than before. 
But elementary arguments show that in equilibrium either �t=0 for all t, and there is no intergenerational trade of commodities, or �t>0 for all t, or 

�t<0 for all t. In the case where �t>0, no generation will choose to be left with unspent cash when it dies, hence  for all t, hence money 
market clearing is reduced to 

 

 
By homogeneity of the budget sets, if �t>0, we might as well assume �t=1 for all t. But then the prices pt become the same as the present value prices 
from Section 1. From period by period Walras’ Law, we deduce that, if the goods market clears at date t, so must the money market. So we never 
have to mention money market clearing. 
Moreover, by taking  we can write the commodity excess demands for agent  just as in Section 1, by 

 

 



and they are the same as 

 

 
The only agent who behaves differently is agent 0, whose budget set must now be written 

 

 
where 

 

 
We can then write agent 0's excess demand for goods at time 1 as 

 

 
Thus any sequential Samuelson monetary equilibrium can be described by (�, q), , satisfying 

 

 
and 

 

 

But of course that is precisely the same as the definition of an OLG equilibrium for  given in Section 1. 

4 Understanding OLG economies as lack of market clearing at infinity 

In this section we point out that the suboptimality of competitive equilibria, the indeterminacy of non-stationary equilibria, the non-existence of the 
core, and the positive valuation of money can all occur robustly in possibly non-stationary OLG economies with multiple consumers and L>1 
commodities per period. We also note the important principle that the potential dimension of indeterminacy is related to L. In the two-way infinity 
model, it is 2L�1. In the one-way infinite model without money it is L�1; in the one-way infinity model with money the potential dimension of 
indeterminacy is L. 
None of these properties can occur (robustly) in a finite consumer, finite horizon, Arrow–Debreu model. In what follows we shall suggest that a 
proper understanding of these phenomena lies in the fact that the OLG model is isomorphic, in a precise sense, to a ‘*-finite’ model in which not all 
the markets are required to clear. 
One of the first explanations offered to account for the differences between the Arrow–Debreu model and the sequential Samuelson model with 
money centred on the finite lifetimes of the agents and the multiple budget constraints each faced. These impediments to intergenerational trade (for 
example, the fact that an agent who is ‘old’ at time t logically cannot trade with an agent who will not be ‘born’ until time t+s) were held responsible. 
But as we saw in the last section, without uncertainty the presence of a single asset like money is enough to connect all the markets. Formally, as we 
saw, the model is identical to what we called the OLG model in which we could imagine all trade taking place simultaneously at the beginning of 
time, with each agent facing a single budget constraint involving all the commodities. What prevents trade between the old and the unborn is not any 
defect in the market, but a lack of compatible desires and resources. 
Another common explanation for the surprising properties of the OLG model centres on the ‘paradoxes’ of infinity, as suggested by Shell (1971). In 
finite models, one proves the generic local uniqueness of equilibrium by counting the number of unknown prices, less 1 for homogeneity, and the 
number of market clearing conditions, less 1 for Walras’ Law, and notes that they are equal. In the OLG model there is an infinity of prices and 
markets, and who is to say that one infinity is greater than another? We already saw that the backward induction argument against money fails in an 
infinite horizon setting, where there is no last period. Surely it is right that infinity is at the heart of the problem. But this explanation does not go far 
enough. In the model considered by Bewley (1972) there is also an infinite number of time periods (but a finite number of consumers). In that model 
all equilibria are Pareto optimal, and money never has value, even though there is no last time period. The problem of infinity shows that there may 
be a difference between the Arrow–Debreu model and the OLG model. In itself, however, it does not predict the qualitative features (like the 
potential dimension of indeterminacy) that characterize OLG equilibria. 
Consider now a general OLG model with many consumers and commodities per period. We index utilities ut,h by the time of birth t, and the 

household h H, a finite set. Household (t, h) owns initial resources when young, an L-dimensional vector, and resources when old, also an



L-dimensional vector, and nothing else. As before utility ut,h depends only on commodities dated either at time t or t+1. Given prices 

 

 
consisting of all the 2L prices at date t and t+1, each household in generation t has enough information to calculate the relevant part of its budget set 

 

 

Hence we can write household excess demand  and the aggregate excess demand of generation t as , where 

 

 
Of course we need to put restrictions on the qt to ensure their compatibility, since qtb and qt+1,a refer to the same period t+1 prices. But this is easily 
done by supposing that 

 

 
Present value OLG prices p can always be recovered from the normalized prices q via the recursion 

 

 
We shall now define three variations of the OLG model and equilibrium, depending on when time starts, and whether or not there is money. 
Suppose first that time goes from �� to �. We can write the market clearing condition for equilibrium exactly as we did in the one-commodity, one-
consumer case, as 

 
(A) 

 
Similarly we can define the one-way infinity economy E0,�, in which time begins in period 0, but trade begins in time 1. We simply retain the same 
market clearing conditions for , 

 
(A�) 

 
 

 
(7) 

 

it being understood that  has been modified to  because every agent (0,h) is forced to consume his own endowment at time 0, so that he 
maximizes over his budget set 

 



 

Finally, let us define equilibrium in a one-way infinity model with money, , when agents (0,h) are endowed with money Mh, in addition to their 
commodities, by (�, q), , satisfying 

 
(A�) 

 
and 

 

 
Again it is understood that the agents (0, h) born in time 0 cannot trade in time 0, and they maximize over the budget set 

 

 
These are the natural generalizations of the one-good economies defined in Section 1. (There is one small difference. With many agents born per 
period we can no longer conclude that if one agent holds a positive amount of money when young, then so must every other agent – no matter when 
he is born. We shall ignore this complication and allow some agents to hold negative money.) 
We must now try to understand very generally why there may be many dimensions of OLG equilibria, why they might not be Pareto efficient, and 
how it is possible that some agents can spend beyond their budgets without upsetting market clearing. 
Our explanation amounts to ‘lack of market clearing at infinity’. We illustrate this for the case E0,�. 
Consider the truncated economy E0,T consisting of all the agents born between periods 0 and T. Market clearing in E0,T is defined to be identical to 

that in E0,� for t=1 to t=T. But at t=T+1, we require  in E0,T. This is a perfectly conventional Arrow–Debreu economy, and so 
necessarily has some competitive equilibria, all of which are Pareto efficient; generically its equilibrium set is a 0-dimensional manifold. 
We have already seen in Section 1 what a great deal of difference there is between the economies E0,T (no matter how large T is) and E0,�. The 
interesting point is that, by appealing to non-standard analysis, which makes rigorous the mathematics of infinite and infinitesimal numbers, one can 
easily show that the economy E0,T, for T an infinite number, inherits any property that holds for all finite E0,T. Thus the paradoxical properties of the 
economy E0,� do not stem from infinity alone, since the infinite economy E0,T does not have them. We shall need to modify E0,T before it 
corresponds to E0,�. Nevertheless, the economies E0,T do provide some information about E0,�. 
Theorem:  (Balasko–Cass–Shell, 1980; Wilson, 1981). Under mild conditions, at least one equilibrium for E0,� always exists. 
To see why this is so, note that E0,T is well-defined for any finite T. From non-standard analysis we know that the sequence E0,T for T N has a 
unique extension to the infinite integers. Now fix T at an infinite integer. We know that E0,T has at least one equilibrium, since E0,s does for all finite 

s. But if T is infinite, E0,T includes all the finite markets t=1,2,…, so all those must clear at an equilibrium q* of E0,T. Taking the standard parts of the 

prices  for the finite t (and ignoring the infinite t) gives an equilibrium q for E0,�. 

To properly appreciate the force of this proof, we shall consider it again, when it might fail, in Section 7, where we deal with infinite lived 
consumers. 

In terms of the existence of equilibrium, E0,� (and similarly  and E��,�) behaves no differently from an Arrow–Debreu economy. But the 
indeterminacy is a different story. 
Definition:  A classical equilibrium for the economy E0,T is a price sequence q*=(q1,…, qT) that clears the markets for , but at t=T+1, market 

clearing  is replaced by 

 

 
Thus in a classical equilibrium there is lack of market clearing at the last period. The aggregate excess demand in that period, however, must be less 
than the endowment the young of period T+1 would have had, were they part of the economy. Economies in which market clearing is not required in 
every market are well understood in economic theory. Note that in a classical equilibrium the agents born at time T are not rationed at T+1; their full 
Walrasian (notional) demands are met, out of the dispossessed endowment of the young. But we do not worry about how this gift from the T+1 
young is obtained. The significance of our classical equilibrium for the OLG models can be summarized in the following theorem from Geanakoplos 
and Brown (1982): 
Theorem:  (Geanakoplos–Brown, 1982). Fix T at an infinite integer. The equilibria q for E0,� correspond exactly to the standard parts of classical 

equilibria q* of E0,T. 

The Walrasian equilibria of the economy E0,�, which apparently is built on the usual foundations of agent optimization and market clearing, 



correspond to the ‘classical equilibria’ of another finite-like economy E0,T in which the markets at T+1 (‘at infinity’) need not clear. The existence of 
a classical equilibrium in E0,T, and thus an equilibrium in E0,�, is not a problem, because market clearing is a special case of possible non-market 
clearing, and E0,T, being finite-like, always has market clearing equilibria. 
Thus even though the number of prices and the number of markets in E0,� are both infinite, by looking at E0,T it is possible to say which is bigger, 
and by how much. There are exactly L more prices than there are markets to clear. From Walras’ Law we know that if all the markets but one clear, 
that must clear as well. Hence having L markets that need not clear provides for L�1 potential dimensions of indeterminacy. 
Corollary:  (Geanakoplos–Brown, 1982). For a generic economy E0,�, there are at most L�1 dimensions of indeterminacy in the equilibrium set. 
Though the classical equilibria of E0,T generically have L�1 dimensions of indeterminacy, it is by no means true that there must be L�1 dimensions 

of visible indeterminacy. If we consider any classical equilibrium q* for a generic economy E0,T, then we will be able to arbitrarily perturb some set 

of L�1 prices near their q* values, and then choose the rest of the prices to clear all the markets up through time T. But which L�1 prices these are 
depends on which square submatrix N (of derivatives of excess demands with respect to prices) is invertible. For example, call the economy E0,� 
intertemporally separable if each generation t consists of a single agent whose utility for consumption at date t is separable from his utility for 
consumption at date t+1. Then the L�1 free parameters must all be chosen at date T+1 (as part of qT,b), that is, way off at infinity. 
Corollary:  (Geanakoplos–Polemarchakis, 1984). Intertemporally separable economies E0,� generically have locally unique equilibria (in the 
product topology). 
For example, a natural generalization of the example in Section 1 would be to generations consisting of a single Cobb–Douglas consumer of L>1 
goods when young and when old. The corollary shows that this economy has no indeterminacy of equilibrium. Since Cobb–Douglas economies seem 
so central, one might guess that multi-good OLG economies E0,� do not generate indeterminacy. But that is incorrect. Separability with one agent 
drastically reduces the effect expectations about future prices can have on the present, because changes in future consumption do not change marginal 
utilities today. In the separable case, changing all L prices tomorrow only affects today through the one dimension of income. 
Even when the L�1 degrees of freedom may be chosen at time t=1, there still may be no visible indeterminacy, if the matrix N has an inverse (in the 
non-standard sense) with infinite norm. But when the free L�1 parameters may be chosen at t=1 and also the matrix N has an inverse with finite 
norm, then all nearby economies must also display L�1 dimensions of indeterminacy. 
Theorem:  (Kehoe–Levine, 1984; Geanakoplos–Brown, 1982). In the E0,� OLG model there are robust examples of economies with L�1 dimensions 

of indeterminacy. In the monetary economy, , there are robust examples of economies with L dimensions of indeterminacy. 
Let us now turn our attention to the question of Pareto optimality. 

Definition:  An allocation  is classically feasible for the economy E0,T if , for . The 

classically feasible allocation  for E0,T is a classic Pareto optimum if there is no other classically feasible allocation  for E0,T with 
for all (t,h) A with , with at least one inequality (0,h) representing a non-infinitesimal difference. 
Theorem:  (Geanakoplos–Brown, 1982). The Pareto-optimal allocations  for the OLG economy E0,� are precisely the standard parts of classical 
Pareto-optimal allocations  for E0,T, if T is fixed at an infinite integer. 

The upshot of this theorem is that the effective social endowment includes the commodities  of the generation born at time s=T+1, even though 
they are not part of the economy E0,T. Since the socially available resources exceed the aggregate of private endowments, it is no longer a surprise 
that a Walrasian equilibrium, in which the value of aggregate spending every period must equal the value of aggregate private endowments, is not 
Pareto optimal. 
On the other hand, this does not mean that all equilibria are Pareto suboptimal. If the (present value) equilibrium prices pt�0, as t�� (or, more 
generally, if pT+1 is infinitesimal), then the value of the extra social endowment is infinitesimal, and there are no possible non-infinitesimal 
improvements. To see this, let  be an equilibrium in present value prices for the OLG economy E0,�. Consider the concave–convex 

programming problem of maximizing the utility of agent , holding all other utilities of agents (t, h) with  at the levels ut,h(xt) they get 
with , over all possible allocations in E0,T that do not use more resources, even at time T+1, than . Clearly  itself is a solution to this problem. But 
now let us imagine raising the constraints at time T+1 from 

 

 
What is the rate of change of the utility ? From standard concave programming theorems, for the first infinitesimal additions to period T+1 
resources, the rate of change of  is on the order of pT+1, assuming p1 is normalized to equal the marginal utility of consumption for agent  at 
date 1. Additional resources bring decreasing benefits. This shows that if pT+1 is infinitesimal, then there are no possible non-infinitesimal 
improvements with a finite amount of extra resources. 
An important example of pt�0 occurs when the prices are summable, as they are when they decline geometrically to zero. Thus in a stationary 
equilibrium with a positive real interest rate, equilibrium must be Pareto efficient. Another proof of efficiency in the case of geometric present value 
prices is to observe that then the present value of the aggregate endowment must be finite, so the standard proof of Pareto efficiency in a finite 
horizon model goes through. 
If pt increases geometrically to infinity, then it is evident that equilibrium cannot be Pareto efficient. Thus, in a stationary equilibrium with a negative 
real interest rate, equilibrium must be Pareto inefficient. 
When  but also does not increase exponentially to infinity, the calculation becomes much more delicate. An infinitesimal increase � in 
resources at time T+1 can be used to increase utility of  on the order of pT+1�, which is still infinitesimal if pT+1 is non-infinitesimal but finite. 
As the increases � get larger, this rate of change could drop quickly, as higher derivatives come into play (assuming that agents have strictly concave 
utilities), leaving infinitesimal (and thus invisible) increases in utility even with a finite increase in resources. Second derivatives, and their 



uniformity, come into play. But this subtle case has been brilliantly dealt with: 
Theorem:  (Cass, 1972; Benveniste–Gale, 1975; Balasko–Shell, 1980; Okuno–Zilcha, 1980). If agents have uniformly strictly concave utilities, and if 
the aggregate endowment is uniformly bounded away from 0 and �, then the equilibrium  with present value prices p for an OLG economy E0,�

is Pareto optimal if and only if . 
Note that in this theorem it is the present value prices that play the crucial role. It follows immediately from this theorem that the golden rule 
equilibrium  for the simple one good, stationary economy of Section 1 is Pareto optimal, since the corresponding present value price 
sequence is also . In fact, a moment's reflection shows that any periodic, non-autarkic equilibrium must also be periodic in the present 
value prices p. Hence, as we have said before, but without a proof, the cyclical equilibria of Section 2 are all Pareto optimal. 
Having explained the indeterminacy and Pareto suboptimality of equilibria for E0,� in terms of lack of market clearing at infinity, let us re-examine 

the monetary equilibria of OLG economies , where  is the stock of money holdings by the agents (0, h) at time 0. 

The next theorem shows that any monetary equilibrium allocation of  corresponds to the standard part of a non-monetary economy E0,T(z) 
obtained from E0,T by augmenting the endowments of the first generation (0,h)h H by a vector of goods z at time T+1. 

Definition:  Let z RL be a vector of commodities for time T+1. Suppose that . Let the augmented non-
monetary economy E0,T(z, M) be identical to the non-monetary economy E0,T, except that the endowment of each agent (0, h) is augmented by Mh·z 
units of commodities at time T+1. 

Theorem:  (Geanakoplos–Brown, 1982). Fix an infinite integer T. The equilibria q of the monetary economy  are precisely obtained by taking 
standard parts of full market clearing equilibria q* of all the augmented non-monetary economies E0,T(z,M). 

The above theorem explains how it is possible to give agents (0, h) extra purchasing power without disturbing market clearing in the economy . 

The answer is that the purchasing power comes from owning extra commodities at date T+1, and equilibrium in  does not require market 
clearing in date T+1 commodities. 
The above theorem gives another view of why there are potentially L dimensions of monetary equilibria: the augmenting endowment vector z can be 
chosen from a set of dimension L. It also explains how money can have positive value: it corresponds to the holding of extra physical commodities. 
The theorem also explains how the ‘social contrivance of money’ can lead to Pareto-improving equilibria, even in OLG economies where there is 
already perfect financial intermediation. The holding of money can effectively bring more commodities into the aggregate private endowment. The 
manifestation of the ‘real money balances’ is the physical commodity bundle z at date T+1. Money plays more than just an intermediation role. 
Before concluding this section let us consider a simple generalization. Suppose that agents live for three periods. What plays the analogous role to 
E0,T? The answer is that prices need to be specified through time T+2, but markets are only required to clear through time T. There are therefore 
2L�1 potential dimensions of indeterminacy, even in the one-sided economy. In general, we must specify the price vector up until some time s, and 
then require market clearing only in those commodities whose excess demands are fully determined by those prices. 
This reasoning has an important generalization to production. Suppose that capital invested at time t can combine with labour at time t+1 to produce 
output at time t+1, and suppose that all agents live two periods. Is there any difference between the case where labour is inelastically supplied, and 
the case where leisure enters the utility? In both cases the number of commodities is the same, but in the latter case the potential dimension of 
indeterminacy is one higher, since the supply of labour at any time might depend on further prices. 

5 Land, the real rate of interest, and Pareto efficiency 

Allais and Samuelson argued that the infinity of both time periods and agents radically changed the nature of equilibrium. Samuelson suggested that 
equilibrium might not be Pareto efficient, and that the real rate of interest might be negative, even if the economy did not shrink over time. In our 
one-good example from Section 1, the autarkic equilibrium has a negative real interest rate since each qt<1, and the real interest rate is 1/qt�1. 
They also thought that a second, new kind of equilibrium would emerge in which the real rate of interest is divorced from any of the considerations 
like impatience that Irving Fisher had stressed. They thought that in this new kind of equilibrium the real rate of interest would turn out to be equal to 
the rate of population growth, irrespective of the impatience of the consumers or the distribution of their endowments. Indeed, in the example from 
Section 1, the ‘golden rule’ equilibrium had real interest rate 1/qt�1=0 in every period, irrespective of the utilities or the endowments, but equal to the 
population growth rate. 
Furthermore, as we saw in Section 3, Samuelson argued that it might not be necessary for an asset to be valued according to the present value of its 
dividends, contradicting yet another one of Fisher's central concepts. Samuelson suggested that a piece of green paper might be worth a lot, even 
though it pays no dividends, because the holder might think he could sell it to somebody later, who would buy it on the expectation that he could sell 
it to somebody else later, ad infinitum. Later authors called this a rational bubble. 
It turns out that these views are incorrect if one includes in the model infinitely lived assets like land, that do pay dividends in every period. 
Imagine an OLG economy as before with 

 

 
But let us also suppose there is one acre of land in the economy that produces a dividend Dt=1 apple every period for ever. Suppose the economy 
begins in period 1, with an old agent who owns the land and has an endowment of one apple, and a newly born agent as above. We suppose that 
buying the land at time t gives ownership of all dividends from time t+1 up to and including the dividends in the period in which the asset is sold. 
The apple dividend from the land at time 1 is owned by the old agent at time 1 (who presumably acquired the land at time 0 and hence has the claim 
on the apple). 
At every period t we need to find the contemporaneous price qt of the commodity and the price �t of the land. 
Every agent in the economy must decide how much to consume when young, and what assets to hold when young, and how much to consume when 
old. The decision in old age is trivial, since the agent cannot do better than selling every asset he has and using the proceeds to buy consumption 
goods. 
Thus for every  we can describe the decision problem of generation t by



 

 
For the original old generation, he optimizes simply by setting 

 

 

Denote the optimal choice of agents  by . Market clearing requires for each  that consumption of the old plus consumption of the 
young is equal to total output of goods, and also that demand equals the supply of land 

 

 
In period t=1 we must have 

 

 

Sequential equilibrium is thus a vector  satisfying the above conditions on agent maximization and market clearing. 
Fisher's recipe for computing equilibrium with assets is to put the asset dividends into the endowments of their owners, and then find the usual 
general equilibrium with present value prices ignoring the assets. In this example that means giving agent 0 an endowment e0=(2,1,…) of two apples 
in period 1 and one apple every period thereafter, and ignoring the land. Equilibrium with present value prices is then described exactly as in Section 
1. 
To solve for the present value prices  we can guess that since the economy is stationary, there will be stationary equilibrium 

. For each , we must solve 

 

 
which gives a quadratic equation 

 

 
which is solved by 

 

 
The other root is greater than one, and could not be right, because it would give a real interest rate less than zero, which would make the present 
value of land infinite. Hence consumption when young and old is 

 

 
Clearly these values clear the consumption market for all . We know by Walras's Law that, if all markets but one clears, then the last will as well, 
so we don't really have to check the period 1 market. But we will check it anyway. The present value of agent 0's endowment is 

 

 
and so indeed the period t=1 market clears. 
We can now translate this general equilibrium back into a sequential equilibrium. Taking qt=1 for every period and the real interest rate solving p=1/



(1+r), the present value of land is 

 

 
In every period the old will consume their endowment of 1 plus the dividend of 1 plus the value of the land they will sell, which gives exactly 3.225. 

The sequential equilibrium is . 
Despite what Allais and Samuelson said, the rate of interest at the unique steady state is positive, higher than the growth rate of population. 
Moreover, as noted in Geanakoplos (2005), the real interest rate does respond to shocks in exactly the way Fisher argued. Consider the same model 
as before, but make all the consumers more impatient 

 

 
Then our master equation would become 

 

 
giving 

 

 
As Fisher would have predicted, the real rate of interest does indeed increase, and the price of land decreases. 

5.1 Pareto efficiency and bubbles 

Observe that in our example the dividends of land represent 20 per cent of all endowments every period. Since the price of land must be finite, that 
means in any equilibrium the present value of all endowments must be finite. We know that implies equilibrium must be Pareto efficient. 
Furthermore, if the value of aggregate endowments is finite, then money cannot have value and there can be no bubbles, because the old argument is 
correct that markets cannot clear if some agents are spending more than the value of their commodity endowments and nobody is spending less. Land 
makes the OLG economy look much more like an Arrow–Debreu economy. 

5.2 Social security 

The overlapping generations model is the workhorse model for examining social security. There is not space here to describe these studies. Observe 
simply that a pay-as-you-go system amounts to a simple transfer of endowments from each young person to each old person. We can immediately 
calculate the effects of such a transfer on our steady state interest rate and land value by recomputing the equilibrium for the OLG economy in which 
endowments are adjusted to (2,2) for every generation , and assuming the old generation 0 has an endowment of 2 apples at time 1 plus the land, 
which pays 1 apple every period. We get 

 

 
This also confirms Fisher's contention that decreasing early endowments and increasing later endowments should raise the rate of interest and lower 
land values. 
Notice that the pay-go system gives each agent the same number of apples when he is old that he gave up when he is young, which is a below market 
return on his original contribution. Social security lowers the utility of every agent except the first generation. Samuelson had argued that social 
security could make every agent better off. But his conclusion is false in the model with land. 
It is often said that if only every generation had more children, social security would give better returns, since the young would be able to share the 
burden of helping the old. The trouble with that reasoning is that it ignores the fact that higher population and output growth would mean higher real 
interest rates, which tend to make the social security rate of return as bad as before relative to market interest rates. There is no space to discuss this 
here. 

6 Demography in OLG 

In America since the early 20th century, the generations have alternated in size between big and small. Everybody knows about the baby boom and 
echo baby boom, but the same pattern happened before. Recently many authors have suggested that the retiring of the baby boom generation will 
force stock prices to fall. This has been criticized on the grounds that demography is easy to predict. If agents knew that stock prices would fall when 
the baby boomers retired, they would fall now. These two opposing views can be analysed in the OLG model by allowing generation sizes to 
fluctuate. 
Suppose the small generation is exactly as before, but now we alternate that small generation with a large generation that is identical in every respect, 



except that it is twice as big 

 

 
As before, suppose that land produces 1 unit of output each period. Begin at time 1 with a small generation of young, and suppose the old owns the 
land. 
We investigate whether the price of land and the real interest rate alternate between periods. 
Let rb be the interest rate that prevails when the big generation b is young, and ra prevail when the small generation a is young. Equilibrium can be 
reduced to two equations. The first describes market clearing for goods in odd periods when the small generation is young and the big generation is 
old, and the second equation describes market clearing in even periods, when the big generation is young and the small generation is old. As before, 
we let pa=1/(1+ra) and pb=1/(1+rb). Then 

 

 
These can be simultaneously solved to get 

 

 
 

 

 
It is evident that the price of land is higher in the periods when b is young, since the interest rate is lower. Even though it is perfectly anticipated that 
when the big generation gets old, the price of land will fall, the price does not fall earlier because the interest rate is so low. (This point has been 
made by Geanakoplos, Magill and Quinzi, 2004.) 

7 Impatience and uniform impatience 

We have already suggested that it is useful in understanding the OLG model to consider variations, for example in which consumers live for ever. By 
doing so we shall also gain an important perspective on what view of consumers is needed to restore the usual properties of neoclassical equilibrium 
to an infinite horizon setting, a subject to which we return in Section 8. 
Let us now allow for consumers t A who have endowments et that may be positive in all time periods, and also for arbitrary utilities ut defined on 

uniformly bounded vectors . For ease of notation we assume one good per period. A minimal assumption we need about utilities ut is 
continuity on finite segments, that is, fixing xs for all s>n, ut(x) should be continuous in (x1,…, xn). We also need continuity on L, in some topology, 

but we will not go into these details. We also assume  is uniformly bounded. In short, we suppose consumers may live for ever. 
We shall find that in order to have Walrasian equilibria the consumers must be impatient. Suppose we try to form the truncated economy E0,T as 
before, say for T finite. Since utility potentially depends on every commodity, we could not define excess demands in E0,T unless we knew all the 

prices. To make it into a finite economy, let us call  the version of E0,T in which every agent is obliged to consume his initial endowment during 

periods  and t>T. Clearly  has an equilibrium. For this to give information about the original economy E0,�, we need that consumers do not 
care very much about what happens to them after T, as T gets very far away. This requires a notion of impatience. 
For any vector x, let  be the vector which is zero for t>n, and equal to x up until n. Thus  is the initial n-segment of x. To say that agent t A is 
impatient means that for any two uniformly bounded consumption streams x and y, if , then for all big enough n, . Let us 
suppose that all consumers are impatient. If these segments can be taken uniformly across agents, then we say the economy is uniformly impatient. 
Any finite economy with impatient consumers is uniformly impatient. 
Note that the OLG agents are all impatient, since none of them cares about consumption after he dies, but the economy is not uniformly impatient. 

Even with an economy consisting of all impatient consumers, the truncation argument, applied at an infinite , does not guarantee the existence of 
an equilibrium. For, once we take standard parts, ignoring the infinitely dated commodities, it may turn out that the income from the sale of an agent's 
endowed commodities at infinite t, which he used to finance his purchase of commodities at finite t, is lost to the agent. It must also be guaranteed 

that the equilibria of  give infinitesimal total value to the infinitely dated commodities. Wilson (1981) has given an example of an economy, 
composed entirely of impatient agents, that does not have an equilibrium precisely for this reason. 
On the other hand, if there are only finitely many agents, even if they are infinitely lived, then we have: 
Theorem:  (Bewley, 1972). Let the economy E be composed of finitely many, impatient consumers. Then there exists an equilibrium, and all 
equilibria are Pareto optimal. 
The Pareto efficiency of equilibria in these Bewley economies can be derived from the standard proof of efficiency: since there is a finite number of 
agents, the value of the aggregate endowments is a finite sum of finite numbers, and therefore finite itself. 
In the special case with separable, commonly discounted utilities of the form , with �<1, we have: 



Theorem:  (Kehoe–Levine, 1985). In finite agent, separable commonly discounted utility economies, there is generically a finite number of 
equilibria. 
This theorem has been extended by Shannon (1999) and Shannon and Zame (2002). 
Returning to the case of an infinite number of consumers, Pareto efficiency of equilibria, if they exist, can be guaranteed as long as a finite number of 
the agents collectively hold a non-negligible fraction of total endowment. But that also would guarantee the existence of equilibrium, since in the 

economy  we would then get the summability of the prices, meaning the endowments at infinity would have zero value, as Wilson (1981) pointed 
out. 
It is extremely interesting to investigate the change in behaviour of an economy that evolves from individually impatient to uniformly impatient. 
Wilson (1981) considered an example with one infinitely lived agent, and infinitely many, overlapping, finite-lived agents, and showed that equilibria 
must exist, and all must be Pareto efficient. By the foregoing remarks, no matter what the proportion of sizes of the two kinds of consumers, 
equilibria must exist and be Pareto efficient. Muller and Woodford (1988) showed in a particular case that, when the single agent's proportion of the 
aggregate endowment is low enough, there is a continuum of equilibria, but if it is high enough there is no local indeterminacy. 

8 Comparative statics for OLG economies 

A celebrated theorem of Debreu assets that almost any Arrow–Debreu economy is regular, in the sense that it has a finite number of equilibria, each 
of which is locally unique. Small changes to the underlying structure of the economy (tastes, endowments, and so on) produce small, unique changes 
in each of the equilibria. 
We have already seen that there are robust OLG economies with a continuum of equilibria. If attention is focused on one of them, how can one 
predict to which of the continuum of new equilibria the economy will move if there is a small change in the underlying structure of the economy, 
perhaps caused by deliberate government intervention? In what sense is any one of the new equilibria near the original one? In short, is comparative 
statics possible? 
It is helpful at this point to recall that the OLG model is, in spirit, meant to represent a dynamic economy. Trade may occur as if all the markets 
cleared simultaneously at the beginning of time, but the economy is equally well described as if trade took place sequentially, under perfect foresight 
or rational expectations. Indeed, this is surely what Samuelson envisaged when he introduced money as an asset into his model. Accordingly, when a 
change occurs in the underlying structure of the economy, we can interpret it as if it came announced at the beginning of time, or as if it appeared at 
the date on which it actually affects the economy. 
We distinguish two kinds of changes to the underlying structure of an economy  starting from an equilibrium . Perfectly anticipated changes, 
after which we would look for a new equilibrium that cleared all the markets from the beginning of time, represent one polar case, directly analogous 
to the comparative statics experiments of the Arrow–Debreu economy. At the other extreme we consider perfectly unanticipated changes, say at date 
t=1. Beginning at the original economy and equilibrium , we would look, after the change from  to E��,�, at time t=1 
(say to the endowment or preferences of the generation born at time 1), for a price sequence  in which  for , and 

 for . But at date t=1 we would require q1 to satisfy , where  represents the excess 
demand of the old at time 1, given that when they were young they purchased commodities on the strength of the conviction that they could surely 
anticipate prices  when they got old, only to discover prices q1a instead. 
To study these two kinds of comparative statics, we must describe what we mean by saying that two price sequences are nearby. Our definition is 
based on the view that a change at time t=1 ought to have a progressively smaller impact the further away in time from t=1 we move. We say that q is 
near  if the difference  declines geometrically to zero, both as t�� and as t���. 
We have already noted in Section 1 that the multiplicity of OLG equilibria is due to the fact that at any time t the aggregate behaviour of the young 
generation is influenced by their expectations of future prices, which (under the rational expectations hypothesis) depends on the next generation's 
expectations, and so on. Accordingly we restrict our attention to generations whose aggregate behaviour Zt satisfies the expectations sensitivity 
hypothesis: 

 

 
For economies composed of such generations we can apply the implicit function theorem, exactly as in Section 1, around any equilibrium q to deduce 
the existence of the forward and backward functions Ft and Bt. We write their derivatives at  as Dt and , respectively. 

For finite Arrow–Debreu economies, Debreu gave a definition of regular equilibrium based on the derivative of excess demand at the equilibrium. He
showed that comparative statics is sensible at a regular equilibrium, and then he showed that a ‘generic’ economy has regular equilibria. We follow 
the same program. 
We say that the equilibrium  for the expectations sensitive OLG economy  is Lyapunov regular if the long-run geometric mean of the products 

 and  converge and if to these products we can associate 2L�1 eigenvalues, called Lyapunov exponents. 
The equilibrium is also non-degenerate if in addition none of these Lyapunov exponents is equal to 1. 
Theorem:  (Geanakoplos–Brown, 1985). Let  be an expectations-sensitive economy with a regular non-degenerate equilibrium . Then for 
all sufficiently small perfectly anticipated perturbations E of  (including  itself) E has a unique equilibrium q near . 
Thus the comparative statics of perfectly anticipated changes in the structure of , around a regular, non-degenerate equilibrium, is directly analogous 
to the Arrow–Debreu model. The explanation for the theorem is that a perfectly anticipated change at time 0 gives rise to price changes that have a 
forward stable manifold (on which prices converge exponentially back to where they started) and a backward stable manifold, and that there is only 
one price at time 0 that is on both the forward and the backward stable manifolds. Note, incidentally, that one implication of the above theorem is that 
neutral policy changes, like jawboning or changing animal spirits, that is, those for which  itself remains an equilibrium, cannot have any effect if 
they are perfectly anticipated and move the economy to nearby equilibria. 
Theorem:  (Geanakoplos–Brown, 1985). Let  be an expectations-sensitive economy with a regular equilibrium . Then, for all sufficiently small 
perfectly unanticipated perturbations E of  (including  itself), the set of unanticipated equilibria q of E near  is either empty, or a manifold of 
dimension r,  (L�1 if there is no money in the economy), where r is independent of the perturbation. 
The above theorem allows for the possibility that an unanticipated change may force the economy onto a path that diverges from the original 



equilibrium; the disturbance could be propagated and magnified through time. And if there are nearby equilibria, then there may be many of them. 
(Indeed, that is basically what was shown in Section 4.) In particular, an unanticipated neutral policy change could be compatible with a continuum 
of different equilibrium continuations. The content of the theorem is that, if there is a multiplicity of equilibrium continuations, it is parameterizable. 
In other words, the same r variables can be held fixed, and for any sufficiently small perturbation, there is exactly one nearby equilibrium which also 
leaves these r variables fixed. We shall discuss the significance of this in the next section. 
This last theorem was proved first, in the special case of steady-state economies, by Kehoe–Levine, in the same excellent paper to which we have 
referred already several times. The theorem quoted here, together with the previous theorem on the comparative statics of perfectly anticipated policy 
changes, refers to economies in which the generations may be heterogeneous across time. 
Let us suppose that A is a compact collection of generational characteristics, all of which obey the expectations-sensitive hypothesis. Let us suppose 
that each generation's characteristics are drawn at random from A, according to some Borel probability measure. If the choices are made 
independently across time, then the product measure describes the selection of economies. Almost any such collection will have a complex 
demographic structure, changing over time. The equilibrium set is then endogenously determined, and will be correspondingly complicated. It can be 
shown, however, that 
Theorem:  (Geanakoplos–Brown, 1985). If the economy E is randomly selected, as described above, then with probability 1, E has at least one 
Lyapunov regular equilibrium. 
Note that the regularity theory for infinite economies stops short of Arrow–Debreu regularity. In the finite economies, with probability one all the 
equilibria are regular. 

9 Keynesian macroeconomics 

Keynesian macroeconomics is based in part on the fundamental idea that changes in expectations, or animal spirits, can affect equilibrium economic 
activity, including the level of output and employment. It asserts, moreover, that publicly announced government policy also has predictable and 
significant consequences for economic activity, and that therefore the government should intervene actively in the marketplace if investor optimism 
is not sufficient to maintain full employment. 
The Keynesian view of the indeterminacy of equilibrium and the efficacy of public policy has met a long and steady resistance, culminating, in the 
sharpest attack of all, from the so-called new classicals, who have argued that the time-honoured microeconomic methodological premises of agent 
optimization and market clearing, considered together with rational expectations, are logically inconsistent with animal spirits and the non-neutrality 
of public monetary and bond-financed fiscal policy. 
The foundation of the new classical paradigm is the Walrasian equilibrium model of Arrow–Debreu, in which it is typically possible to prove that all 
equilibria are Pareto optimal and that the equilibrium set is finite; at least locally, the hypothesis of market clearing fixes the expectations of rational 
investors. In that model, however, economic activity has a definite beginning and end. Our point of view is that for some purposes economic activity 
is better described as a process without end. In a world without a definite end, there is the possibility that what happens today is underdetermined, 
because it depends on what people expect to happen tomorrow, which in turn depends on what people tomorrow expect to happen the day after 
tomorrow, and so on. 

Consider the simple one-good per period overlapping generations economy with money , which we discussed in Section 3. Generation 0 is 
endowed with money when old, and equilibrium can be described with the contemporaneous commodity prices  where we take the 
price of money to be fixed at 1. (In this case, as we saw in Section 3, contemporaneous prices are also present value prices.) It is helpful to reinterpret 
the model as a simple production economy. Imagine that the endowment  in the first period of life is actually labour, which can be transformed into 
output, yt, according to the production function, yt=et. We would then think of any purchases of goods by the old generation as demand for real 
output to be produced by the young. The young in turn now derive utility from leisure in their youth and consumption in their old age. Equilibrium in 
which consumption of the old is higher can be interpreted as an equilibrium with less leisure and higher output. 
The indeterminacy of rational expectations equilibrium has the direct interpretation that optimistic expectations by themselves can cause the 
economy's output to expand or contract. In short the economy has an inherent volatility. The Keynesian story of animal spirits causing economic 
growth or decline can be told without invoking irrationality or non-market clearing. 
In fact, the indeterminacy of equilibrium expectations is especially striking when seen as a response to public (but unanticipated) policy changes. 
Suppose the economy is in a long-term rational expectations equilibrium , when at time 1 the government undertakes some expenditures, financed, 
say, by printing money. How should rational agents respond? The environment has been changed, and there is no reason for them to anticipate that 

 will still occur in the future. Indeed, in models with more than one commodity (such as we will shortly consider) there may be no 
equilibrium (p1, p2, p3,…) in the new environment with , , and so on. There is an ambiguity in what can be rationally anticipated. 
We argue that it is possible to explain the differences between Keynesian and monetarist policy predictions by the assumptions each makes about 
expectational responses to policy, and not by the one's supposed adherence to optimization, market clearing, and rational expectations, and the other's 
supposed denial of all three. 
Consider now the government policy of printing a small amount of money, �M, to be spent on its own consumption of real output – or equivalently 
to be given to generation t=0 (when old) to spend on its consumption. Imagine first that agents are convinced that this policy is not inflationary, that 
is, that  will remain the equilibrium price level during the initial period of the new equilibrium. This will give generation t=0 consumption level 

. As long as �M is sufficiently small and the initial equilibrium was one of the Pareto-suboptimal equilibria described in Section 1, 
there is indeed a new equilibrium price path p beginning with . Output at time 1 rises by , and in fact this policy is Pareto improving. 
On the other hand, imagine instead that agents are convinced that the path of real interest rates pt/pt+1�1 will remain unchanged. In this economy, 
price expectations are a function of p1. Recalling the initial period market-clearing equation, it is clear that p1 and all future prices rise proportionally 
to the growth in the money stock. The result is that output is unchanged and the old at t=1 must pay for the government's consumption. If the 
government's consumption gives no agent utility, the policy is Pareto worsening. 
This model is only a crude approximation of the differences between Keynesian and monetarist assumptions about expectations and policy. It is quite 
possible to argue, for example, that holding  (the future inflation rate) fixed is the natural Keynesian assumption to make. This 
ambiguity is unavoidable when there is only one asset into which the young can place their savings. We are thereby prevented from distinguishing 
between the inflation rate and the interest rate. Our model must be enriched before we can perform satisfactory policy analysis. Nevertheless, the 
model conveys the general principle that expected price paths are not locally unique. There is consequently no natural assumption to make about how 
expectations are affected by policy. A sensible analysis is therefore impossible without externally given hypotheses about expectations. These can be 
Keynesian, monetarist, or perhaps some combination of the two. 
Geanakoplos and Polemarchakis (1985) build just such a richer model of macroeconomic equilibrium by adding commodities, including a capital 
good, and a neoclassical production function. With elastically supplied labour, there are two dimensions of indeterminacy. It is therefore possible to 
fix both the nominal wage, and the firm's expectations (‘animal spirits’), and still solve for equilibrium as a function of policy perturbations to the 



economy. These institutional rigidities are more convincingly Keynesian, and they lead to Keynesian policy predictions. Moreover, taking advantage 
of the simplicity of the two-period lived agents, the analysis can be conducted entirely through the standard Keynesian (Hicksian) IS–LM diagram. 
Keynesians themselves often postulate that the labour market does not clear. For Keynesians, lack of labour market clearing has at least a threefold 
significance, which it is perhaps important to sort out. First, since labour is usually taken to be inelastically supplied, it makes it possible to conceive 
of (Keynesian) equilibria with different levels of output and employment. Second, it makes the system of demand and supply underdetermined, so 
that endogenous variables like animal spirits (that is, expectations) which are normally fixed by the equilibrium conditions can be volatile. Third, it 
creates unemployment that is involuntary. By replacing lack of labour market clearing at time 1 with elastic labour supply and lack of market clearing 
‘at infinity’ one can drop what seems to many an ad hoc postulate, yet retain at least the first two desiderata of Keynesian analysis. 

10 Neoclassical equilibrium vs. classical equilibrium 

The Arrow–Debreu model of general equilibrium, based on agent optimization, rational expectations, and market clearing, is universally regarded as 
the central paradigm of the neoclassical approach to economic theory. In the Arrow–Debreu model, consumers and producers, acting on the basis of 
individual self-interest, combine, through the aggregate market forces of demand and supply, to determine (at least locally) the equilibrium 
distribution of income, relative prices, and the rate of growth of capital stocks (when there are durable goods). The resulting allocations are always 
Pareto optimal. 
Classical economists at one time or another have rejected all of the methodological principles of the Arrow–Debreu model. They replace individual 
interest with class interest, ignore (marginal) utility, especially for waiting, doubt the existence of marginal product, and question whether the labour 
market clears. But by far the most important difference between the two schools of thought is the classical emphasis on the long-run reproduction of 
the means of production, in a never-ending cycle. 
Thus the celebrated classical economist Sraffa writes in Appendix D to his book:

It is of course in Quesnay's Tableau Economique that is found the original picture of the system of production and consumption as a 
circular process, and it stands in striking contrast to the view presented by modern theory, of a one-way avenue that leads from ‘Factors 
of Production’ to ‘Consumption Goods.’ 

The title of his book, Production of Commodities by Means of Commodities, itself suggests a world that has no definite beginning, and what is 
circular can have no end. 
In the Arrow–Debreu model time has a definite end. As we have seen, that has strong implications. With universal agreement about when the world 
will end, there can be no reproduction of the capital stock. In equilibrium it will be run down to zero. Money, for example, can never have positive 
value. Rational expectations will fix, at each moment, and for each kind of investment, the expected rate of profit. 
In the classical system, by contrast, the market does not determine the distribution of income. Sraffa (1960, p. 33) writes:

The rate of profits, as a ratio, has a significance which is independent of any prices, and can well be ‘given’ before the prices are fixed. It 
is accordingly susceptible of being determined from outside the system of production, in particular by the money rates of interest. In the 
following sections the rate of profits will therefore be treated as the independent variable. 

Other classical writers concentrate instead on the real wage as determined outside the market forces of supply and demand, for example by the level 
of subsistence or the struggle between capital and labour. Indeterminacy of equilibrium seems at least as central to classical economists as it is to 
Keynesians. 
Like Keynesians, classicals often achieve indeterminacy in their formal models by allowing certain markets not to clear in the Walrasian sense. 
(Again like Keynesians, the labour market is usually among them.) Thus we have called the equilibrium in Section 4 in which some of the markets 
were allowed not to clear a ‘classical equilibrium’. 
What the OLG model shows is that, by incorporating the classical view of the world without definite beginning or end, it is possible to maintain all 
the neoclassical methodological premises and yet still leave room for the indeterminacy which is the hallmark of both classical and Keynesian 
economics. In particular this can be achieved while maintaining labour market clearing. The explanation for this surprising conclusion is that the 
OLG model is isomorphic to a finite-like model in which indeed not all the markets need to clear. But far from being the labour markets, under 
pressure to move towards equilibrium from the unemployed clamouring for jobs, these markets are off ‘at infinity’, under no pressure towards 
equilibrating. 
We have speculated that, once one has agreed to the postulate that the resources of the economy are potentially as great at any future date as they are 
today, then uniform impatience of consumers is the decisive factor, according to Walrasian principles, which may influence whether the market 
forces of supply and demand determine a locally unique, Pareto-optimal equilibrium, or leave room for extra-market forces to choose among the 
continuum of inefficient equilibria. In these terms, the Arrow–Debreu model supposes a short-run impatient economy, and OLG a long-run patient 
economy. 

11 Sunspots 

So far we have not allowed uncertainty into the OLG model. As a result we found no difference in interpreting trade sequentially, with each agent 
facing two budget constraints, or ‘as if’ the markets all cleared simultaneously at the beginning of time, with each agent facing one budget constraint. 
Once uncertainty is introduced these inpts become radically different. In either case, however, there is a vast increase in the number of commodities, 
and hence in the potential for indeterminacy. 
If we do not permit agents to make trades conditional on moves of nature that occur before they are born, then agents will have different access to 
asset markets. Even in finite horizon economies, differing access to asset markets has been shown by Cass and Shell (1983) to lead to ‘sunspot 
effects’. 
A ‘sunspot’ is a visible move of nature which has no real effect on consumers, on account of preferences, or endowments, or through production. In 
the Arrow–Debreu model it also could have no effect on equilibrium trade; this is no longer true when access to asset markets differs. 
The sunspot effect is intensified when combined with the indeterminacy that can already arise in an OLG economy. Consider the simple one good, 
steady state OLG economy of Section 2. Suppose that there is an equilibrium two cycle in present value prices  with p2t=pS 

and p2t+1=pR, for all . Now suppose that the sun is known to shine on even periods, and hide behind rain on odd periods. The above equilibrium 
is perfectly correlated with the sun, even though no agent's preferences or endowments are. As usual, the same prices for  support an equilibrium,

given the right amount of money, in . 



More generally, suppose that the probability of rain or shine, given the previous period's weather, is given by the Markov matrix 

. A steady state equilibrium for , given �, is an assignment of a money price for the commodity, depending only on that 
period's weather, such that, if all agents maximize their expected utility with respect to �, then in each period the commodity market and money 
market clears. Azariadis (1981) essentially showed that, if there is a two-cycle of the certainty economy, then there is a continuum of steady state 
sunspot equilibria. 
The sunspot equilibria, unlike the cyclical equilibria of Section 2, are Pareto suboptimal whenever the matrix � is non-degenerate. 
The combination of the dynamic effects of the infinite horizon OLG model with the burgeoning theory of incomplete markets under real uncertainty, 
is already on the agenda for the next generation's research. 

See Also 

� Arrow–Debreu model of general equilibrium  
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