
INFLATIONARY EQUILIBRIUM IN 
A STOCHASTIC ECONOMY 

WITH INDEPENDENT AGENTS 
 
 
 
 

By 
 

John Geanakoplos, Ioannis Karatzas, 
Martin Shubik, and William D. Sudderth 

 
 
 
 
 

COWLES FOUNDATION PAPER NO. 1420 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
2014 

 
 http://cowles.econ.yale.edu/  

http://cowles.econ.yale.edu/


Journal of Mathematical Economics 52 (2014) 1–11
Contents lists available at ScienceDirect

Journal of Mathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

Inflationary equilibrium in a stochastic economy with
independent agents
John Geanakoplos a,b,∗, Ioannis Karatzas c,d, Martin Shubik a,b, William D. Sudderth e

a Yale University, Box 208281, New Haven, CT 06520-8281, United States
b Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States
c Columbia University, MC 4438, New York, NY 10027, United States
d INTECH Investment Management, One Palmer Square, Suite 441, Princeton, NJ 08542, United States
e University of Minnesota, 224 Church Street SE, Minneapolis, MN 55455, United States

a r t i c l e i n f o

Article history:
Received 30 September 2013
Accepted 24 February 2014
Available online 1 March 2014

Keywords:
Inflation
Economic equilibrium and dynamics
Dynamic programming
Consumption

a b s t r a c t

We prove the existence of stationary monetary equilibrium with inflation in a ‘‘Bewley’’ model with
constant aggregate real variables but with idiosyncratic shocks to the endowments of a continuum of
individual agents, when a central bank stands ready to borrow or lend fiat money at a fixed nominal
rate of interest and the agents face borrowing constraints. We also find that, in the presence of real
micro uncertainty about individual endowments, the rate of inflation is higher (equivalently, the real
rate of interest is lower) than it would be in a ‘‘certainty-equivalent economy’’; to wit, one in which every
agent’s endowment is replaced by its expected value. Thus, underlying microeconomic uncertainty and
borrowing constraints are shown to generate additional inflation.

© 2014 Published by Elsevier B.V.
1. Introduction

We seek to understand the behavior of prices and money in
a simple infinite-horizon economy with a central bank and one
nondurable commodity. Following Bewley (1986) we consider an
economy in which a continuum of agents are subject to idiosyn-
cratic, independent and identically distributed random shocks to
their endowments. At the micro level the economy is in perpetual
flux but, at the macro level, aggregate endowments remain con-
stant across time and states.We prove the existence of a stationary
equilibrium that also remains rock-steady at the macro level de-
spite micro turmoil in individual consumption and saving. Station-
ary equilibrium means that markets clear, and prices and money
grow at a deterministic rate τ , all the while maintaining the same
distribution of real (inflation-corrected) wealth across agents. In
each period some formerly rich agents may become poor, and vice
versa, but the fraction of the population at every level of realwealth
remains the same.

∗ Corresponding author at: Yale University, Box 208281 New Haven, CT 06520-
8281, United States.

E-mail addresses: john.geanakoplos@yale.edu (J. Geanakoplos),
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(M. Shubik), bill@stat.umn.edu (W.D. Sudderth).
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Bewley proved the existence of a stationary equilibrium in
a more general economy than ours, allowing for example for
multiple commodities.1 But his model did not have a central bank
that could change the supply of money over time, and therefore
had no inflation in equilibrium. Inflation seems to complicate the
question of existence of equilibrium. We are not aware of any
other existence proof for stationary equilibrium with inflation in
a Bewley-style model.

On the other hand, there is a large literature on a similar kind
of model without money, but with a capital sector that can be
used to produce output. Huggett (1993) and Aiyagari (1994) prove
the existence of stationary equilibrium.2 Our method of proof uses
many of the same elements: we invoke properties of the dynamic
programming problem just as they did, and thenwe analyze a fixed
point problem involving the real rate of interest (or equivalently
the rate of inflation)much like they did.More recentlyMiao (2002)

1 Bewley also allowed for Markovian random endowments and for heteroge-
neous utility functions. All of these extensions could probably be accommodated
in our setting as well.
2 Huggett’s proof is for the special case where endowments can take on only two

values and utility is given by the functional form u(x) = xα . Aiyagari states his
existence theorem, but the proof appears in an appendix that was not published.
The working paper version of the proof is missing some details.
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and Kuhn (2013) have given existence proofs in similar kinds
of models based on lattice theory. The details of our proof are
different, and we use different assumptions on the utilities. There
is no fiat money in these other models.

Huggett (1997) and Aiyagari (1994), like Laitner (1979, 1992),
Bewley (1986), and Clarida (1990) before them in somewhat
different models, prove that the stationary real rate of interest is
below the time discounting of the agents, without invoking any
assumption on the third derivative of the utilities.3 The cause is
the constraint on borrowing. Ljunqgvist and Sargent (2000) survey
these papers. We obtain analogous results for our model, which
differs in having fiat money with inflation.

In this paper we study a model with a continuum of agents
with a common discount rate β and common instantaneous utility
function u(·), but with idiosyncratic shocks to their endowments
that leave the aggregate endowment constant. For such a model,
and without borrowing or lending, it is already known that
there exists in great generality an equilibrium with a stationary
distribution of nominal wealth and a constant commodity price;
cf. Karatzas et al. (1994). Bewley (1986) showed that such a
noninflationary stationary equilibrium also exists when there is
borrowing and lending but at a zero rate of interest. We confirm
this result in Section 7.6.

We add to the model a central bank committed to borrowing
or lending with every agent at a fixed nominal interest rate ρ >
0. After the recent changes at the Fed instituted by chairman
Bernanke, this corresponds to the ability of the American central
bank to pay interest on deposits as well as to receive interest on
loans. We do not add a Treasury to the model; we simply allow the
central bank to print as much money as it needs to in order to pay
depositors’ interest, or to retire as much money as it receives from
interest payments it receives. We also assume a cash-in-advance
constraint, so that all individual purchases of goods must be paid
for by cash. In the Bewley (1986) model, agents could purchase
commodities by using the revenue obtained by the simultaneous
selling of other commodities; implicitly Bewley assumed a
standing credit market at zero rate of interest. In our model agents
must sell their entire endowment for cash, while simultaneously
buying goods for cash (perhaps borrowed, but at a rate ρ > 0). One
interpretation, similar to that used by Lucas, is that the productive
and consumption arms of each agent act separately.4 This sell-all
assumption makes the existence of monetary equilibrium easier
to demonstrate. Nevertheless, with a central bank fixing a positive
rate of interest, a noninflationary equilibrium rarely exists. (A
necessary condition for existence is that the bank selects an
interest rate that ‘‘balances the books’’ so that all the lending
comes from one agent to another and the aggregate money supply
remains constant; see Karatzas et al., 1997 and Geanakoplos et al.,
2000.) In an inflationary equilibrium, the supply of outside money
that agents own free and clear of any obligations at the beginning
of each period must change over time. This non-existence of
stationary equilibrium creates the added complication in our
models compared to the rest of the Bewley-style literature.

We prove here the existence of stationary inflation-corrected
equilibrium, under certain technical conditions and under a critical
borrowing constraint (Theorem 7.1), for any ρ > 0. More specif-
ically, we assume that all agents have a strictly concave utility
functionu(·)whose derivative is bounded away fromzero. Another
important assumption is that agents can only borrow up to a frac-
tion θ of the discounted value of their current endowment. As long

3 Huggett (1997) proves that all equilibria must have this property, while some
of the other papers prove that at least one equilibrium must have this property.
4 Another interpretation is that no agent can eat his own endowment, but is

indifferent to the goods of all others.
as θ ≤ 1, we have a model of lending secured by future income
and without any chance of default around equilibrium. We were
not able to establish existence in general with θ = 1, though we
show that such an equilibrium does exist in the absence of microe-
conomic uncertainty (Example 6.1). Instead we prove the weaker
result that stationary inflation-corrected equilibrium exists when-
ever 0 ≤ θ ≤ θ∗(ρ), where the upper bound θ∗(ρ) ∈ (0, 1)
decreases as ρ increases. The need for such an upper bound illus-
trates the difference between our model and the previous Bewley,
Huggett, and Aiyagari models.

The existence of inflation-corrected equilibrium allows us
to study the effect of micro uncertainty and of the borrowing
constraint on the rate of inflation and on the real rate of interest.
In a world of micro certainty, which we could obtain in our setting
by replacing each individual agent’s random endowment with its
expected value, the rate of inflation τ would necessarily satisfy the
famous Fisher equation

τ = β(1 + ρ),

provided θ = 1. The Fisher equation also holds in our model, even
with uncertainty, if the equilibrium is interior; that is, if agents
never forgo consumption and if they are never forced by the collat-
eral constraint to borrow less than they would like (Theorem 5.1).

We prove, however, that if θ ≤ θ∗(ρ), then there is always an
equilibrium in which τ > β(1 + ρ), whether or not there is micro
uncertainty and no matter what the sign of u′′′(·) (Theorem 7.1).
Our paper thus establishes the principle that borrowing constraints
generate additional inflation beyond what would be predicted by
the central bank rate of interest and the discount rate of the agents.

We prove that if there is genuine micro uncertainty, and if the
marginal utility function u′(·) is strictly convex, then all stationary
equilibria have τ > β(1 + ρ), irrespective of the bound θ on
borrowing. Thus, with genuine randomness in the endowments
andwith u′(·) strictly convex, stationary equilibrium can only exist
when a non-negligible fraction of the agents is up against their
borrowing constraints (Theorem 5.2). Thus micro uncertainty and
borrowing constraints increase the rate of inflation beyond what
might be expected from the Fisher equation.

We can also interpret our result in terms of the implied real
rate of interest rather than in terms of the rate of inflation. Fisher
defined the real rate of interest ρ̄ by

1 + ρ̄ ≡
1 + ρ

τ
.

In our model with certainty and θ = 1, the Fisher equation must
hold; that is, the real rate of interest necessarily equals the recip-
rocal of the discount: 1/β = 1+ ρ̄. Our Theorems 7.1 and 5.2 show
that, with genuine micro uncertainty, the real rate of interest will
be less than the reciprocal of the time discount. This interpretation
of our inflation principle shows its close resemblance to the results
of Huggett (1997), Aiyagari (1994), Laitner (1979, 1992), Bewley
(1986), and Clarida (1990), where it is typically assumed that the
agents can trade a real bond that pays the same inflation-corrected
amount in each future state.

In an earlier paper on this subject (Karatzas et al., 2006)
we showed that macroeconomic uncertainty creates inflation.
There we had a representative agent and random i.i.d. aggregate
endowments. Prices necessarily jumped around from period to
period, but we showed that, in stationary equilibrium, the long-
run rate of inflation was always uniquely defined and higher than
β(1 + ρ). There we did not need to invoke a borrowing constraint
more severe than necessary to rule out default. Taken together,
our two papers provide a causal link between fluctuations in
endowments (or production) and inflation.

A precise formulation of our model, and of equilibrium, is given
in the next section. The notion of stationary equilibrium is defined
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in Section 3. Section 4 describes the optimization problem of the
agent in our infinite-horizon economy. Section 5 is on interior
equilibria and the Fisher equation. Section 6 presents two simple
examples for which stationary interior equilibria exist, an example
with a non-interior equilibrium with inflation rate τ > 1, and also
an example with no stationary equilibrium. Our existence proof
is in Section 7. The final section has a brief comparison of the
representative agent model to the model of this paper.

2. The model

The model runs in discrete time units n = 1, 2, . . . and has
a continuum of agents α ∈ I indexed by the unit interval I =

[0, 1]. Each agent α seeks to maximize the expectation of his total
discounted utility from consumption, namely

E


∞
n=1

βn−1u(cαn )


. (2.1)

Here β ∈ (0, 1) is a discount factor, cαn is the agent’s (possibly
random) consumption in period n, and u : [0,∞) → [0,∞) is a
concave, continuous, nondecreasing utility functionwith u(0) = 0.
The utility function u(·) is assumed to be the same for all agents,
but agent endowments are heterogeneous.

At time-period n = 1, each agent begins with a non-random
amount mα

1 ∈ [0,∞) of cash (fiat money, or nominal wealth);
there is no dispensation of cash thereafter. The total amount of cash
initially held by the agents is the constant

M1 =


I
mα

1 dα,

which we assume to be finite and strictly positive.
At each time-period n ≥ 1, every agent receives an endow-

ment Y αn ≥ 0 of the (perishable) consumption good. The ran-
dom variables Y αn , and all other random variables in this paper, are
defined on a given probability space (Ω,F , P). All the variables
Y αn , α ∈ I, n ∈ N are assumed to be nonnegative and to have a
common distribution λwith

0 < Q :=


[0,∞)

y λ(dy) < ∞.

For each agent α, the random variables Y α1 , Y
α
2 , . . . are assumed to

be independent as well as identically distributed.
If we were to assume that, for each n ∈ N, the random

commodity endowments Y αn were the same for all agents α ∈ I ,
then we would have the representative agent model of Karatzas
et al. (2006). The model of the present paper differs from the
representative agent model, in that the random endowments vary
here from agent to agent and aggregate to a constant. Thus, we
assume that the integrals

I
Y αn (ω) dα = Qn(ω) = Q (2.2)

are constant across time-periods n ∈ N and states ω ∈ Ω . We as-
sume further that the random endowments Yn(α, ω) ≡ Y αn (ω) are
jointly measurable in (α, ω), where the variable α ranges over the
index set I = [0, 1] and the variable ω ranges over the probability
spaceΩ . Furthermore, the distribution of Yn(·, ω) on I is the same
for each fixedω, as that of Yn(α, ·) onΩ for each fixed α; this com-
mon distribution, namely λ, is assumed also to be constant in n. (A
simple construction of random variables with these properties is
in Feldman and Gilles, 1985.) We often use Y to denote a generic
random variable that has this distribution. A consequence of our
assumptions about the random endowments is that

E(Y ) =


Ω

Yn(α, ω) P(dω) =


I
Yn(α, ω) dα = Q .
2.1. Money and commodity markets

Agents know the central bank interest rate ρ, and they know
the equilibriumprice function pn(ω). Each period n beginswith the
agents learning their endowments Y αn (ω) and the commodity price
pn(ω). Since in the equilibriawe study pn(ω) = pn does not depend
on the state of natureω, we do not need to explain how they come
to know the price before the market meets.

Twomarkets meet in every period. First, each agent can borrow
cash from (or deposit cash into) a central bank at the fixed interest
rate ρ ≥ 0 set by the central bank. Next, agents must sell all their
endowment of the good for cash in a commodity market. At the
same time, each agent α bids an amount bαn (ω) of cash, to purchase
goods for consumption from themarket. These purchases and sales
come at the same price pn(ω). At the end of the time-period, loans
come due.

The budget set of each agentα ∈ I is then defined recursively as
follows: let mα

n (ω) be the amount of cash or nominal wealth with
which the agent enters period n, and recall that the initial amount
of cash mα

1 (ω) = mα
1 has been fixed. In period n the agent can

lend no more than the cash mα
n (ω) he has on hand; he is allowed

to borrow no more than θpn(ω)Y αn (ω)/(1 + ρ). The agent will be
able to pay back the loan with interest from the revenue derived
from the sale of his endowment Y αn (ω). The choice θ = 1 of the
parameter means the bank is willing to grant full credit, while the
choice θ = 0 means the bank will lend nothing at all; choices of
θ ∈ (0, 1) correspond to levels of partial credit.

After leaving the loanmarket the agent can bid at most the cash
he has on hand, plus the amount he has borrowed, so bαn (ω) is
required to satisfy

0 ≤ bαn (ω) ≤ mα
n (ω)+

θpn(ω)Y αn (ω)
1 + ρ

.

The agent is borrowing bαn (ω)−mα
n (ω) if that is positive or lending

mα
n (ω)− bαn (ω) otherwise.
The agent α ∈ I receives from the market his bid’s worth of

goods cαn (ω) = bαn (ω)/pn(ω) and consumes these perishable goods
immediately, thereby receiving u(cαn (ω)) in utility. He then repays
the bank in full and with interest, or is repaid himself with interest
on his loan. Thus, at the beginning of the next period, the agent has
a random endowment Y αn+1(ω) of goods and an amount

mα
n+1(ω) = (1 + ρ)


mα

n (ω)− bαn (ω)

+ pn(ω)Y αn (ω) (2.3)

in cash. When the agent chooses his credit decision and his bid
bαn (ω) at time n, he is assumed to know his cash position mα

n (ω),
his endowment Y αn (ω), the price pn(ω), as well as the bank interest
rate ρ.

2.2. Equilibrium

We shall define formally a special kind of equilibrium in the
next section. Roughly speaking, equilibrium is given by prices
pn(ω) and choices bαn (ω) thatmaximize each agent’s expected total
discounted utility over his budget set, in such a way that bαn (ω)
is measurable in α for every n, and every market clears. Denoting
the total bid by Bn(ω) :=


bαn (ω) dα and the total endowment of

goods offered for sale by Qn(ω) :=

Y αn (ω) dα = Q , commodity

market-clearing means

pn(ω) =
Bn(ω)

Q
.

Let Cn(ω) :=

I c
α
n (ω) dα be the total consumption in period n.

When the commodity market clears, we have

Cn(ω) =
Bn(ω)

pn(ω)
= Qn(ω) = Q .
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Note that the credit markets clear automatically, since the central
bank stands ready to absorb any excess lending or borrowing.

Suppose we are in equilibrium, and denote the total amount of
cash (ormoney supply, or total nominal wealth) held by the agents
in period n by

Mn(ω) :=


I
mα

n (ω) dα.

Integrating out α in the law of motion (2.3), we obtain

Mn+1(ω) = (1 + ρ)

Mn(ω)− Bn(ω)


+

Bn(ω)

Qn(ω)
· Qn(ω) = (1 + ρ)Mn(ω)− ρBn(ω). (2.4)

This equality can be rewritten as

Mn+1(ω)− Mn(ω) = ρ

Mn(ω)− Bn(ω)


,

reflecting the policy of the central bank to pay nominal interest ρ
on all deposits and stand ready to print the necessary amount of
new cash to cover the expenditure from these interest payments.
If ρ = 0, then Mn+1(ω) = Mn(ω) and the money supply is the
same in every period.

It is possible for the money supply to be conserved in equilib-
rium even for some ρ > 0; see Karatzas et al. (1997) and Geanako-
plos et al. (2000). However, one expects that generically themoney
supply will not remain constant when ρ > 0: genuine inflation
must then be considered.

3. Stationary Markovian equilibrium with inflation

In this section we define stationary equilibrium. As we saw in
the last section, this will often require a non-zero inflation rate.

A stationary Markovian equilibrium with inflation (stationary
equilibrium, or SE for short) is an equilibrium, as described briefly
in the last section, that turns out to be completely deterministic
in the aggregate level but possibly very random at the micro level.
More precisely, it is an equilibrium in which the price level and
the money supply grow deterministically at a constant inflation
rate, and the distribution of real wealth stays the same each period.
Formally, we require conditions (a), (b), and (c) below.

3.1. Definition of inflation-corrected SE

In period n = 1 the price level is the number p1 ∈ (0,∞), and
in every subsequent period it rises (or falls) at some constant rate
τ > 0:

(a) pn(ω) = τ n−1p1 for all n ≥ 1, ω ∈ Ω.

Similarly, the aggregate money supply starts out atM1 =

I m

α
1 dα

∈ (0,∞) and should rise (or fall) deterministically at the same
inflation rate τ thereafter:

(b)Mn(ω) = τ n−1M1 for all n ≥ 1, ω ∈ Ω.

The purchasing power of one dollar of money, or a real dollar, is
defined in any period or state by the reciprocal of the price level
1/pn(ω). The real wealth, with which an agent starts a period, is
then given by rαn (ω) = mα

n (ω)/pn(ω) and his initial real wealth is

rα1 = mα
1/p1.

The aggregate purchasing power, or aggregate real wealth, must
then be a constant in SE, namely

Rn(ω) :=


I
rαn (ω) dα = Mn(ω)/pn(ω) = M1/p1 = R.

Letµn(ω) be the distribution of real wealth in period n, defined by

µn(ω)(E) := L

α ∈ [0, 1] : rαn (ω) ∈ E


,

where L is Lebesgue measure and E is a Borel subset of [0,∞)
(we include ω in this definition to emphasize that, in general, the
measuresµn are random). The mean ofµn(ω) is just the aggregate
real wealth in period n; that is,

[0,∞)

r µn(ω)(dr) =


I
rαn (ω) dα = Rn(ω) = R.

In stationary equilibrium we should have that µn remains the
same in every period and in every state:

(c) µn(ω) = µ for all n ≥ 1, ω ∈ Ω.

3.2. Macro equations in inflation-corrected SE

It is worthwhile noting five macro equations, namely (3.3)–
(3.7) below, that must hold in stationary equilibrium. Dividing by
pn(ω) in the law of motion (2.3) and recalling that in stationary
equilibrium τ = pn+1(ω)/pn(ω), we get

mα
n+1(ω)/pn(ω) = (1 + ρ)


mα

n (ω)− bαn (ω)

/pn(ω)

+ Y αn (ω) (3.1)

or equivalently

rαn+1(ω) · τ = (1 + ρ)

rαn (ω)− cαn (ω)


+ Y αn (ω). (3.2)

Integrating the last equation over agents α ∈ I , and noting that in
stationary equilibrium themacro variables do not depend onω, we
get the macro law of motion

Rn+1 · τ = (1 + ρ)(Rn − Cn)+ Q . (3.3)

In stationary equilibrium we must also have

µn+1 = µn = µ, (3.4)

and from this it follows

Rn+1 = Rn = R. (3.5)

We also need to clear the commodity markets; that is, we need

Cn+1 = Cn = Q . (3.6)

The macro law of motion (3.3), together with (3.5) and (3.6),
guarantees that

τ = 1 + ρ − ρ ·
Q
R
, (3.7)

as can be seen by substitution.
Conversely, (3.3), (3.4), and (3.7) guarantee (3.5) and (3.6).

Remark. The conditions (a), (b), and (c) also follow from (3.3)–
(3.7). Indeed, condition (c) is the same as (3.4). To obtain condition
(a), we integrate with respect to α in (3.1) and use (3.3), to obtain

Mn+1

pn
= (1 + ρ)


Mn

pn
−

Bn

pn


+ Q

= (1 + ρ)(Rn − Cn)+ Q

= τ · Rn+1 = τ ·
Mn+1

pn+1
.

Hence, pn+1 = τ · pn and (a) holds. We then have from (3.5) that

R = Rn =
Mn

pn
=

Mn

τ n−1 · p1
, thus Mn = τ n−1 p1 · R = τ n−1 M1

and (b) also holds.
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3.3. Finding stationary equilibrium

As long as the inflation and interest rates remain constant
and the random endowments are independent and identically
distributed from period to period, the optimal strategy for any
agent is clearly to make a bid which determines a consumption
that depends only on his current real wealth r and commodity
endowment y.

Let c(·, ·) be a measurable function specifying the consumption
c(r, y) for an agent with real wealth r and goods y. The consump-
tion function c(·, ·) is said to be budget-feasible for the credit param-
eter θ if, for all r ≥ 0 and y ≥ 0, we have

0 ≤ c(r, y) ≤ r +
θy

1 + ρ
. (3.8)

(A colleague points out that in many macro models the quantity
(1 + ρ)r + y of ‘‘cash on hand’’ is a sufficient state, but this is not
the case here because of the borrowing constraint.) Such a function
c(·, ·) determines budget-feasible bids for all agents α ∈ I accord-
ing to

bαn (ω) = pn(ω) c

rn(ω), Y αn (ω)


, ∀n ∈ N, ω ∈ Ω. (3.9)

• To find an SE, we can first guess a consumption function c(·, ·)
and an initial distribution µ of real wealth. Then we let R = R(µ)
be themean ofµ, and set τ = τ(µ) according to the equality (3.7).
To see whether the pair (µ, c) determines an SE we must check
that, if every agent follows the consumption strategy c(·, ·) (that
is, bids according to the recipe in (3.9) using only knowledge of
his current real wealth, of his current endowment, and of the cur-
rently prevailing price), and if the random variables R (a proxy for
real wealth) and Y (a proxy for endowment) are independent with
distributions µ and λ, respectively, thenR :=


(1 + ρ)


R − c(R, Y )


+ Y


/ τ , (3.10)

the proxy for the new real wealth induced by the law of motion,
has again distribution µ.

Indeed, the equalities (3.3) and (3.4) are immediate and (3.7)
holds by construction. Conditions (a), (b), and (c) follow as was
explained in the remark of the preceding section. Lastly, we must
verify that the consumption function strategy c(·, ·) is optimal for
the individual agents’ problem. The next section discusses how.

4. Dynamic programming for a single agent

Suppose the economy is in stationary equilibriumwith inflation
rate τ . Then a single agent with real wealth r and goods y faces
an infinite-horizon dynamic programming problem. In this section
we collect several properties of this one-person problem for use in
subsequent sections.

Recall that the utility function u(·) is assumed to be a concave,
continuous, nondecreasing mapping from [0,∞) into itself. Let
V (r, y) ≡ V(ρ,τ )(r, y) be the agent’s value function; that is,
V (r, y) is the supremum over all strategies of the agent’s expected
discounted total utility in (2.1).

If β(1 + ρ) > τ , then it can happen that V (r, y) = ∞. For
example, if u(x) = x and r1 = r > 0, an agent can save all his
money for the first n periods so that rn ≥ [(1 + ρ)/τ ]n−1 r , then
spend it all on consumption to obtain a discounted utility of at least
[β(1+ρ)/τ ]n−1 r . This quantity can then bemade arbitrarily large,
by choosing n to be large.

If the utility function u(·) is bounded, or if β(1 + ρ) ≤ τ ,
then it is not difficult to see that V (r, y) < ∞. (Notice that the
concave, real-valued function u(·) is dominated by some affine
function ũ(x) = a + bx and so it suffices to check that V (·, ·) is
finite for linear utilities.) In our search for stationary equilibria, we
confine ourselves to the caseβ(1+ρ) ≤ τ . Thus, to avoid annoying
technicalities, we assume that V (·, ·) is everywhere finite.

A plan π is called optimal if, for every initial position (r, y), the
expected value under π of the total discounted utility is V (r, y).
If c(·, ·) is a feasible bid function as in (3.3), the stationary plan π
corresponding to the use of c(·, ·) at every stage of play is written
π = c∞.

Lemma 4.1. (a) The value function V (·, ·) is concave, and satisfies
the Bellman equation

V (r, y) = sup
0≤c≤r+ θy

1+ρ


ψ(r,y)(c ; V )


(4.1)

where

ψ(r,y)(c ; V ) := u(c)+ β · E V

1 + ρ

τ
(r − c)+

y
τ
, Y

. (4.2)

(b) If the stationary plan π = c∞ is optimal, then c(r, y) ∈

argmax {ψ(r,y)(· ; V )} for all (r, y).
(c) If either τ > β(1 + ρ) or u(·) is bounded, and c(r, y) ∈

argmax {ψ(r,y)(· ; V )} for all (r, y), then the plan π = c∞ is
optimal.

Sketch of Proof. The proof that V (·, ·) is concave is similar to that
given for Theorem 4.2 in Geanakoplos et al. (2000) (the main ideas
go back at least to Bellman, 1957).

The Bellman equation holds in great generality; see, for
example, Section 9.4 of Bertsekas and Shreve (1978)—which also
contains standard facts from dynamic programming that lead to
assertion (b).

Part (c) follows from the characterization, originally due to
Dubins and Savage (1965), of optimal strategies as being those that
are both ‘‘thrifty’’ and ‘‘equalizing’’. In our context, ‘‘thriftiness’’ is
equivalent to the condition that π selects actions which attain the
supremum in the Bellman equation. On the other hand, every plan
is equalizing if τ > β(1 + ρ) holds, or if the utility function u(·) is
bounded; see Rieder (1976) or Karatzas and Sudderth (2010) for a
development of the Dubins–Savage characterization in the context
of dynamic programming. �

For the rest of this section we impose the following additional
requirements on the utility function.

Assumption 4.1. The utility function u(·) is strictly concave and
strictly increasing on [0,∞), differentiable on (0,∞) with 0 <
u′

+
(0) < ∞.

The function ψ(r,y)(·) ≡ ψ(r,y)(· ; V ) of (4.2) is concave, since
both u(·) and V (·, ·) are concave. Also, ψ(r,y)(·) is strictly concave
when u(·) is, and therefore achieves its maximum at a unique
point. We define a specific bid function c(·, ·) = c(ρ,τ )(·, ·) by

c(r, y) = argmax

ψ(r,y)(c) : 0 ≤ c ≤ r +

θy
1 + ρ


. (4.3)

Under Assumption 4.1 it follows from Lemma 4.1(b) that, if there
is an optimal plan, then it must be the plan π = c∞. Furthermore,
if either τ > β(1 + ρ) or u(·) is bounded, then, by Lemma 4.1(b)
and (c), π = c∞ is the unique optimal plan.

The next lemma and its proof are similar to results in Geanako-
plos et al. (2000).

Lemma 4.2. Under Assumption 4.1 we have:

(a) The value function V (r, y) is strictly increasing in each variable
r, y.

If, in addition, the plan π = c∞ is optimal, then
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(b) The value function V (r, y) is strictly concave in each variable r
and y.

(c) The functions c(r, y) and r − c(r, y) are strictly increasing in r, for
each fixed y. Hence c(r, y) is continuous in r, for each fixed y. Also,
c(r, y) is strictly increasing in y, for each fixed r.

(d) c(r, y) → ∞ as r → ∞ for fixed y.
(e) c(r, y) > 0 if max{r, y} > 0 and τ > β(1 + ρ).

Proof. Part (a) is clear from the fact that an agent with more cash
or goods can spend more at the first stage and be in the same
position at the next stage as an agent with less. For part (b) we
will show the strict concavity of V (r, y) in r . The proof of strict
concavity in y is similar. Let us consider, then, two pairs (r, y) and
(r, y) with r < r , and set r̄ = (r +r)/2. It suffices to show that
V (r̄, y) > (V (r, y)+ V (r, y))/2. Let (r1, y1) = (r, y) and consider
the sequence {(rn, yn)}n∈N of successive positions of an agent who
starts at (r1, y1) and follows the plan π . Also let (r1, y1) = (r,y) =

(r, y) and consider the coupled sequence {(rn,yn)}n∈N for an agent
who starts at (r,y), follows π , and receives the same income
variablesyn = yn for n ≥ 2. Set cn = c(rn, yn) andcn = c(rn,yn)
for all n ≥ 2. Finally, consider a third agent who starts at (r̄, ȳ) =

(r̄, y), receives the same income variables ȳn = yn, and, at every
stage n, plays the action c̄n = (cn +cn)/2. Let (r̄n, ȳn) = (r̄n, yn) be
the successive positions of this third agent. It is easily verified that
r̄n = (rn +rn)/2 for all n ≥ 2 and that the actions c̄n are feasible at
every stage. Hence,

V (r̄, y) ≥ E


∞
n=1

βn−1u(c̄n)


.

Since u(·) is concave, we have u(c̄n) ≥

u(cn)+ u(cn)/2 for every

n ∈ N, and this inequality must be strict with positive probability
for some n. This is because u(·) is strictly concave and V (r, y) >
V (r, y) by part (a), which implies thatcn > cn holds with positive
probability for some n. Hence

E
∞
n=1

βn−1u(c̄n) > E
∞
n=1

βn−1(u(cn)+ u(cn))/2
=

V (r, y)+ V (r, y)/2,

and the proof of (b) is now complete. For the proof of part (c), we
first observe that if u(·) and w(·) are strictly concave functions
defined on [0,∞), then it is an elementary exercise to show that

argmax
0≤c≤r+ θy

1+ρ


u(c)+ w(r − c)


is strictly increasing in r . By part (b), the function

w(x) = β · E V

1 + ρ

τ
· x +

y
τ
, Y


is strictly concave. Since ψ(r,y)(c) = u(c) + w(r − c), the strict
increase of c(r, y) in r follows from our observation. A symmetric
argument shows r − c(r, y) is strictly increasing in r . We can also
write ψ(r,y)(c) = u(c)+ v(y − (1 + ρ)c), where

v(x) = β · E V

1
τ

· x +
1 + ρ

τ
· r, Y


.

Thus, a very similar argument shows the strict increase of c(r, y)
in y. The proof of (d) is the same as the proof of Theorem 4.3
in Karatzas et al. (1994). The proof of (e) is given in detail for a
similar problem in Geanakoplos et al. (2000)—see the proof there
of Theorem 4.2. �

The bid c is an called interior at position (r, y), if

0 < c < r +
θy

1 + ρ
.

The final result of this section establishes the Euler equation for
interior actions.

Lemma 4.3. Assume that π = c∞ is optimal.
If c(r, y) > 0, then

u′(c(r, y)) ≥
β(1 + ρ)

τ
· E[u′(c(r,Y ))], (4.4)

where

r =
1 + ρ

τ


r − c(r, y)


+

y
τ

(4.5)

and the random variableY has distribution λ.
If c(r, y) < r + θy/(1 + ρ), then the inequality opposite

to (4.4) holds. Thus, if the action c(r, y) is interior at (r, y), in the sense
that

0 < c(r, y) < r + θy/(1 + ρ)

holds, we have the Euler equation

u′(c(r, y)) =
β(1 + ρ)

τ
· E[u′(c(r,Y ))]. (4.6)

Proof. To prove the first assertion, let c1 = c(r, y) and 0 < ε < c1.
Consider a planπ at (r, y) that bidsc1 = c1 − ε in the first period
andc2 = c2 +

1+ρ
τ
ε in the second, where c2 = c(r,Y ) is the bid

of plan π in the second period. Thus, an agent using π is in the
same position after two periods, as is an agent using π . Suppose
that from the second period onward, π agrees with π . The return
from π cannot exceed the return from the optimal plan π . Since
the two plans agree after stage two, we have

u(c1 − ε)+ β · E

u

c2 +

1 + ρ

τ
ε


≤ u(c1)+ β · E[u(c2)],

and inequality (4.4) follows easily from this. The proof of the
reverse inequality when c(r, y) < r + θy/(1 + ρ) is similar. �

5. The Fisher equation

The most famous equation in monetary economic theory was
proposed by Irving Fisher in 1931. It defines the ‘‘real’’ rate of
interest as the nominal rate of interest, minus the rate of inflation
(after taking logarithms). When the price level for the next period
is certain, as it is in stationary equilibrium, the real rate of interest
describes precisely the trade-off between consumption today and
consumption tomorrow.

In a world of consumption without uncertainty, one can infer
the discount rate of the agents from the real rate of interest. If
there is no uncertainty in the endowments, then in stationary
equilibrium our model must have

1/β = (1 + ρ)/τ .

We shall see, however, that when there is uncertainty in
consumption, Fisher’s real rate of interest typically underestimates
how much agents discount the future.

We shall assume in this section that the economy is in station-
ary equilibriumwith relativewealth distributionµ and optimal bid
function c(·, ·). We continue to impose Assumption 4.1.

Definition 5.1. We say that the SE

µ, c


is interior, if for all (r, y)

in a set of full µ⊗ λmeasure, we have

0 < c(r, y) < r +
θy

1 + ρ
.
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If an SE is interior, then the Fisher equation must hold, as our
next result demonstrates.

Theorem 5.1. In an interior SE, we have τ = β(1 + ρ).

Proof. By interiority, the Euler equation (4.6) holds for almost
every (r, y) with respect to the product measure ν = µ ⊗ λ. By
stationarity, if the random vector (R, Y ) has distribution ν, and ifY is an independent random variable with distribution λ, then in
the notation of (3.10) the vector (R,Y ) has also distribution ν. But
then the Euler equation (4.6) gives a.s.

u′(R, Y ) =
β(1 + ρ)

τ
· E

u′

c(R,Y ) | R, Y


;

taking expectations on both sides, recalling that the random vec-
tors (R, Y ) and (R,Y ) have common distribution ν, and canceling
the common integral on both sides of the resulting equality, we
obtain 1 = β(1 + ρ)/τ . �

We develop in the next section two simple examples of interior
SE’s, for which the Fisher equation holds. However, these two
examples do not involve uncertainty coupled with risk-aversion;
they give a completely misleading picture.

When the marginal utility function u′(·) is strictly convex, and
there is uncertainty in the endowments, there is no interior SE and
τ > β(1 + ρ). Then the Fisher equation fails in many situations
of interest that include the exponential utility function u(x) = 1 −

e−x, x ≥ 0, as our next result shows.

Theorem 5.2. Suppose that u′(·) is strictly convex and the endow-
ment random variable Y is not constant. Then, in any SE, we have
τ > β(1 + ρ). In particular, there cannot exist an interior SE.

Proof. The second assertion is immediate from the first, in
conjunction with Theorem 5.1. To prove the first assertion, assume
by way of contradiction that (µ, c) is an SE with τ ≤ β(1 + ρ). At
any position (r, y) such that c(r, y) > 0, Lemma 4.3 gives

u′ (c(r, y)) ≥
β(1 + ρ)

τ
· E

u′

c
r,Y

≥ E

u′

c
r,Y . (5.1)

Even if c(r, y) = 0, it is clear from the concavity of u(·) that the
first term in (5.1) is at least as large as the last term, if we set u′(0)
equal to the derivative from the right at zero. By assumption, the
distribution λ ofY is not a point-mass and u′(·) is strictly convex.
Furthermore, by Lemma 4.2(c), the mapping y → c(r, y) is strictly
increasing, so the distribution of c(r,Y ) is nontrivial and Jensen’s
inequality gives

E

u′

c
r,Y > u′


E

c
r,Y . (5.2)

Sinceu′(·) is strictly decreasing,wededuce from (5.1) and (5.2) that
the inequality c(r, y) < E[c(r,Y )] must then hold for all (r, y); in
particular, we obtain the a.s. inequality

c(R, Y ) < E

c
R,Y 

in the notation developed for the proof of Theorem 5.1. But this is
impossible, since the random vectors (R, Y ) and (R,Y ) have the
same distribution in stationary equilibrium. �

6. Three simple examples, and a counterexample

The first example is the case where there is no randomness in
the economy.
Example 6.1. Assume that the random variable Y is identically
equal to a constant y > 0, that the interest rateρ is strictly positive,
and that θ = 1. Suppose that the utility function u(·) satisfies
Assumption 4.1. We shall find a class of stationary equilibria.

From the last section we guess that, without uncertainty, there
will be an interior equilibrium, and that the Fisher equation will
hold (Theorem 5.1), so we conjecture

τ = β(1 + ρ).

We know from (3.7) that in stationary equilibrium the aggregate
real wealth must be

R =
ρ

1 + ρ − τ
· Q =

ρ

(1 − β)(1 + ρ)
· Q . (6.1)

Let µ be an arbitrary real wealth distribution with mean
[0,∞]

r µ(dr) = R. Since β(1 + ρ) = τ and Y is the constant y,
the Euler equation (4.6) takes the form

u′ (c(r, y)) = u′

c(r̃, y)


,

which holds when consumption c = c(r, y) = c(r̃, y) remains
constant. Now an agent’s consumption will be constant if his real
wealth remains constant, hence we need

r =r =
1 + ρ

τ
(r − c)+

y
τ
,

or equivalently

c(r, y) ≡ c = [(1 + ρ − τ)r + y]/(1 + ρ)

= (1 − β)r +
y

1 + ρ
. (6.2)

This stationary bidding strategy is clearly interior, and satisfies the
Euler equation by construction. Likewise, the usual transversality
condition clearly holds, since rn = r for all n and so

βnrnu′(c(rn, yn)) = βnru′(c(r, y)) → 0 as n → ∞.

Hence, the bid function c(·, ·) of (6.2) determines an optimal strat-
egy (see Stokey and Lucas, 1989).

Since every individual maintains the same real wealth r , the
distribution µ of wealth is stationary. It follows that the pair
µ, c( ·, · )


is an SE. �

For the next example we take the agents to be risk-neutral.

Example 6.2. Assume that ρ > 0, θ ∈ [0, 1], and take u(x) = x
for all x. For this utility function the Bellman equation of (4.1) is
relatively straightforward to solve, and a stationary equilibrium
easy to compute. This time we allow for random Y . We showed
in Theorem 5.2 that there cannot exist an interior stationary
equilibrium for u(·) strictly concave and with strictly convex
derivative u′(·). Here, however, u(·) is linear, so we look for an
interior SE anyway.

If there is an interior SE, then by Theorem 5.1 the Fisher
equation will hold and we can set

τ = β(1 + ρ).

As before, the aggregate wealth will have to be given by (6.1).
Letµ be an arbitrary realwealth distributionwith


[0,∞)

r µ(dr)
= R. Agents could very well pursue exactly the same strategy as in
the last example, bidding for consumption

c(r, y) = (1 − β)r +
y

1 + ρ
,

just as in (6.2),when their realwealth is r ≥ 0 and their commodity
endowment is y ≥ 0. With such a bidding strategy, the relative
wealth of the agent does not change from one period to the next,
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no matter what his endowment; thus, aggregate wealth R remains
constant. It follows that the commodity market also clears.

All that remains is to check that this bidding strategy is optimal.
But the Euler equation (4.6) is trivially satisfied (provided that
consumption is feasible), since themarginal utility of consumption
is constant and β(1 + ρ)/τ = 1. As before, transversality is
obviously satisfied, so this strategy will indeed be optimal if it is
always budget-feasible.

Feasibility requires

c(r, y) = (1 − β)r +
y

1 + ρ
≤ r +

θy
1 + ρ

,

or equivalently

(1 − θ)y ≤ β(1 + ρ)r,

to hold on a set of full µ ⊗ λ-measure. This is the case rather
obviously when θ = 1, as well as when

(1 − θ)Q ≤ β(1 + ρ)R

and the distributions λ andµ are sufficiently concentrated around
their respective means Q and R. With the aid of (6.1), this last
condition can be written in the form (1 − β)(1 − θ) < ρ β . �

Suppose now that no borrowing is permitted in the economy.
In other words, that the credit parameter is set at θ = 0. Typically,
some agents will save and receive interest from the bank. Thus
the money supply and prices will increase, so that the inflation
parameter τ will be greater than 1. The next example illustrates
this phenomenon.

Example 6.3. Let θ = 0 and assume that the endowment variable
Y takes on the values 0 and 1 with probability 1/2 each. Assume
that the utility u(·) is strictly concave, so that in particular u(1) <
u(1/2) + βu(1/2) when the discount factor β is sufficiently close
to 1.

Suppose, by way of contradiction, that there is an equilibrium
in which agents do not save. Thus, since agents cannot borrow, the
optimal consumption must be c(r, y) = r . Now with probability
1/2, agents reach the position (1, 0) starting from any position
(r, 1). But an agent at (1, 0) can consume 1/2 and save 1/2 the
first period and then consume (1 + ρ)/2 at the next position
((1 + ρ)/2, Y ). The agent thus obtains u(1/2) + βu((1 + ρ)/2)
in the first two periods while the agent who follows c gets only
u(1). Since both agents are in the same position at the beginning
of period three, it is better to spend 1/2 the first period. We have
reached a contradiction. �

Our final example shows that an SE need not exist when the
utility function saturates.

Example 6.4. Assume that

u(x) =


x, 0 ≤ x ≤ 1,
1, x > 1.

Let the random variable Y equal 0 with probability γ ∈ (0, 1), and
equal 4with probability 1−γ . Set the interest rate ρ and the credit
parameter θ equal to 1, and let the discount factor β ∈ (0, 1) be
arbitrary. We shall show by contradiction, that an SE cannot exist.

To get a contradiction, assume that there is an SE with bid
function c(·, ·), and relative wealth distribution µ. We shall reach
a contradiction after a few steps.

Step 1: τ < 2. This is because τ = 1 + ρ − ρ · Q/R = 2 − Q/R.
Let

1 + ρ ′
:=

1 + ρ

τ
=

2
τ
> 1.
Step 2: For all (r, y), c(r, y) ≤ 1. It is never optimal for an agent to
bid more than 1 because, if he does so, he gains nothing in
immediate utility and has less money at the next stage.

Step 3: Let k be any positive number. Then from any initial real
wealth r1, an agent using the bid function c(·, ·), will reach
real wealth positions in [k,∞) with positive probability.
Indeed, on the event {Y1 = Y2 = · · · = Yn = 4} (which
has probability (1 − γ )n > 0), we have almost surely

rn ≥ (1 + ρ ′)n−1
≥ k, ∀ n ≥ 1 +

log k
log(1 + ρ ′)

. (6.3)

We shall prove (6.3) by induction. By Step 2, c1 =

c(r1, 4) ≤ 1. So

r2 = (1 + ρ ′)(r1 − c1)+
4
τ

≥ (1 + ρ ′)(−1)+ 2(1 + ρ ′)

= (1 + ρ ′).

Now assume (6.3) holds for n and yn = 4. Then cn =

c(rn, 4) ≤ 1 and

rn+1 = (1 + ρ ′)(rn − cn)+
4
τ

≥ (1 + ρ ′)

(1 + ρ ′)n−1

− 1

+ 2(1 + ρ ′).

Hence rn+1 ≥ (1 + ρ ′)n.
Step 4: Let k∗

= 2(1 + ρ ′)/ρ ′. If rn ≥ k∗, then it follows from Step
2 that

rn+1 ≥ (1 + ρ ′)(rn − 1) ≥ rn + ρ ′
· k∗

− (1 + ρ ′)

= rn + (1 + ρ ′)

holds almost surely on {rn ≥ k∗
}.

Steps 3 and 4 imply that theMarkov chain {rn} of an agent’s relative
wealth positions diverges to infinity, with positive probability;
thus, the chain is transient and cannot have a stationary
distribution. This contradicts the invariance of µ.

7. Existence of stationary equilibrium

Most of this section is devoted to stating and proving a general
existence theorem. In the final subsection we present a simpler
result for the special case when the interest rate ρ is zero.

For the proof of the first theoremwe shall impose the following
additional assumptions:

Assumption 7.1. (a) The distribution of the random endowments
is bounded from above by some y∗

∈ (0,∞); equivalently,
λ([0, y∗

]) = 1.
(b) infx∈[0,∞) u′(x) > 0.
(c) The interest rate ρ satisfies

ρ < (1 − β)(1 − θ).

Condition (c) is equivalent to the inequality θ < θ∗(ρ) :=

1 −

ρ/(1 − β)


.

Theorem 7.1. Under Assumptions 4.1 and 7.1, there exists a station-
ary Markov equilibrium (SE) with inflation rate τ > β(1 + ρ).

Assumptions 4.1 and 7.1 will be in force until the end of
Section 7.4.

Theorem 7.1 asserts, in particular, that a small enough interest
rate will induce, in equilibrium, a rate of inflation τ higher than
that predicted by the Fisher equation. By Theorem 5.1, such an
equilibrium cannot be interior.

It seems likely that some of the conditions in Assumption 7.1
could be relaxed. However, our proof of Theorem 7.1 will use them
all.
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The proofwill be given in a number of steps. The idea is familiar.
We shall define an appropriatemapping from the set of real wealth
distributions into itself, and argue that the mapping has a fixed
point that corresponds to an SE.

7.1. The mapping Ψ

Let∆+ be the set of probabilitymeasuresµ defined on the Borel
subsets of [0,∞) that have a finite, positive mean:

0 < R ≡ R(µ) =


[0,∞)

rµ(dr) < ∞.

We regard ∆+ as the set of possible real wealth distributions. For
µ ∈ ∆+, let

τ ≡ τ(µ) = 1 + ρ − ρ ·
Q

R(µ)
.

In SE, this quantity τ will be the rate of inflation. Note that τ can
never exceed 1 + ρ.

Now let ∆∗
:= {µ ∈ ∆+

: τ(µ) > β(1 + ρ) }. Select a
probability measure µ ∈ ∆∗, and let c(r, y) = c(ρ,τ )(r, y) =

cτ (r, y) be the optimal bid of an agent at (r, y) as defined in (4.3); in
particular, c(r, y) satisfies (3.8). Next, let the random vector (R, Y )
have distribution µ⊗ λ, and define

R ≡ R 
R, Y


:=

1 + ρ

τ


R − cτ (R, Y )


+

Y
τ

(7.1)

by analogy with (3.10) (equivalently, R is the quantity of (4.5)
corresponding to the next real wealth position of an agent who
begins at (R, Y ) and bids according to the rule cτ (·, ·)). We now
define the mapping

Ψ (µ) = µ
by taking the probability measure µ to be the distribution of the
random variable R in (7.1). Let

τ ≡ τ(µ) = 1 + ρ −
ρ Q
R(µ) ,

whereR ≡ R(µ) =

[0,∞)

rµ(dr) is the mean of the probability
measureµ.

Suppose thatµ is a fixed point of this mapping Ψ . Thenµ = µ,
and consequentlyR = R as well asτ = τ . Thus the distribution
of real wealth in the economy remains constant when the initial
real wealth distribution is µ and the agents use the optimal bid
function cτ (·, ·). It then follows from the discussion in Section 3.3
that


µ, cτ (·, ·)


is an SE.

To establish that Ψ has a fixed point, it suffices to find a
nonempty compact convex set K ⊂ ∆∗ such that Ψ (K) ⊆ K and
ψ is continuous on K . (This is the Brouwer–Schauder–Tychonoff
fixed point theorem; see Aliprantis and Border, 1999.) We now set
out to find such a set K .

7.2. Bounding R and τ

Let us define

R∗ :=
1 − θ

1 + ρ
· Q and τ∗ :=

(1 + ρ)(1 − ρ − θ)

1 − θ
,

and continue to use the notation of the previous section.

Lemma 7.1. Let µ ∈ ∆∗, and suppose that the randomvector (R, Y )
has distribution µ⊗ λ. Then the quantitiesR = R(µ) andτ = τ(µ)
satisfy

∞ >R ≥ R∗,

and

1 + ρ ≥τ ≥ τ∗ > β(1 + ρ) > 0.
Proof. Integration with respect to µ⊗ λ in (7.1) gives

R ≤
1 + ρ

τ


[0,∞)

r µ(dr)+
1
τ


[0,∞)

y λ(dy)

=
1 + ρ

τ
· R +

1
τ

· Q < ∞.

To prove the second inequality of the first line of the lemma, first
consider the quantity

C :=


[0,∞)


[0,∞)

cτ (r, y) µ(dr)λ(dy),

which is the total consumptionwhen all agents use cτ (·, ·). By (3.8),
we have

C ≤


[0,∞)


[0,∞)


r +

θy
1 + ρ


µ(dr)λ(dy) = R +

θQ
1 + ρ

.

ThusR =


[0,∞)


[0,∞)

1 + ρ

τ


r − cτ (r, y)


+ y


µ(dr)λ(dy)

=
1 + ρ

τ


R −C+

Q
τ

≥
1 + ρ

τ
·
(−θQ )
1 + ρ

+
Q
τ

=
1 − θ

τ
· Q

≥
1 − θ

1 + ρ
· Q = R∗,

which establishes the second inequality. In the second row of
the lemma, the first inequality is obvious; The second inequality
follows fromR ≥ R∗ and

τ = 1 + ρ − ρ ·
QR ≥ 1 + ρ − ρ ·

Q
R∗

= τ∗.

The third inequality in the second row of the lemma amounts to
(1 − β)(1 − θ) > ρ, which holds by Assumption 7.1(c). The final
inequality is obvious. �

7.3. Bounding the wealth distribution

Define the random variable R as in (7.1), and let τ ≥ τ∗. Then
by Lemma 4.2(c) and Assumption 7.1(a), we have

R ≤
1
τ∗


(1 + ρ)


R − cτ (R, Y )


+ Y


≤

1
τ∗


(1 + ρ)


R − cτ (R, 0)


+ y∗


.

Define

η∗
:= sup{ r − cτ (r, 0) : r ≥ 0, τ∗ ≤ τ ≤ 1 + ρ },

J :=


0,
(1 + ρ)η∗

+ y∗

τ∗


.

Lemma 7.2. The constant η∗ is finite and, for everyµ ∈ ∆∗ such that
τ = τ(µ) ≥ τ∗, the measureµ is supported by the compact interval
J .

Proof. To bound r − cτ (r, 0) we can assume without loss of
generality that r > 0 and, by Lemma 4.2(e), that the inequalities in
(3.8) are strict. In the following calculation we set ξ = infx≥0 u′(x)
and y = 0. Thus the quantity of (4.5) becomesr =

1+ρ
τ


r −

cτ (r, 0)

, and by Lemmas 4.3 and 4.2(c) we have

ξ ≤ u′(cτ (r, 0)) =
β(1 + ρ)

τ
· E

u′

cτ
r,Y

≤
β(1 + ρ)

τ∗
u′

cτ (r, 0), (7.2)
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where the random variableY has distribution λ. Now u′(c) ↓ ξ as
c → ∞ and, by Lemma 7.1, τ∗ > β(1 + ρ), so for all c sufficiently
large we have

u′(c) <
τ∗ ξ

β(1 + ρ)
.

From Lemma 4.2(d), we obtain cτ (r, 0) → ∞ as r → ∞. Hence

η(τ) := sup

r ≥ 0 : u′


cτ (r, 0)


≥

τ∗ ξ

β(1 + ρ)


< ∞

for all τ ∈ [τ∗, 1 + ρ], and (7.2) gives

η(τ) ≥r =
1 + ρ

τ
·

r − cτ (r, 0)


≥ r − cτ (r, 0)

for τ in this range. Thus

η∗
≤ sup

τ∗≤τ≤1+ρ
η(τ).

Finally, as in Proposition 3.4 of Karatzas et al. (1997), the function
τ → cτ (r, 0) is continuous for fixed r . This fact, together with the
continuity and monotonicity of cτ (·, 0), can be used to check that
η(·) is upper-semicontinuous. Hence,

sup
τ∗≤τ≤1+ρ

η(τ) < ∞,

and the interval J is compact. The assertion thatµ is supported by
J follows from the calculation preceding the lemma. �

7.4. Completion of the proof of Theorem 7.1

Let K := {µ ∈ ∆∗
: τ(µ) ≥ τ∗, µ(J) = 1, R(µ) ≥ R∗ }. This

set is clearly compact and convex, since τ(µ) = 1+ ρ− ρQ/R(µ)
is a concave function of µ. Also, by Lemmas 7.1 and 7.2, we have
Ψ (K) ⊆ K . The continuity of Ψ on K follows from Theorem 3.5 in
Langen (1981). By the Brouwer–Schauder–Tychonoff Theorem, ψ
has a fixed point µ. It follows that


µ, cτ (·, ·)


is an SE.

7.5. An open question

With exponential utility function u(x) = 1 − e−x, x ≥ 0 and
endowment random variable Y that is not a.s. equal to a constant,
does an SE exist, at least for small enough values of ρ > 0? This
case is not covered by Theorem 7.1; but if an SE exists, it cannot be
interior and we must have τ > β(1 + ρ) (Theorem 5.2).

7.6. The special case ρ = 0

If the interest rate ρ is zero, then Assumption 7.1 is not needed
to prove the existence of a stationary equilibrium.We can take the
credit parameter θ to be 1, thus allowing full credit to the agents.

Theorem 7.2. Suppose that ρ = 0, θ = 1, and that the utility
function u(·) is strictly concave and satisfies Assumption 4.1. Suppose
also that the endowment variable Y has a finite second moment.
Then there is a stationary equilibrium in which the price and wealth
distribution remain constant.

The proof of Theorem 7.2 uses a similar result for a different
model that was studied in Karatzas et al. (1994). We begin with a
description of this model, which we call ‘‘Model 2’’.

As in the present paper, there is in Model 2 a continuum
of agents α ∈ I , one nondurable commodity, fiat money, and
countably-many time periods n = 1, 2, . . . . At the beginning of
each period n, every agent α holds cash Sαn (ω) ≥ 0, but does
not hold goods. There is no bank or loan market, so each agent α
bids an amount bαn (ω) ∈ [0, Sαn (ω)] of cash in order to purchase
goods for consumption. After bidding, agent α receives a random
endowment Y αn (ω) of the commodity, which is then sold in a
market. The price for goods is formed as

pn(ω) =
Bn(ω)

Qn(ω)
,

where

Bn(ω) =


I
bαn (ω) dα, Qn(ω) =


I
Y αn (ω) dα = Q

are the aggregates of the bids and endowments, respectively. The
agent α then receives the quantity xαn (ω) = bαn (ω)/pn(ω) of the
commodity, gets u(xαn ) in utility, and begins the next period with
cash

Sαn+1(ω) = Sαn (ω)− bαn (ω)+ pn(ω)Y αn (ω).

The agent seeks to maximize the expected total discounted utility

E


∞
n=1

βn−1u

xαn

.

We shall assume that the utility function u(·) satisfies the hypothe-
ses of Theorem 7.2, and that the random variables Y αn satisfy the
assumptions made in Section 2 above.

The result that follows corresponds to Theorem 7.3 in Karatzas
et al. (1994).

Lemma 7.3. There is an equilibrium forModel 2with a constant price
p ∈ (0,∞) and a constant wealth distribution ν defined on the Borel
subsets of [0,∞), and in which every agent α ∈ I bids according to
a stationary plan c∞, namely, bαn (ω) = c


Sαn (ω)


for all n, ω and α.

Suppose now S ∼ ν and Y ∼ λ, where ‘‘∼’’ means ‘‘is
distributed as’’. (If both X andΞ are random variables, then X ∼ Ξ

means that they have the same distribution.) Assume also that S
and Y are independent. Then, by Theorem 7.3 (loc. cit.) we have

S − c(S)+ pY ∼ ν.

Denote by µ the distribution of S − c(S) and define

a(m, y) := c(m + py) form ≥ 0, y ≥ 0.

We now claim that the price p, wealth distribution µ, and
stationary plan a∞, form a stationary equilibrium for the original
model. To verify the claim, first observe that, if M ∼ µ, Y ∼ λ,
and M and Y are independent, then

M + pY − a(m, y) = M + pY − c(M + pY ) ∼ S − c(S) ∼ µ.

Thus the distribution of wealth is preserved. Consequently, the
price

p =


I


I a(m, y) µ(dm)λ(dy)

Q
=


I c(s) ν(ds)

Q
also remains constant. It remains to be shown that the plan a∞ is
optimal for a given agent, when all other agents follow it.

Let W (·) be the optimal reward function for an agent playing
in the equilibrium of Lemma 7.3. Then W (·) satisfies the Bellman
equation

W (s) = sup
0≤b≤s


u
 b

p


+ β · EW


s − b + pY

 
.

The Bellman equation for an agent in the original model is

V (m, y) = sup
0≤b≤m+py


u
 b

p


+ β · EV


m + py − b, Y

 
.

It is easy to see that

V (m, y) = V (m′, y′) whenever m + py = m′
+ py′.



J. Geanakoplos et al. / Journal of Mathematical Economics 52 (2014) 1–11 11
Indeed, it is not difficult to show that V (m, y) = W (m + py). (One
method is to verify the corresponding equality for n- day optimal
returns using backward induction, and then pass to the limit as
n → ∞.) It is also straightforward to check that the expected
total reward to an agent in Model 2 who plays c∞ from the initial
position s = m + py, is the same as that of an agent in the original
model who plays a∞ starting from (m, y). Since c∞ is optimal for
Model 2, it follows that a∞ is optimal for the original model.

This completes the proof of the claim and also of Theorem 7.2.

8. Comments on representative and independent agents

The representative agent model of Karatzas et al. (2006) and
the independent agents model of this paper are at two extremes.
The representative agent model is far easier to analyze than the
independent agents model. Both call for a modification of the
Fisher equation. In the representative agent model the rate of
inflation is a random variable T (Y ), where the function T (·) is
given by the closed form expression

T (y) = β(1 + ρ) ·
E[ Y u′(Y ) ]

(1 − β) · y u′(y)+ β · E[ Y u′(Y ) ]
.

The following harmonic Fisher equation follows readily:

E


1
T (Y )


=

1
β(1 + ρ)

.

Consequently, the expectation E(T (Y )) exceeds β(1+ ρ), as does
the long run rate of inflation.

It is not clear how the random variable T (Y ) (inflation rate in
the representative agent model) compares with τ (inflation rate
in the model with independent agents)—a quantity for which we
have no analytic expression. We do note, however, that under the
conditions of Theorem7.1, orwith u′(·) strictly convex andλ a non-
degenerate distribution as in Theorem5.2, the latter dominates the
harmonic mean of the former, to wit:

E


1
T (Y )


>

1
τ
.

In this sense, the inflationary pressure is even greater for
the independent-agent model than for the representative-agent
model.
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