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Financial Innovation, Collateral, and Investment†

By Ana Fostel and John Geanakoplos*

Financial innovations that change how promises are collateralized 
affect prices and investment, even in the absence of any change in 
fundamentals. In ​C-models, the ability to leverage an asset always 
generates overinvestment compared to Arrow-Debreu. Credit  
Default Swaps always leads to underinvestment with respect to 
Arrow-Debreu, and in some cases even robustly destroy competitive 
equilibrium. The need for collateral would seem to cause under-
investment. Our analysis illustrates a countervailing force: goods 
that serve as collateral yield additional services and can therefore 
be over-valued and over-produced. In models without cash flow 
problems there is never marginal underinvestment on collateral. 
(JEL D52, D86, D92, E44, G01, G12, R31)

After the recent subprime crisis and the sovereign debt crisis in the euro zone, 
many observers have placed financial innovations such as leverage and credit 

default swaps (CDS) at the root of the problem.1 Figure 1 shows how the financial 
crisis in the US was preceded by years in which leverage, prices, and investment 
increased dramatically in the US housing market and all collapsed together after the 
crisis. Figure 2 shows that CDS was a financial innovation introduced much later 
than leverage. Figure 3 shows how the peak in CDS volume coincides with the crisis 
and the crash in prices and investment in the US housing market.2

In this paper, we build a special class of models, that we call ​C​ and ​​C​​ ∗​​-models, 
in which markets are incomplete and agents need to post collateral to back prom-
ises. First, we show that a financial innovation that enables agents to leverage the 
risky asset (i.e., to use it as collateral to back loans), will raise risky asset prices and 
investment. Second, and more surprisingly, when unlimited leverage is available, 
the market will endogenously choose leverage that leads to risky asset prices and 
investment above the Arrow-Debreu first-best level. Paradoxically, the requirement 
to post collateral in order to get a loan can lead to overinvestment compared to a 

1 See for example Brunneimeier (2009); Geanakoplos (2010); Gorton (2009); and Stulz (2009). Geanakoplos 
(2003) and Fostel and Geanakoplos (2008) wrote before the crisis. 

2 The available numbers on CDS volumes are not specific to mortgages, since most CDS were over the counter, 
but the fact that subprime CDS were not standardized until late 2005 suggests that the growth of mortgage CDS in 
2006 is likely even sharper than Figure 3 suggests. 

* Fostel: University of Virginia, Department of Economics, Monroe Hall, 248 McCormick Road, Charlottesville, 
VA, 22903 (e-mail: anafostel@gmail.com); Geanakoplos: Yale University, Department of Economics, 30 Hillhouse 
Avenue, New Haven, CT, 06511; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 8750 (e-mail: john.
geanakoplos@yale.edu). Ana Fostel thanks the hospitality of the New York Federal Reserve, Research Department 
and New York University Stern School of Business, Economics Department during this project.

† Go to http://dx.doi.org/10.1257/mac.20130183 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.
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Figure 1

Notes: Observe that the down payment axis has been reversed because lower down payment requirements are cor-
related with higher home prices. For every AltA or subprime first loan originated from 2000:I to 2008:I, down pay-
ment percentage was calculated as appraised value (or sale price if available) minus total mortgage debt, divided by 
appraised value. For each quarter, the down payment percentages were ranked from highest to lowest, and the aver-
age of the bottom half of the list is shown in the diagram. This number is an indicator of down payment required: 
clearly many homeowners put down more than they had to, and that is why the top half is dropped from the aver-
age. A 13 percent down payment in 2000:I corresponds to leverage of about 7.7, and a 2.7 percent down payment in 
2006:II corresponds to leverage of about 37. Note Subprime/AltA Issuance stopped in 2008:I. 

Source: Panel A: Geanakoplos (2010). Panel B: Investment: Construction new privately owned housing units com-
pleted. Department of Commerce. 
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first-best world in which borrowing is not limited by collateral. Third, when in the 
leverage economy a new financial innovation enables agents to use the riskless asset 
as collateral to back a CDS on the risky asset, risky asset prices and investment will 
fall not only below the leverage level, but all the way below the first-best level.

Needless to say, outside ​​C​​ ∗​​-models it may not be the case that collateral restric-
tions lead to higher prices and investment than in Arrow-Debreu. Therefore, we seek 
a principle for general economies that describes the effect of collateral on prices 
and investment. We prove that the need to post collateral always generates marginal 
overinvestment: a collateral constrained agent who is given the opportunity to bor-
row a dollar without posting collateral will always spend the money on consump-
tion, and never on investment projects that could be collateralized.

The central element of our analysis is repayment enforceability problems: we 
suppose that agents cannot be coerced into honoring their promises except by seiz-
ing collateral agreed upon by contract in advance. Agents need to post collateral in 
order to issue promises. To sharpen our conclusions, we explicitly assume away col-
lateral cash flow problems. We suppose that all of the future value of collateral can 
be pledged: every agent knows exactly how the collateral cash flow depends on the 
future state of nature, and the cash flow is independent of how the investment was 
financed. This eliminates any issues associated with hidden effort or unobservability.

Figure 2. Leverage and Credit Default Swaps

Notes: Observe that the down payment axis has been reversed because lower down payment requirements are cor-
related with higher home prices. For every AltA or subprime first loan originated from 2000:I to 2008:I, down pay-
ment percentage was calculated as appraised value (or sale price if available) minus total mortgage debt, divided by 
appraised value. For each quarter, the down payment percentages were ranked from highest to lowest, and the aver-
age of the bottom half of the list is shown in the diagram. This number is an indicator of down payment required: 
clearly many homeowners put down more than they had to, and that is why the top half is dropped from the aver-
age. A 13 percent down payment in 2000:I corresponds to leverage of about 7.7; and a 2.7 percent down payment in 
2006:II corresponds to leverage of about 37. Note subprime/AltA Issuance stopped in 2008:I. 

Source: CDS: Bank for International Studies (BIS) over-the-counter (OTC) Derivatives Market Statistics
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We define a financial contract as an ordered pair consisting of a promise and the 
collateral backing it. The collection of available financial contracts is denoted by ​J​. 
We define financial innovation as the use of new kinds of collateral, or new kinds of 
promises that can be backed by collateral, that is, by a change in ​J​. In the incomplete 
markets literature, financial innovations were modeled by securities with new kinds 

Figure 3

Source: CDS: BIS OTC Derivatives Market Statistics. Investment: Construction new privately owned housing units 
completed. Department of Commerce 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

00 00 01 01 01 02 02 02 03 03 03 04 04 04 05 05 05 06 06 06 07 07 07 08 08 08 09 09 09 10

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.
F

eb
.

Ju
n.

10

00 00 01 01 01 02 02 02 03 03 03 04 04 04 05 05 05 06 06 06 07 07 07 08 08 08 09 09 09 10

Ju
n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.
Ju

n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.

Ju
n.

O
ct

.

F
eb

.
Ju

n.

O
ct

.
F

eb
.

Ju
n.

O
ct

.

F
eb

.

Ju
n.

10

C
D

S
 notional am

ount in billions of U
S

 dollars
C

as
e 

sh
ill

er

CDS

Case shiller national home price index 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

C
D

S
 notional am

ount in billions of U
S

 dollars
In

ve
st

m
en

t i
n 

th
ou

sa
nd

s

CDS

Investment

Panel B. CDS and investment in the US housing market

Panel A. CDS and prices in the US housing market



246	 American Economic Journal: macroeconomics�jan uary 2016

of payoffs. Financial innovations of that kind do have an effect on asset prices and 
real allocations, but the direction of the consequences is typically ambiguous and 
therefore has not been much explored. When we model financial innovation taking 
into account collateral, we can prove unambiguous results.

We examine four ​J​-economies. In the first, there are no financial contracts, which 
we call financial autarky or the ​N​-economy. In the second, we suppose that financial 
innovation has enabled agents to issue noncontingent promises (loans) using assets 
as collateral, but not to sell short or to issue contingent promises. We call this the 
leverage or ​L​-economy. Into the previous leverage economy we introduce CDS on 
risky assets collateralized by the riskless asset, since cash is generally used as col-
lateral for sellers of CDS. We call this the ​CDS​-economy. Finally, we suppose that 
every contingent promise can be pledged by future endowments, which gives the 
first-best Arrow-Debreu economy.

We consider three different collateral models. The first ​​C​​ ∗​​-model involves just 
two states of nature (​U​ and ​D​), a risky asset, and a riskless asset that can be used to 
produce the risky asset, in which all future consumption is derived from asset pay-
offs. A special case of the latter called the ​C​-model, introduced by Geanakoplos 
(2003), has a continuum of risk neutral agents with heterogenous beliefs. The 
​C​-model is complex enough to allow for the possibility that financial innovation 
can have a big effect on prices and investment. But it is simple enough to be 
tractable (via an Edgeworth Box diagram) and to generate unambiguous (as well 
as intuitive) results. For this reason, in most of the paper we conduct our analy-
sis in ​C​-models and point out when our results can be extended to ​​C​​ ∗​​-models. 
Finally, we consider a completely general model of collateral equilibrium that can 
encompass arbitrary preferences, endowments, assets, consumption goods, and 
heterogeneous technologies in order to study our general property of marginal 
over investment.

We prove that in ​C​ and ​​C​​ ∗​​-models, investment is always higher in the ​L​ -economy 
than in the ​N​-economy. Thus, leverage raises the risky asset price and investment. 
More surprisingly, we show that this ability to leverage the risky asset generates 
overvaluation and overinvestment compared to the Arrow-Debreu level. Here is one 
intuition for this result. Agents who are borrowing constrained will prefer to hold 
assets that provide collateral so that they can simultaneously borrow. This collateral 
value appears even when there is no uncertainty. When there is uncertainty, the abil-
ity to leverage an asset provides an opportunity to place a bigger bet on the asset 
rising in value, generating a speculative demand for the asset. This ability to bet 
increases the collateral value of the risky asset even further. Agents thus have more 
incentive to produce goods that are better collateral. In an Arrow-Debreu economy, 
agents can borrow without holding any particular asset, and they can bet by buying 
or selling Arrow securities, again without needing to buy any asset. Finally, we show 
that when production displays constant returns to scale, the Arrow-Debreu equilib-
rium Pareto dominates the leverage equilibrium, which, in turn, Pareto dominates 
the financial autarky equilibrium.

We also prove that in the ​C​-model, investment dramatically falls in the 
​CDS​-economy, not only below the ​L​-economy level, but beneath the Arrow-Debreu 
level. CDS decreases investment in the risky asset because the seller of CDS is 
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effectively making the same kind of investment as the buyer of the leveraged risky 
asset: she obtains a portfolio of the riskless asset as collateral and the CDS obliga-
tion, which on net pays off precisely when the asset does very well, just like the 
leveraged purchase. The creation of CDS thus lures away the speculative demand 
for the risky asset, creating a collateral value for the riskless asset.

Finally, we show that the creation of CDS may in fact destroy equilibrium by 
choking off all production. CDS is a derivative, whose payoff depends on some 
underlying asset. The quantity of CDS that can be traded is not limited by the market 
size of the underlying risky asset.3 If the production of the underlying asset dimin-
ishes, the CDS trading may continue at the same high levels. But when the produc-
tion of the underlying risky asset falls to zero, CDS trading must come to an end by 
definition. This discontinuity can cause robust nonexistence. However, in regions in 
which the CDS equilibrium exists, we cannot establish unambiguous welfare com-
parisons between the ​CDS​-economy and the Arrow-Debreu economy.

Another way of understanding these results is as follows. When agents post col-
lateral to back promises they are effectively tranching the collateral cash flows. By 
dividing up the collateral payoffs into two different kinds of assets, attractive to two 
different clienteles, demand is increased. This leads to a higher collateral value. 
In the case of leverage, the risky asset cash flows are tranched into an Arrow ​U​ 
(attractive to optimistic buyers) and a riskless bond (attractive to the general public). 
Similarly, CDS can be thought of as a sophisticated tranching of the riskless asset. 
A CDS tranches the riskless asset cash flows into an Arrow ​U​ and an Arrow ​D​. This 
tends to raise the collateral value of the riskless asset relative to the collateral value 
of the risky asset, thereby reducing the production of the risky asset. As before, 
investment migrates to good collateral.

When restricting ourselves to the special class of ​C​ and ​​C​​ ∗​​-models, we can 
generate sharp results. However, our results comparing collateral equilibrium 
with Arrow-Debreu equilibrium are bound not to be general.4 For this reason, 
in the second part of our analysis we identify a completely general phenome-
non, which applies to any commodity that can serve as collateral for any kind of 
promise, provided there are no cash flow problems. We replace the Arrow-Debreu 
benchmark with a local concept of efficiency. If agents are really underinvest-
ing because they are borrowing constrained, then if presented with a little bit of 
extra money to make a purely cash purchase, they should invest. Yet we prove in 
a general model with arbitrary preferences and states of nature that none of them 
would choose to produce more of any good that can be used as collateral, even 
if they were also given access to the best technology available in the economy. 
Thus without cash flow problems, repayment enforceability problems can lead to 

3 Currently the outstanding notional value of CDS in the United States is far in excess of $50 trillion, more than 
three times the value of their underlying assets. 

4 For instance, with risk neutral agents, if we change endowments in the future, collateral equilibrium would 
not change, since future endowments cannot be used as collateral, but the Arrow-Debreu equilibrium would. So by 
playing with future endowments it would be easy to create an example in which the ​L​-equilibrium has less invest-
ment than the Arrow-Debreu equilibrium. This could not occur in ​C​-models because we supposed that all future 
consumption is derived from dividends of assets existing from the beginning. 
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marginal overinvestment, but never marginal underinvestment. In ​C​ and ​​C​​ ∗​​-models,  
the marginal overinvestment is big enough to exceed the Arrow-Debreu level.

Our overinvestment result may seem surprising to the reader, since it stands in 
contrast with the traditional macroeconomic/corporate finance literature with finan-
cial frictions, such as in Bernanke and Gertler (1989) and Kiyotaki and Moore 
(1997). In these papers financial frictions generate underinvestment with respect 
to Arrow-Debreu. Their result may appear intuitive since one would expect that 
the need for collateral would prevent some investors from borrowing the money 
to invest, thus reducing production. In our model borrowers may also find them-
selves constrained: they cannot borrow more at the same interest rate on the same 
collateral. Yet we show that in ​C​ and in ​​C​​ ∗​​-models there is never underinvestment 
with respect to Arrow-Debreu. There are two reasons for the discrepancy. First, the 
traditional literature did not recognize (or at least did not sufficiently emphasize) 
the collateral value of assets that can back loans. Precisely because agents are con-
strained in what they can borrow, they will overvalue commodities that can serve 
as collateral (compared to perishable consumption goods or other commodities that 
cannot), which might lead to overproduction of these collateral goods. The sec-
ond reason for the discrepancy is that in the macro/corporate finance models, it 
is assumed that borrowers cannot pledge the whole future value of the assets they 
produce. In other words, these papers are explicitly considering what we here call 
collateral cash flow problems.5 When we disentangle the cash flow problems from 
the repayment enforceability problems we get the opposite result: there can be over-
investment even when agents are constrained in their borrowing. With our modeling 
strategy we expose a countervailing force in the incentives to produce: when only 
some assets can be used as collateral, they become relatively more valuable, and are 
therefore produced more.

Our results show that the traditional macroeconomic/financial frictions literature 
overlooked the possibility that the need for collateral may be useful in explaining 
booms in collateralizable investments as well as in explaining busts. On the other 
hand, our model displays the same potential for underinvestment in noncollater-
alizable projects as the traditional literature. One way to move from overinvest-
ment to underinvestment is to suppose that a good could be fully collateralized at 
some point, and then becomes prohibited from being used as collateral at another. 
Many subprime mortgages went from being prominent collateral on Repo in 2006 to 
being not accepted as collateral in 2009. Another transition emerges when leverage 
endogenously falls on good collateral, preventing agents from borrowing as much 
on good collateral to invest in uncollateralized projects. Between 2003 and 2007, 
American households increased their borrowing on homes they already owned by 
$1 trillion per year, spending much of it on nonhousing related projects. After 2007 
cash extraction from housing almost entirely disappeared.

5 In Kiyotaki and Moore (1997), the lender cannot confiscate the fruit growing on the land but just the land. 
Other examples of cash flow problems are to be found in corporate finance asymmetric information models such as 
Holmstrom and Tirole (1997), Adrian and Shin (2010), and Acharya and Viswanathan (2011). The idea in this liter-
ature is that collateral payoffs deteriorate if too much money is borrowed, because then the owner has less incentive 
to work hard to obtain good cash flows. 
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In this paper we follow the model of collateral equilibrium developed in 
Geanakoplos (1997, 2003, 2010); Fostel and Geanakoplos (2008, 2012a and 2012b, 
2014, forthcoming); and Geanakoplos-Zame (2014). Geanakoplos (2003) showed 
that leverage can raise asset prices. Geanakoplos (2010) and Che and Sethi (2010) 
showed that in the kind of models studied by Geanakoplos (2003), CDS can lower 
risky asset prices. Fostel-Geanakoplos (2012b) showed more generally how differ-
ent kinds of financial innovations can have big effects on asset prices. In this paper, 
we move a step forward and show that financial innovation affects investment as 
well.

Our model is related to a literature on financial innovation pioneered by Allen 
and Gale (1994), though in our paper financial innovation is taken as given, and 
concerns collateral. There are other macroeconomic models with financial frictions 
such as Kilenthong and Townsend (2011) that produce overinvestment in equilib-
rium. The underlying mechanism in these papers is very different from the one 
presented in our paper. In those papers the overinvestment is due to an externality 
through changing relative prices in the future states. Our results do not rely on rel-
ative price changes in the future, and to make the point clear we restrict our ​C​ and 
​​C​​ ∗​​-models to a single consumption good in every future state.

Our paper is also related to Polemarchakis and Ku (1990). They provide a robust 
example of nonexistence in a general equilibrium model of exchange with incom-
plete markets, due to the presence of derivatives. Existence had been proved to be 
generic in the canonical general equilibrium model of exchange with incomplete 
markets and no derivatives by Duffie and Shaffer (1986). Geanakoplos and Zame 
(2014) proved that equilibrium always exists in pure exchange economies even with 
derivatives if there is a finite number of potential contracts, with each requiring 
collateral. Thus, the need for collateral to enforce deliveries on promises eliminates 
the nonexistence problem in pure exchange economies with derivatives such as in 
Polemarchakis-Ku. Our paper gives a robust example of nonexistence in a general 
equilibrium model with incomplete markets and collateral, production, and deriva-
tives. Thus, the nonexistence problem emerges again with derivatives and produc-
tion, despite the collateral.

The paper is organized as follows. Section I presents the collateral general equi-
librium model and the special class of ​C​ and ​​C​​ ∗​​-models. Section II presents numer-
ical examples and our propositions for the ​C​ and ​​C​​ ∗​​-models. Section III discusses 
the nonexistence result. Section IV introduces the notion of marginal efficiency and 
presents the marginal overinvestment results in the general model of Section II. 
Section V characterizes equilibrium in ​C​-models for different financial innovations. 
It also presents a novel use of an Edgeworth Box diagram for trade with a contin-
uum of agents (rather than just two agents) with heterogeneous but linear prefer-
ences, that we use to prove all our propositions from Section II for the ​C​-model. It 
presents yet another diagram to prove the extension of some of the propositions to  
​​C​​ ∗​​-models.

Appendices A–C present supplemental material.
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I.  Collateral General Equilibrium Model

In this section, we present the collateral general equilibrium model and a special 
class of collateral models that we call the ​C​-model and ​​C​​ ∗​​-model, which will be 
extensively used in the paper.6

A. Time and Commodities

Consider a two-period general equilibrium model, with time ​t = 0, 1​. Uncertainty 
is represented by different states of nature ​s ∈ S​ including a root ​s = 0​. We 
denote the time of ​s​ by ​t(s)​ , so ​t(0)  = 0​ and ​t(s)  = 1,  ∀ s ∈ ​S​T​​​ , the set of terminal 
nodes of ​S​. Suppose there are ​​L​s​​​ commodities in ​s ∈ S​. Let the set of all com-
modities be denoted by ​L = ​×​s∈S​​ ​L​s​​  ,​ and the set of all terminal commodities be  
denoted by ​​L​T​​   =   ​×​s∈​S​T​​​​ ​L​s​​ .​ Let ​​p​s​​   ∈   ​R​ +​ ​L​s​​​​ denote the vector of commodity prices in 
each state ​s  ∈  S​.

B. Agents

Each investor ​h  ∈  H​ is characterized by Bernoulli utilities, ​​u​ s​ h​​, ​s  ∈  S​ , a dis-
count factor, ​​β​h​​​ , and subjective probabilities, ​​γ​ s​ h​,​ ​s  ∈ ​ S​T​​​ . The utility function for 
commodities in ​s  ∈  S​ is ​​u​ s​ h​ : ​R​ +​ ​L​s​​​  →  R,​ and we assume that these state utilities 
are differentiable, concave, and weakly monotonic (more of every good in any state 
strictly improves utility). The expected utility to agent ​h​ is:

(1)	​ ​U​​ h​  = ​ u​ 0​ h​ (​x​0​​) + ​β​h​​ ​ ∑ 
s∈​S​T​​

​​​ ​γ​ s​ h​ ​u​ s​ h​ (​x​s​​).​

Investor ​h​’s endowment of the commodities is denoted by ​​e​ s​ h​  ∈ ​ R​ +​ ​L​s​​​​ in each state ​
s  ∈  S​.

C. Production

For each ​s ∈ S​ and ​h ∈ H​ , let ​​Z​ s​ h​ ⊂ ​핉​​ ​L​s​​​​ denote the set of feasible intra-period 
production for agent ​h​. Commodities can enter as inputs and outputs of the intra-
period production process; inputs appear as negative components ​​z​l​​ < 0​ of ​z ∈ ​Z​ s​ h​,​ 
and outputs as positive components ​​z​l​​ > 0​ of ​z ∈ ​Z​ s​ h​.​ We assume that ​​Z​ s​ h​​ is convex, 
compact and that ​0 ∈ ​Z​ s​ h​​.

We also allow for inter-period production. For each ​h ∈ H​ , let ​​F​​ h​ : ​핉​ +​ ​L​ 0​​​ → ​핉​ +​ ​L​T​​​​ 
be a linear inter-period production function connecting a vector of commodities ​​x​0​​​ 
at state ​s = 0​ with the vector of commodities ​​F​ s​ h​ (​x​0​​) ∈ ​핉​ +​ ​L​s​​​​ it becomes in each state ​
s ∈ ​S​T​​​.

6 The ​C​-model was introduced in Geanakoplos (2003). 
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Production enables our model to include many different kinds of commodities. 
Commodities could either be perishable consumption goods (like food), or durable 
consumption goods (like houses), or they could represent assets (like Lucas trees) 
that pay dividends. The holder of a durable consumption good can enjoy cur-
rent utility as well as the prospect of the future realization of the goods (either 
by consuming them or selling them). The buyer of a durable asset can expect the 
income from future dividends.

D. Financial Contracts and Collateral

The heart of our analysis involves financial contracts and collateral. We explic-
itly incorporate repayment enforceability problems, but exclude cash flow problems. 
Agents cannot be coerced into honoring their promises except by seizing collateral 
agreed upon by contract in advance. Agents need to post collateral in the form of 
durable assets in order to issue promises. But there is no doubt what the collateral 
will pay, conditional on the future state of nature.

A financial contract ​j​ promises ​​j​s​​  ∈ ​ R​ +​ ​L​s​​​​ commodities in each final state ​s  ∈ ​ S​T​​​ 
backed by collateral ​​c​j​​  ∈ ​ R​ +​ ​L​ 0​​​​. This allows for noncontingent promises of different 
sizes, as well as contingent promises. The price of contract ​j​ is ​​π​j​​​. Let ​​θ​ j​ h​​ be the 
number of contracts ​j​ traded by ​h​ at time ​0​. A positive ​​θ​ j​ h​​ indicates agent ​h​ is buying 
contracts ​j​ or lending ​​θ​ j​ h​ ​π​j​​​. A negative ​​θ​ j​ h​​ indicates agent ​h​ is selling contracts ​j​ or 
borrowing ​​|​θ​ j​ h​|​ ​π​j​​​.

We wish to exclude collateral cash flow problems, stemming, for example, from 
adverse selection or moral hazard, beyond repayment enforceability problems. 
Accordingly, we eliminate adverse selection by restricting the sale of each contract ​
j​ to a set ​H( j) ⊂ H​ of traders with the same durability functions, ​​F​​ h​​(​c​j​​)​ = ​F​​ h′​​(​c​j​​)​​ 
if ​h, h′ ∈ H( j)​. Since we assumed that the most borrowers can lose is their collateral 
if they do not honor their promise, the actual delivery of contract ​j​ in states ​s ∈ ​S​T​​​ is

(2)	​ ​δ​s​​ ( j) = min  ​{​p​s​​ · ​j​s​​ , ​p​s​​ · ​F​ s​ H( j)​​(​c​j​​)​}​​.

Notice that there are no cash flow problems: the value of the collateral in each future 
state does not depend on the size of the promise, or on what other choices the seller ​
h  ∈  H( j)​ makes, or on who owns the asset at the very end. This eliminates any 
issues associated with hidden effort or unobservability.

A final assumption that we will consider in Section VI to eliminate cash flow 
problems is to suppose that promises are not artificially limited. We suppose that if ​​
c​j​​​ is the collateral for some contract ​j​ , then there is a “large” contract ​j​′ with ​​c​j′​​  = ​ c​j​​​ 
and ​H( j′ )  =  H( j)​ and ​​j​ s​ ′ ​  ≥ ​ F​ s​ H( j)​​(​c​j​​)​​ for all ​s  ∈ ​ S​T​​​  .
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E. Budget Set

Given commodity and financial contract prices ​​(p, ​​(​π​j​​)​​j∈J
​​)​​ , each agent ​h  ∈  H​ 

chooses production, ​​z​s​​ ,​ and commodities, ​​x​s​​ ,​ for each ​s  ∈  S,​ and contract trades, ​​θ​j​​ ,​ 
at time ​0​ , to maximize utility (1) subject to the budget set defined by

​​B​​ h​(p, π) = ​{ (z, x, θ)  ∈ ​R​​ L​ × ​R​ +​ L ​ × ​(​R​​ J​ )​ :

	​ p​0​​ · (​x​0​​ − ​e​ 0​ h​ − ​z​0​​) + ​∑ 
j∈J

​ ​​ ​θ​j​​ ​π​j​​ ≤ 0

	 ​p​s​​ · (​x​s​​ − ​e​ s​ h​ − ​z​s​​) ≤ ​p​s​​ · ​F​ s​ h​ (​x​0​​) + ​∑ 
j∈J

​ ​​ ​θ​j​​ min ​{​p​s​​ · ​j​s​​ , ​p​s​​ · ​F​ s​ H( j)​​(​c​j​​)​}​,   ∀ s ∈ ​S​T​​

	​ z​s​​ ∈ ​Z​ s​ h​ ,  ∀ s ∈ S 

	​ θ​j​​ < 0 only if h ∈ H( j)

	​ ∑ 
j∈J

​ ​​ max ​(0,  − ​θ​j​​)​ ​c​j​​ ≤ ​x​0​​ }​.​

The first inequality requires that money spent on commodities beyond the reve-
nue from endowments and production in state 0 be financed out of the sale of con-
tracts. The second inequality requires that money spent on commodities beyond the 
revenue from endowments and production in any state ​s  ∈ ​ S​T​​​ be financed out of net 
revenue from dividends from contracts bought or sold in state 0. The third constraint 
requires that production is feasible, the fourth constraint requires that only agents ​
h  ∈  H( j)​ can sell contract ​j​ , and the last constraint requires that agent ​h​ actually 
holds at least as much of each good as she is required to post as collateral.

F. Collateral Equilibrium

A Collateral Equilibrium is a set of commodity prices, contract prices, produc-

tion and commodity holdings, and contract trades ​​((p, π), ​​(​z​​ h​, ​x​​ h​, ​θ​​ h​)​​h∈H​​)​  ∈ ​ R​ +​ L ​ × ​
R​ +​ J ​ × ​​(​R​​ L​ × ​R​ +​ L ​ × ​R​​ J​)​​​ H​​, such that

	 (i)	​	​   ∑ 
h∈H

​​​ ​(​x​ 0​ h​ − ​e​ 0​ h​ − ​z​ 0​ h​)​  = 0.​

	 (ii)		​​   ∑ 
h∈H

​​​ ​(​x​ s​ h​ − ​e​ s​ h​ − ​z​ s​ h​ − ​F​ s​ h​  ​(​x​ 0​ h​ )​)​  = 0,   ∀ s  ∈ ​ S​T​​ .​

	 (iii)		​​   ∑ 
h∈H

​​​ ​θ​ j​ h​  =  0,   ∀ j  ∈  J.​

	 (iv)		​  ​(​z​​ h​, ​x​​ h​, ​θ​​ h​)​  ∈ ​ B​​ h​ (p, π),   ∀ h​

	 (v)		​  (z, x, θ)  ∈ ​ B​​ h​(p, π)  ⇒ ​ U​​ h​ (x)  ≤ ​ U​​ h​ ​(​x​​ h​)​,   ∀ h.​
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Markets for consumption in state 0 and in states ​s  ∈ ​ S​T​​​ clear, as do contract 
markets. Furthermore, agents optimize their utility in their budget set. Geanakoplos 
and Zame (2014) show that collateral equilibrium always exists in a very similar 
economy but without production. Their argument can be extended to encompass our 
collateral model with production.

G. Financing Investment and the Firm

Let us pause for a moment to consider how investment is financed, and how we 
could think of a firm in our model.

Agent ​h​ finances inter-period production ​​F​​ h​ (y)​ by purchasing the inputs ​y  ∈ ​ R​ +​ ​L​ 0​​​​ 
partly out of money borrowed, by issuing a contract ​j​ using ​y  = ​ c​j​​​ as collateral, and 
the rest out of endowment income ​​p​0​​ · ​e​ 0​ h​​. Agent ​h​ finances intra-period production ​​
z​ s​ h​​ by selling the output ​max ​(0, ​z​ s​ h​)​​ in advance to the buyers, and then using the pro-

ceeds to buy the inputs ​max ​(0, −​z​ s​ h​)​​ needed to produce the output, just like a home 
builder who lines up the owner before she begins construction.

There are three possible interpretations of a firm in our model. In the first, the firm 
is defined by ​​F​​ h​​; in this case the firm is directly affected by limitations to financing. 
In the second interpretation, the firm is defined by ​​Z​ s​ h​​. In this case, the firm does not 
directly face any financing restrictions, but the consumer/buyer of its output does, 
indirectly affecting the firm’s investment decision. In this interpretation, we empha-
size consumer durables and the collateral constraint affecting the consumer.

In the third interpretation, production takes two periods, and the firm is character-
ized by ​​F​​ h​ ◦ ​Z​ 0​ h​​. In this interpretation, the intra-period output could be interpreted 
as intangible but irrevocable plans to produce. Once these plans are in place there 
is no doubt about the future output ​​F​​ h​ ​(​z​ 0​ +​)​.​ Now the firm itself is the collateral for 
any borrowing.

H. ​​C​​ ∗​​-Economies and ​C​-Economies

The ​​C​​ ∗​​-model is defined as follows. We consider a binary tree, so that ​
S  =  { 0, U, D}​. In states ​U​ and ​D​ there is a single commodity, called the consump-
tion good, and in state ​0​ there are two commodities, called assets ​X​ and ​Y​. We take 
the price of the consumption good in each state ​U​ , ​D​ to be 1, and the price of ​X​ to 
be 1 at time 0. We denote the price of asset ​Y​ at time ​0​ by ​p​.

The riskless asset ​X​ yields dividends ​​d​ U​ X​  = ​ d​ D​ X​  =  1​ unit of the consumption good 
in each state, and the risky asset ​Y​ pays ​​d​ U​ Y ​​ units of the consumption good in state ​U​ 
and ​0  < ​ d​ D​ Y ​  < ​ d​ U​ Y ​​ units of the consumption good in state ​D.​ Formally, inter-period 
production is defined as ​​F​ U​ h ​ (X, Y )  = ​ F​U​​ (X, Y )  = ​ d​ U​ X​ X + ​d​ U​ Y ​ Y  =  X + ​d​ U​ Y ​ Y​ and ​​
F​ D​ h ​ (X, Y )  = ​ F​D​​ (X, Y )  = ​ d​ D​ X​ X + ​d​ D​ Y ​ Y  =  X + ​d​ D​ Y ​ Y​. Since inter-period produc-
tion is the same for each agent, we take ​H( j)  =  H​ for all contracts ​j  ∈  J​.

The intra period technology at 0, ​​Z​ 0​ h​  = ​ Z​0​​  ⊂ ​ 핉​​ 2​​ , is also the same for all agents, 
and allows each of them to invest the riskless asset ​X​ and produce the risky asset ​Y​. 
Denote by ​​Π​​ h​  = ​ z​x​​ + p ​z​y​​​ the profits associated to production plan ​(​z​x​​ , ​z​y​​).​
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Agents get no utility from holding the assets ​X​ and ​Y.​ The number of agents 
can be finite or infinite, and utilities ​​U​​ h​(X, Y, ​x​U​​ , ​x​D​​)  = ​ γ​ U​ h ​ ​u​​ h​ (​x​U​​) + ​γ​ D​ h ​ ​u​​ h​ (​x​D​​)​ 
allow for different attitudes toward risk in terminal consumption. Finally, each agent ​
h  ∈  H​ has an endowment ​​x​​0​​ ∗​​​​ of ​X​ at time ​0​ , and no other endowment.7

Finally we define the ​C​-model as a special case of the ​​C​​ ∗​​-model where there 
is a continuum of agents ​h  ∈  H  = ​ [0, 1]​​.8 Each agent is risk neutral with sub-
jective probabilities, ​​(​γ​ U​ h ​ , ​γ​ D​ h ​  =  1 − ​γ​ U​ h ​)​​. The expected utility to agent ​h​ is  
​​U​​ h​ (X, Y, ​x​U​​ , ​x​D​​)  = ​ γ​ U​ h ​ ​x​U​​ + ​γ​ D​ h ​ ​x​D​​​. We assume that ​​γ​ U​ h ​​ is strictly increasing and 
continuous in ​h.​ If ​​γ​ U​ h ​  > ​ γ​ U​ h′ ​​, we shall say that agent ​h​ is more optimistic (about 
state ​U)​ than agent ​h′.​

The set ​J​ of contracts is defined in the next section.

II.  Investment and Welfare in ​C​ and ​​C​​ ∗​​-Models

In this section, we present our propositions regarding investment and welfare in ​
C​ and ​​C​​ ∗​​-models. In Section V, we analyze the equilibria corresponding to different 
financial innovations in detail and provide proofs of the propositions.

A. Financial Innovation and Collateral

A vitally important source of financial innovation involves the possibility of using 
assets and firms as collateral to back promises. Financial innovation in our model is 
described by a different set ​J​. We shall always write ​J  = ​ J​​ X​ ∪ ​J​​ Y​,​ where ​​J​​ X​​ is the 
set of contracts backed by one unit of ​X​ and ​​J​​ Y​​ is the set of contracts backed by one 
unit of ​Y​.

In Section IIA, we describe four different ​J​ regimes, which together with our 
description of the ​C​ and ​​C​​ ∗​​-models in Section IH completes the specification of our 
model under four financial innovations. We also provide a brief description of equi-
librium in the ​C​-model for each of the regimes. In Section IIB, we present numer-
ical simulations of equilibrium in the four regimes to illustrate the propositions we 
present in Sections IIC and IID.

N-Economy in the ​C​-Model.—In the ​N​-economy no financial contracts can be 
traded using the assets as collateral, and hence ​J  =  ∅ .​ This situation corresponds 
to financial autarky. Since ​​Z​ 0​ h​  = ​ Z​0​​​ is convex, without loss of generality we may 
suppose that every agent chooses the same production plan ​(​z​x​​ , ​z​y​​)​ and ​​Π​​ h​  =  Π.​ 
Since we have normalized the mass of agents to be 1, ​(​z​x​​ , ​z​y​​)​ is also the aggregate 
production. In equilibrium there is a marginal buyer ​​h​1​​​.9 All agents ​h  > ​ h​1​​​ use all 
their endowment and profits from production ​​x​​0​​ ∗​​​ + Π​ and buy all the ​Y​ produced 

7 The assumption that agents have no endowment of ​Y​ is not needed for the five propositions on investment and 
welfare in Section II, but it is required for the nonexistence result in Section III. 

8 We suppose that agents are uniformly distributed in ​[ 0, 1 ]​ , that is they are described by Lebesgue measure. 
9 This is because of the linear utilities, the continuity of utility in ​h​ and the connectedness of the set of agents ​

H​ at state ​s  =  0.​ 
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in the economy. Agents ​h  < ​ h​1​​​ instead hold all the remaining ​X​ in the economy. 
Figure 4 describes the equilibrium regime in the ​N​-economy for the ​C​-model.

L-Economy in the ​C​-Model.—The first type of financial innovation we consider is 
leverage. Agents can issue noncontingent promises (debt) of the consumption good 
using the risky asset as collateral. In this case ​J = ​ J​​ Y​,​ and each contract ​j​ uses one 
unit of asset ​Y​ as collateral and promises ​( j, j)​ units of consumption in the two states ​
U, D​ , for all ​j  ∈  J = ​ J​​ Y​.​ We call this the ​L​-economy. We assume ​​j​​ ∗​ = ​d​ D​ Y ​ ∈ J,​ but 
otherwise the range of riskless promises ​( j, j)  ∈  J​ can be arbitrarily big or small.

Let us briefly describe the equilibrium. As before, ​(​z​x​​ , ​z​y​​)​ is also the aggregate pro-
duction. Geanakoplos (2003) and Fostel and Geanakoplos (2012a) showed that in 
​C​-models, the only contract actively traded in equilibrium is ​​j​​ ∗​  =  ​d​ D​ Y ​​ and that the risk-
less interest rate is zero. Agents have the choice of leveraging at any level they like, but 
leverage is endogenously determined in equilibrium in ​C​-models at the loan to value ​
LTV  =  ​d​ D​ Y ​/p.​ Borrowers are constrained: if they wish to borrow more on the same 
collateral by selling ​j  >  ​j​​ ∗​​, they would have to promise sharply higher interest ​j/​π​j​​​.

In equilibrium, there is a marginal buyer ​​h​1​​​ at state ​s  =  0​ whose valuation 
​​γ​ U​ ​h​1​​​ ​d​ U​ Y ​ + ​γ​ D​ ​h​1​​​ ​d​ D​ Y ​​ of the risky asset ​Y​ is equal to its price ​p​. The optimistic agents 
​h  > ​ h​1​​​ collectively buy all the risky asset ​​z​y​​​ produced in the economy, financing or 
leveraging their purchases with debt, that is, they buy ​Y​ and sell the riskless contract ​​j​​ ∗​​, 
at a price of ​​π​​j​​ ∗​​​​ , using the asset as collateral. In doing so, they are effectively buying 
the Arrow security that pays in the ​U​ state (since at ​D​ , their net payoff after debt 
repayment is 0). The pessimistic agents ​h  < ​ h​1​​​ buy all the remaining safe assets 

Figure 4. Equilibrium Regime in the ​N​-Economy for the ​C​-Model
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and lend to the optimistic agents by buying the riskless bond. Figure 5 shows the 
equilibrium regime in the ​L​-economy for the ​C​-model.

CDS-Economy in the ​C​-Model.—The second type of financial innovation we con-
sider is a Credit Default Swap on the risky asset ​Y.​ A Credit Default Swap (CDS) 
on the asset ​Y​ is a contract that promises to pay ​0​ when ​Y​ pays ​​d​ U​ Y ​​ , and promises ​​
d​ U​ Y ​ − ​d​ D​ Y ​​ when ​Y​ pays only ​​d​ D​ Y ​​. CDS is a derivative, since its payoffs depend on the 
payoff of the underlying asset ​Y​. A seller of a CDS must post collateral, typically 
in the form of money. In a two-period model, buyers of the CDS would insist on at 
least ​​d​ U​ Y ​ − ​d​ D​ Y ​​ units of ​X​ as collateral. Thus, for every one unit of payment, one unit 
of ​X​ must be posted as collateral. We can therefore incorporate CDS into the lever-
age economy by taking ​​J​​ X​​ to consist of one contract promising ​(0, 1)​.10

Thus, we take ​J  = ​ J​​ X​ ∪ ​J​​ Y​​ where ​​J​​ X​​ consists of a contract promising ​(0, 1)​ , and ​​
J​​ Y​​ consists of contracts ​( j, j)​ as described in the ​L​-economy above. We call this the ​
CDS​-economy. Selling a CDS using ​X​ as collateral is like “tranching” the riskless 
asset into Arrow securities. The holder of ​X​ can get the Arrow ​U​ security by selling 
the CDS using ​X​ as collateral. The buyer of a CDS is effectively buying the Arrow ​D​  
security.

10 A CDS can be “covered” or “naked” depending on whether the buyer of the CDS needs to hold the underlying 
asset ​Y​. Notice that holding the asset and buying a CDS is equivalent to holding the riskless bond, which was already 
available without CDS in the ​L​-economy, and hence the equilibrium would remain unchanged. For this reason in 
what follows we will focus on the case of naked CDS. 

Figure 5. Equilibrium Regime in the ​L​-Economy for the ​C​-Model
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Strictly speaking, since the CDS is a derivative based on ​Y​ , if ​Y​ ceases to exist 
because it is not produced, then the CDS should disappear, as we make clear in 
Section III. For the rest of Section II we shall ignore this problem and assume that 
the CDS contract is traded whether or not ​Y​ is produced.

As before, we may suppose that every agent chooses the same production 
plan ​(​z​x​​ , ​z​y​​)​ and ​​Π​​ h​  =  Π,​ and thus ​(​z​x​​ , ​z​y​​)​ is also the aggregate production. The 
equilibrium, however, is more subtle in this case. There are two marginal buyers 
​​h​1​​  > ​ h​2​​ .​ Optimistic agents ​h  > ​ h​1​​​ hold all the ​X​ and all the ​Y​ produced in the 
economy, selling the bond ​​j​​ ∗​  = ​ d​ D​ Y ​​ at a price of ​​π​​j​​ ∗​​​​ , using ​Y​ as collateral, and selling 
CDS at a price of ​​π​C​​​ , using ​X​ as collateral. Hence, they are effectively buying the 
Arrow ​U​ security (the payoff net of debt and CDS payment at state ​D​ is zero). 
Moderate agents ​​h​2​​  <  h  < ​ h​1​​​ buy the riskless bonds sold by more optimistic 
agents, earning a strictly positive rate of interest. Finally, agents ​h  < ​ h​2​​​ buy the 
CDS from the most optimistic investors (so they are effectively buying the Arrow ​D​ ). 
The equilibrium in the ​CDS​-economy for the ​C​-model is described in Figure 6.

In the remainder of this section we will compare the equilibrium prices, invest-
ment and welfare across these economies and present our main results. In Section V 
we will delve into the details of how these different equilibria are characterized and 
provide geometrical proofs for all the results that follow.

Arrow-Debreu in the ​C​-Model.—Collateral equilibrium can implement the 
Arrow-Debreu equilibrium. Consider the economy defined by the set of available 
financial contracts as follows. We take ​J  = ​ J​​ X​  ∪  ​J​​ Y​​ where ​​J​​ X​​ consists of a single 
contract promising ​(0, 1)​ and ​​J​​ Y​​ consists of a single contract ​​(0, ​d​ D​ Y ​)​​. In this case 
both assets in the economy can be used as collateral to issue the Arrow ​D​ promise, 
that is, both assets ​X​ and ​Y​ can be perfectly tranched into Arrow securities. Since 
there are no endowments in the terminal states, all the cash flows in the economy get 
tranched into Arrow ​U​ and ​D​ securities, and hence the collateral equilibrium in this 
economy is equivalent to the Arrow-Debreu equilibrium.

In the Arrow-Debreu equilibrium there is a marginal buyer ​​h​1​​​. All agents ​h  > ​ h​1​​​ 
use all their endowment and profits from production ​​x​​0​​ ∗​​​ + Π​ and buy all the Arrow ​U​ 
securities in the economy. Agents ​h  < ​ h​1​​​ instead buy all the Arrow ​D​ securities in 
the economy. Figure 7 describes the equilibrium regime in Arrow-Debreu economy 
for the ​C​-model.

B. Numerical Examples

We present numerical examples in order to motivate the propositions that follow. 
Consider a ​C​-model with constant returns to scale technology ​​Z​0​​ = { z = (​z​x​​ , ​z​y​​) 
∈ ​R​−​​ × ​R​+​​ : ​z​y​​ = − k ​z​x​​ },​ where ​k ≥ 0.​ Beliefs are given by ​​γ​ U​ h ​ = 1 − ​(1 − h)​​ 2​​ 
for ​h ∈ (0, 1)​ , and parameter values are ​​x​​0​​ ∗​​​ = 1​ , ​​d​ U​ Y ​ = 1, ​d​ D​ Y ​ = 0.2​ and ​k = 1.5​. 
Table 1 presents the equilibrium in the four economies we just described. Figure 8 
shows total investment in ​Y​ , ​− ​z​x​​​ , in each economy for different values of ​k.​11

11 Appendix A presents numerical values. 
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Investment is highest in the ​L​-economy and is lowest in the ​CDS​-economy. 
The most important lesson coming from this numerical example is that financial 
innovation affects investment decisions, even without any change in fundamentals. 
Notice that across the four economies we do not change fundamentals such as asset 
payoffs or productivity parameters, utilities or endowments. The only variation is 
in the type of financial contracts available for trade using the assets as collateral, as 
described by the different sets ​J​. In other words, financial innovation drives invest-
ment variations. We formalize these results in Sections IIC, IID, and V.

It is also interesting to study the welfare implications of these financial innovations. 
Figure 9 shows the welfare corresponding to tail agents as well as the different equi-
librium marginal buyers in each economy (calculated based on individual beliefs) 
when ​k  =  1.5,​ across the four different economies.12 The Arrow-Debreu equilib-
rium Pareto dominates the ​L​-economy equilibrium, which in turn dominates the  
​N​-economy. However, no such domination holds for the ​CDS​-economy. In particu-
lar, moderate agents are better off in the ​CDS​-economy than in Arrow-Debreu. We 
will formally discuss these results in Sections IIC and V.

C. Leverage, Overinvestment, and Welfare

First we show that when agents can leverage the risky asset in the ​L​-economy, 
price and investment levels are above those of the ​N​-economy and Arrow-Debreu 

12 Appendix A presents numerical values. 

 

 

Optimists: issue bond against Y and CDS against X
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h = 1

h = 0

h1
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Figure 6. Equilibrium Regime in the ​CDS​-Economy for the ​C​-Model
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economy. Hence, leverage generates over valuation and over investment with respect 
to both financial autarky and the first best. Our numerical example is consistent with 
a general property of the ​C​-model as the following proposition shows.

Proposition 1: Leverage and Overinvestment in C-Models.

Let ​​(​p​​ L​, ​(​z​ x​ L​, ​z​ y​ L​)​, (​p​​ A​, ​(​z​ x​ A​, ​z​ y​ A​)​, and (​p​​ N​, ​(​z​ x​ N​, ​z​ y​ N​)​)​​ denote the asset price and 
aggregate outputs for any equilibria in the L-economy, Arrow-Debreu economy, 
and the ​N​-economy, respectively. Then: (i) ​​(​p​​ L​, ​z​ y​ L​)​  ≥  ​(​p​​ A​, ​z​ y​ A​)​​ and at least one of 
the two inequalities is strict, except possibly when ​​z​ x​ L​  =  − ​x​​0​​ ∗​​​​ or ​​z​ x​ L​  =  0​ , in which 
cases all that can be said is that ​​z​ y​ L​  ≥ ​ z​ y​ A​.​ (ii) ​​(​p​​ L​, ​z​ y​ L​)​  ≥  ​(​p​​ N​, ​z​ y​ N​)​​ and at least 
one of the two inequalities is strict, except possibly when ​​z​ x​ L​  =  − ​x​​0​​ ∗​​​​ or ​​z​ x​ L​  =  0​ , in 
which cases all that can be said is that ​​z​ y​ L​  ≥ ​ z​ y​ N​.​

Table 1—Equilibrium for ​k = 1.5​

​L​-economy ​N​-economy
Arrow-Debreu

economy ​CDS​-economy

​p​ 0.6667 ​p​ 0.6667 ​​q​Y​​​ 0.6667 ​p​ 0.6667
​​h​1​​​ 0.3545 ​​h​1​​​ 0.3545 ​​q​U​​​ 0.5833 ​​π​​j​​ ∗​​​​ 0.1904
​​z​x​​​ −0.92 ​​z​x​​​ −0.6454 ​​q​D​​​ 0.4167 ​​π​C​​​ 0.4046
​​z​y​​​ 1.38 ​​z​y​​​ 0.9682 ​​h​1​​​ 0.3545 ​​h​1​​​ 0.3880

​​z​x​​​ −0.2131 ​​h​2​​​ 0.3480
​​z​y​​​ 0.3197 ​​z​x​​​ −0.14

​​z​y​​​ 0.2

Optimists: buy Arrow U

Pessimists: buy Arrow D

Marginal buyer  

h = 1

h = 0

h1

Figure 7. Equilibrium Regime in the Arrow-Debreu Economy for the ​C-Model
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Proof:
See Section VC.

One way to understand this result is in terms of collateral value as in Fostel and 
Geanakoplos (2008).13 In the ​L​-economy the risky asset can be used as collateral 
to issue debt. This gives the risky asset an additional collateral value. Consider the 
numerical example from Section IIB (see Table 1) and the optimistic agent ​h  =  0.9.​ 

If she buys ​Y​ with cash she gets  ​​ 
​γ​U​​ (0.9)​d​ U​ Y ​  +  ​(1  −  ​γ​U​​ (0.9))​ ​d​ D​ Y ​   ___________________  p ​   =  ​ 0.99(1)  +  0.01(0. 2)

  ___________ 0.67  ​  =  1.48​ 

utiles per dollar invested. If she buys ​Y​ using leverage she gets 

​​ 
​γ​U​​ (0.9)​(​d​ U​ Y ​  −  ​d​ D​ Y ​)​  ___________ p − ​π​​j​​ ∗​​​ ​   =  ​ 0.99(1 − 0.2)

 _ 0.67 − 0.2  ​  =  1.70​ utiles per dollar of downpayment. The utility 

1.48 per dollar from holding ​Y​ for its dividends alone is less than the utility 1.70 per 
dollar derived from leveraging ​Y,​ which is the best use of agent ​h  =  0.9​’s money. 
Therefore, ​​μ​​ h=0.9​  =  1.70​ is the marginal utility of a dollar for agent ​h  =  0.9​.

​Y​ has a collateral value beyond its payoff value. We can measure these 
in dollar equivalents as follows. The Payoff Value of ​Y​ for agent ​h  =  0.9 
​is given by the marginal utility of ​Y​ measured in dollar equivalents, or 

​P​V​ Y​ h=0.9​  = ​  0.99(1)  + 0.01(0. 2)
  ____________ 

​μ​​ h=0.9​
 ​   =  0.59  <  p.​ The Collateral Value of ​Y​ for agent ​

h  =  0.9​ is given by the extra utility she can get by borrowing on Y, measured in 

dollar equivalents, ​​CV​ Y​ h=0.9​​  = ​​ 
0.2(1.7−1)
 ________ 1.7  ​​ = 0.08  =  0.67 − 0.59  =  p − ​​PV​Y​​​. On 

the other hand, ​X​ cannot be used as collateral, so ​P​V​X​​  =  1​ and ​C​V​X​​  =  0.​ Agents 
have more incentive to produce goods that are better collateral as measured by their 
collateral values. Investment migrates to better collateral.

Another (and related) way to understand the result is to note that leverage effec-
tively tranches the ​Y​ payoff ​​z​y​​(1, 0.2)​ into ​​z​y​​(1 − 0.2)  =  1.1​ Arrow ​U​ securities, 
held by optimists ​h  ∈  (0. 35, 1)​ , paying ​​z​y​​(1 − 0.2, 0),​ and ​​z​y​​(0. 2)  =  0.27​ risk-
less bonds, held by ​h  ∈  (0, 0.035)​ paying ​​z​y​​ (0.2, 0.2).​ By dividing up the risky 
asset payoffs into two different kinds of assets, attractive to two different clienteles, 
demand is increased, and hence agents have more incentive to produce ​Y​.

It turns out that Proposition 1 is valid for any type of preferences or space of 
agents as the following proposition shows.

Proposition 2: Leverage and Overinvestment in C*-Models.

Let ​​(​p​​ L​, ​(​z​ x​ L​, ​z​ y​ L​)​)​​ denote an equilibrium in the L-economy in which not all of ​​
x​​0​​ ∗​​​​ is used up in production. Suppose also that there is no other equilibrium in 
the L-economy with the same prices and more output. Then there exist equilibria 
​​(​p​​ A​, ​(​z​ x​ A​, ​z​ y​ A​)​)​​ and ​​(​p​​ N​, ​(​z​ x​ N​, ​z​ y​ N​)​)​​ for the Arrow-Debreu economy and the 

​N​-economy respectively in which ​​(​p​​ L​, ​z​ y​ L​)​  ≥  ​(​p​​ A​, ​z​ y​ A​)​​ and ​​(​p​​ L​, ​z​ y​ L​)​  ≥  ​(​p​​ N​, ​z​ y​ N​)​​.

Proof:
See Section VC.

13 We formally discuss these concepts in detail in Section IV. 
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We cannot compare production in the Arrow-Debreu economy with production in 
the ​N​-economy. In the numerical example, production is higher in the ​N​-economy, 
but with different parameters the reverse could be true.

Finally, the following welfare comparison holds when there are constant returns 
to scale in production.

Proposition 3: Welfare comparison with Constant Return to Scale in C*-Models.

Let ​​(​p​​ L​, ​(​z​ x​ L​, ​z​ y​ L​)​, (​p​​ N​, ​(​z​ x​ N​, ​z​ y​ N​)​ and (​p​​ A​, ​(​z​ x​ A​, ​z​ y​ A​)​)​​ denote the asset price and 
aggregate outputs for any interior equilibria in the L-economy, ​N​-economy and the 
Arrow-Debreu economy, respectively.14 Suppose that ​​Z​0​​​ exhibits constant returns 
to scale. Then the Arrow-Debreu equilibrium Pareto-dominates the L-equilibrium, 
which in turn Pareto-dominates the ​N​-equilibrium.

Proof:
See Section VC.

D. CDS and Underinvestment

We show that introducing a CDS on ​Y​ using ​X​ as collateral, in addition to lever-
age Y, generates undervaluation and underinvestment with respect to the investment 
level in the ​L​ and Arrow-Debreu economies. The result coming out of our numerical 
example is a general property of our ​C​-model as the following propositions show.

Proposition 4: CDS underinvestment compared to Leverage in C-Models.

Let ​(​p​​ L​, ​(​z​ x​ L​, ​z​ y​ L​)​ and ​(​p​​ CDS​, ​(​z​ x​ CDS​, ​z​ y​ CDS​)​)​​ denote the asset price and aggregate 
outputs for any equilibria in the L-economy and the CDS-economy, respectively. 
Then, ​​(​p​​ L​, ​z​ y​ L​)​  ≥  ​(​p​​ CDS​, ​z​ y​ CDS​)​​ and at least one of the two inequalities is strict, 
except possibly when ​​z​ x​ L​  =  − ​x​​0​​ ∗​​​​ or ​​z​ x​ L​  =  0​ , in which case all that can be said is 
that ​​z​ y​ L​  ≥ ​ z​ y​ CDS​​.

Proof:
See Section VE.

The basic intuition is along the same lines discussed after Proposition 1. Notice 
that selling a CDS using ​X​ as collateral is like “tranching” the riskless asset into 
Arrow securities. The holder of ​X​ can get the Arrow ​U​ security by selling the CDS 
using ​X​ as collateral. Hence, in the ​CDS​-economy, the Arrow ​U​ security can be 
created through both ​X​ and ​Y,​ whereas in the ​L​-economy only thorough ​Y.​ This 
gives less incentive in the ​CDS​-economy to invest in ​Y​.

The intuition can also be seen in terms of the collateral values of the input ​X​ and 
the output ​Y​. Using the same numerical example as before, the marginal utility of 

14 Equilibrium is interior when ​− ​x​​0​​ ∗​​​  < ​ z​x​​  <  0​ , i.e when ​Y​ is positively produced and positive ​X​ remains. 
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money at time 0 for ​h  =  0.9​ is given by ​​μ​​ h=0.9​  = ​  ​γ​U​​ (0. 9) ​(​d​ U​ Y ​ − ​d​ D​ Y ​)​  ____________ p − ​π​​j​​ ∗​​​ ​   = ​  0.99(1 − 0.2)
 _  0.67 − 0.1904 ​ 

= ​ ​γ​U​​ (0. 9) ​(​d​ U​ X​)​ ________ 1 − ​π​C​​ ​  = ​ 0.99(1)
 _ 1 − 0.40 ​ = 1.66​ (optimists in the ​CDS​-economy buy the Arrow ​U​ 

security using either ​X​ as collateral to sell ​CDS​ or Y as collateral to sell the 

riskless bond). The payoff value of ​Y​ for agent ​h  =  0.9​ is given by ​P​V​ Y​ h=0.9​ 

= ​  0.99(1)  + 0.01(0. 2)
  ___________ 

​μ​​ h=0.9​
 ​   =  0.60  <  p​ and therefore the collateral value of ​Y​ for 

agent ​h = 0.9​ is given by ​C​V​ Y​ h=0.9​  =  p − P​V​ Y​ h=0.9​  =  0.67 − 0.6  =  0.07​. In the ​

CDS​-economy ​X​ can also be used as collateral. The payoff value of ​X​ for agent  

​h  =  0.9​ is given by ​P​V​ X​ h=0.9​= ​  0.99(1)  + 0.01(1)
  ___________ 

​μ​​ h=0.9​
 ​   =  0.60​ and therefore the 

collateral value of ​X​ for agent ​h  =  0.9​ is given by ​C​V​ X​ h=0.9​  =  1 − P​

V​ X​ h=0.9​  =  1 − 0.60  =  0.40.​ So whereas the collateral value of ​Y​ accounts for 10.5 
percent of its price, the collateral value of ​X​ accounts for 40 percent of its price.

In our numerical example the price of ​Y​ is the same across the different econo-
mies (given the constant return to scale technology), but financial innovation affects 
the collateral value of assets. Leverage increases the collateral value of ​Y​ relative to ​
X​ and ​CDS​ has the opposite effect. Investment responds to these changes in collat-
eral values, migrating to those assets with higher collateral values.

Finally, investment in the ​CDS​-economy falls even below the investment level in 
the Arrow-Debreu economy, provided that we make the additional assumption that ​​
γ​U​​ (h)​ is concave. This assumption on beliefs can be interpreted as there is more 
heterogeneity in beliefs among the pessimists than among the optimists.

Proposition 5: CDS underinvestment compared to Arrow-Debreu in C-Models.

Let ​(​p​​ A​, ​(​z​ x​ A​, ​z​ y​ A​)​​ and ​​(​p​​ CDS​, ​(​z​ x​ CDS​, ​z​ y​ CDS​)​)​​ denote the asset price and aggregate 
outputs for any equilibria in the Arrow-Debreu economy and the CDS-economy, 

respectively. Suppose ​​γ​U​​ (h)​ is concave in ​h​. Then, ​​(​p​​ A​, ​z​ y​ A​)​  ≥  ​(​p​​ CDS​, ​z​ y​ CDS​)​​ and 

at least one of the two inequalities is strict, except possibly when ​​z​ x​ CDS​  =  − ​x​​0​​ ∗​​​​ , 
or ​​z​ x​ CDS​  =  0​ , in which case all that can be said is that ​​z​ y​ A​  ≥ ​ z​ y​ CDS​​.

Proof:
See Sections III and VE.
Propositions 4 and 5 cannot be generalized to the ​​C​​ ∗​​-models, neither can we prove 

unambiguous welfare results. The reason is that in the ​L​-economy, ​N​-economy, and 
Arrow-Debreu economy there are state prices that can be used to value every asset 
and contract.15 In the ​CDS​-economy this is not the case. We further discuss this in 
Section V.

15 For details see Fostel and Geanakoplos (forthcoming). 
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III.  CDS and Nonexistence

By definition, a derivative contract does not trade when the underlying asset does 
not exist. It is precisely this fact that can bring about interesting nonexistence prop-
erties as we now show.

Let us define a Derivative CDS equilibrium as equal to the equilibrium in the ​
CDS​-economy defined in Section II if ​Y​ is produced, and as equal to the equilibrium 
in the ​N​-economy if ​Y​ is not produced, since in that case neither the leverage debt 
nor the CDS trade. Thus, if all ​CDS​-equilibria involve no production of ​Y​ and all ​
N​-equilibria involve positive production of ​Y​ , then there cannot exist a Derivative ​
CDS​-equilibrium.

Recall our numerical example in Section IIB. Observe that for all ​k​ such that ​
k  ∈  (1, 1.44​), the ​N​-economy has positive production whereas the ​CDS​-economy 
has no production. For that entire range, Derivatives ​CDS​-equilibrium does not 
exist, as shown in Figure 10.16

CDS is a derivative, whose payoff depends on some underlying instrument. The 
quantity of CDS that can be traded is not limited by the market size of the underlying 
instrument. If the stock of the underlying security diminishes, the CDS trading may 

16 Numerical values are in Appendix A. We could also find an example of nonexistence in economies with convex 
technologies, provided that Inada conditions (which prevent equilibrium production to be zero) are assumed away. 
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continue at the same high levels, as shown in the figure as k diminishes towards 1.44. 
But when the stock of the underlying instrument falls to zero, CDS trading must 
come to an end by definition. This discontinuity can cause robust nonexistence. The 
classical nonexistence observed in Hart (1975), Radner (1979), and Polemarchakis 
and Ku (1990) stemmed from the possibility that asset trades might tend to infinity 
when the payoffs of the assets tended toward collinear. A discontinuity arose when 
they became actually collinear. Collateral restores existence by (endogenously) 
bounding the asset trades. In our model, CDS trades stay bounded away from zero 
and infinity even as production disappears. Collateral does not affect this, since the 
bounded promises can be covered by the same collateral. But the moment produc-
tion disappears, the discontinuity arises, since then CDS sales must become zero.

IV.  No Marginal Underinvestment

Repayment enforceability problems restrict borrowing and thus naturally raise 
the specter of underinvestment. But when a commodity can serve as collateral, it 
thereby acquires an additional usefulness, and an opposite force is created which 
tends to overvaluation and overproduction of the commodity. In this section we 
show that under the general conditions of the model in Section I, at the margin, the 
overproduction force always dominates, despite the fact that agents are constrained 
in what they can borrow.

It is commonly said that when agents are borrowing constrained, they will be 
unable to invest as much as they would choose in a first-best world. The requirement 
to use scarce collateral in order to borrow is thus commonly supposed to explain 
low investment. However, Proposition 6 shows that when agents are collateral con-
strained, consumption is always more urgent than investment in collateral goods. 
If they were suddenly given a little extra money to make purely cash purchases, 
none of them would choose to buy or produce more of any good that can be used 
as collateral. Thus, on the margin, collateral requirements explain overinvestment 
rather than underinvestment. Of course if they were given enough money, or allowed 
to borrow a very large amount from the future, as in a first-best world, then they 
might well invest. Although there is never underinvestment on the margin in collat-
eral equilibrium, investment could be above or below the first-best Arrow-Debreu  
level. In ​C​ and ​​C​​ ∗​​ economies there is always overinvestment with respect to the 
Arrow-Debreu level. But there are other economies in which there is underinvest-
ment relative to the first-best Arrow-Debreu levels. (See Geanakoplos 1997 or 
Kiyotaki and Moore 1997).

The intuition that collateral requirements limit borrowing and thus lead to under-
investment seems even more compelling when agents have heterogeneous produc-
tivities. However, Proposition 7 shows that in the absence of cash flow problems, 
consumption is still more urgent than even the best investments. When an agent is 
collateral constrained, she would never spend a newfound dollar to buy or produce 
more of any good that can be used as collateral, even if she had access to the best 
technology in the economy for that investment. This result stands in contrast to 
the traditional macroeconomic literature on financial frictions in which cash flow 
problems are commonly assumed. For example, in Kiyotaki and Moore (1997), 
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gatherers end up holding land on which they are not productive when farmers could 
have produced more with it. This underinvestment arises from their cash flow prob-
lem assumption—that fruit growing on the land cannot be confiscated along with the 
land in case of default. This additional cash flow problem, and not the requirement 
for collateral, prevents farmers from borrowing enough to buy more land.

Propositions 6 and 7 show that collateral without a cash flow problem tends to 
create overproduction, not underproduction, on the margin. But they also point to 
a way of generating a large swing from overproduction to underproduction: move 
from a situation in which a good can be fully collateralized to one in which it can’t 
be used as collateral at all.

We now make these ideas precise using the notions of collateral value and liquid-
ity value from Fostel and Geanakoplos (2008) and Geanakoplos and Zame (2014). 
To simplify the statement of our marginal overinvestment propositions we shall 
assume differentiability of the utility functions for each agent.17

Given an equilibrium, let us define the marginal utility of money to agent ​h​ for 
any state ​s  ∈ ​ S​T​​​ by

	​ ​μ​ s​ h​  = ​ 
∂ ​u​​ h​​(​x​​ h​)​

 ______ 
∂​x​ sℓ​ h ​

 ​ ​  1 _ ​p​sℓ​​ ​​

whenever ​​x​ sℓ​ h ​  >  0​. Similarly, if ​0ℓ​ is completely perishable, and ​​x​ 0ℓ​ h ​  >  0​ , define 
the marginal utility of money to agent ​h​ at 0 by

	​ ​μ​ 0​ h​  = ​  ∂ ​u​​ h​(​x​​ Idem​) ________ 
∂​x​ 0ℓ​ h ​

 ​ ​  1 _ ​p​0ℓ​​ ​​ .

For possibly nonperishable commodities, define the Payoff Value for each com-
modity ​ℓ  ∈ ​ L​0​​​ to each agent ​h​ by

	​ PV ​ ​ 0ℓ​ h ​  = ​ 
​ 
∂ ​u​​ h​​(​x​​ h​)​

 ______ ∂ ​x​0ℓ​​
 ​  + ​ ∑ 

s∈​S​T​​
​​​ ​p​s​​ · ​F​ s​ h​(​1​0ℓ​​) ​μ​ s​ h​

   _____________________  
​μ​ 0​ h​

 ​ ​ ,

and the Collateral Value for each commodity ​ℓ  ∈ ​ L​0​​​ to each agent ​h​ by

	​ CV ​ ​ 0ℓ​ h ​  = ​ p​0ℓ​​ − PV ​ ​ 0ℓ​ h ​​ .

Similarly, we define the Liquidity Value of contract ​j​ to any (potential seller) ​h​ as

	​ LV ​ ​ j​ h​  = ​ π​j​​ − ​ 
​ ∑ 
s∈​S​T​​

​​​ min ​(​p​s​​ · ​F​ s​ h​​(​c​j​​)​, ​p​s​​ · ​j​s​​)​ ​μ​ s​ h​
   ______________________  

​μ​ 0​ h​
 ​ ​ .

17 More generally let us assume that every agent has strictly positive “extended” endowments of commodities 
in every state, where we define the extended endowment in state ​s  ∈ ​ S​T​​​ to be ​​e​ s​ h​ + ​F​ s​ h​​(​e​ 0​ h​)​​. Given commodity and 
contract prices ​( p, π)​ define the indirect utility ​​U​​ h​ ​(( p, π), ​w​0​​, ​w​1​​, …, ​w​S​​)​​ as the maximum utility agent ​h​ can get 
by trading at prices ​( p, π)​ , where the ​​w​s​​  ∈  (−ε, ε)​ represent small transfers of income, positive or negative. Since 
agents have strictly positive endowments, for small negative income transfers their starting endowment wealth will 
be positive in each state. Since utilities are concave, the indirect utility function must be concave in ​w​ , and hence 
differentiable from the right and the left at every point, including the point with equilibrium prices and ​w  =  0​. 
Let ​​μ​ s​ h​​ be the derivative from the right for states ​s  ∈ ​ S​T​​​ , and let ​​μ​ 0​ h​​ be the derivative from the left for state ​s  =  0​. 
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Agent ​h​ is liquidity constrained in equilibrium if and only if there is some con-
tract ​j​ , with ​h  ∈  H( j)​ , that has strictly positive liquidity value to him. In equilib-
rium, we must have ​LV​ ​ j​ h​  ≥  0​ for all ​h  ∈  H, j  ∈  J​ , otherwise agent ​h​ ought to have 
bought more ​j​.

Fostel and Geanakoplos (2008) and Geanakoplos and Zame (2014) proved that 
when ​​C​j​​ ​ = ​​ 1​ol​​​ and ​​θ​ j​ 

h​​ < 0, ​CV​ ​ 0ℓ​ h ​  =  LV​ ​ j​ h​,​ so that the liquidity value associated to 
any contract ​j​ that is actually issued using commodity ​ℓ​ as collateral equals the col-
lateral value of the commodity.

The next proposition shows that there is never marginal underinvestment in goods 
that can be used as collateral.

Proposition 6: No Direct Marginal Underinvestment

Consider a collateral equilibrium ​​(​(p, π)​, ​​(​z​​ h​, ​x​​ h​, ​θ​​ h​)​​h∈H​​)​​. Then, for every ​
h ∈ H, ℓ ∈ ​L​0​​​, we must have ​​p​0ℓ​​ ≥ PV ​ ​ 0ℓ​ h ​​.

Moreover, if there is some contract ​j​ , with ​​c​j​​  = ​ 1​0ℓ​​​ , that has strictly positive 
liquidity value to ​h  ∈  H( j)​ , then ​​p​0ℓ​​  >  PV ​ ​ 0ℓ​ h ​​. In this case, if ​h​ were given an extra 
unit of cash to make a purely cash purchase, she would not purchase or produce 
more of good ​0ℓ​.

Proof:
If ​​p​0ℓ​​  <  PV ​ ​ 0ℓ​ h ​​ , then agent ​h​ ought to have reduced a little of what she was doing 

in equilibrium, and instead bought a little of commodity ​0ℓ​ , a contradiction. If on 
top of buying a little ​0ℓ​ , ​h​ could also use it to collateralize a little borrowing via 
contract ​j​ , with positive liquidity value, then we would also contradict ​​p​0ℓ​​  ≤  PV ​ ​ 0ℓ​ h ​​. 
The concluding statement follows immediately. ​​∎

Next, we prove a stronger result: there is never marginal underinvestment even 
when agents are allowed to invest in technologies owned by other agents in the 
economy.

For each commodity ​ℓ  ∈ ​ L​0​​​ , define its Payoff Value to agent ​h′​ via agent ​h​ by

	​ PV ​ ​ 0ℓ​ 
h, h′​  = ​ 

​ ∂ ​u​​ h​​(​x​​ h​)​
 _____ ∂ ​x​0ℓ​​

  ​
 _____ 

​μ​ 0​ h​
 ​  + ​ 

​ ∑ 
s∈​S​T​​

​​​ ​p​s​​ · ​F​ s​ h​ (​1​0ℓ​​) ​μ​ s​ h′​
  _____________ 

​μ​ 0​ ​h ′ ​​
 ​ ​ .

Proposition 7: No Indirect Marginal Underinvestment

Consider a collateral equilibrium ​​(​(p, π)​, ​​(​z​​ h​, ​x​​ h​, ​θ​​ h​)​​h∈H​​)​​. Suppose an agent ​h​ 
can use ​​1​0ℓ​​​ as collateral, and in particular can issue a large contract ​j​ backed by ​​
1​0ℓ​​ .​ Then, for every ​h′  ∈  H, ℓ  ∈ ​ L​0​​​, we must have ​​p​0ℓ​​  ≥  PV ​ ​ 0ℓ​ 

h, h′​​.
Moreover, if the large contract ​j​ has strictly positive liquidity value to ​h  ∈  H( j)​ , 

then ​​p​0ℓ​​  >  PV ​ ​ 0ℓ​ 
h, h′​​. In this case, even if ​h​′ were given an extra unit of cash to make a 

purely cash purchases, she would not use it to buy ​0ℓ​ or to pay ​h​ to use ​0ℓ​ to produce 
dividends for her.
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Proof:
Agent ​h​ can always sell contract ​j​ to agent ​h​′ for at least ​​π​j​​  ≥ ​ 

​ ∑ 
s∈​S​T​​

​​​ ​p​s​​ · ​F​ s​ h​ (​1​0ℓ​​) ​μ​ s​ h′​
  ___________ 

​μ​ 0​ h′​
 ​ ​. 

Hence, if ​​p​0ℓ​​  <  PV ​ ​ 0ℓ​ 
h, h′​​ , agent ​h​ ought to have reduced a little of what he was doing 

in equilibrium, and instead bought a little of commodity ​0ℓ​ , used it to issue the large 
contract ​j​ , thus, paying on net at most

	​ ​p​0ℓ​​ − ​π​j​​  <  PV ​ ​ 0ℓ​ 
h, h′​ − ​ 

​ ∑ 
s∈​S​T​​

​​​ ​p​s​​ · ​F​ s​ h​ (​1​0ℓ​​) ​μ​ s​ h′​
  _____________ 

​μ​ 0​ h′​
 ​   = ​ 

​ 
∂ ​u​​ h​​(​x​​ h​)​

 ______ ∂ ​x​0ℓ​​
 ​
 ______ 

​μ​ 0​ h​
 ​ ​ ,

and being better off, a contradiction. The rest follows as in Proposition 6. ​∎​

V.  Equilibrium Analysis and Proofs

In this section, we fully characterize the equilibrium in the Arrow-Debreu, ​L​, and ​
CDS​-economies for ​C​-models presented in Section II.18 We also use an Edgeworth 
box diagram to illustrate each case and to provide a geometrical proof of the results 
in Section II for ​C​-models. We also prove much more briefly how some of these 
results can be extended to ​​C​​ ∗​​-models.

A. Arrow-Debreu Equilibrium

Arrow-Debreu equilibrium in ​C​ and ​​C​​ ∗​​-models is given by present value con-
sumption prices ​(​q​U​​ , ​q​D​​),​ which without loss of generality we can normalize to add 
up to 1, and by consumption ​​​(​x​ U​ h ​ , ​x​ D​ h ​)​​h∈H​​​ and production ​​​(​z​ x​ h​ , ​z​ y​ h​)​​h∈H​​​ satisfying

	 (i)	 	​ ​∫ 
0
​ 
1
​​ ​x​ s​ h​ dh  =  ​∫ 

0
​ 
1
​​ ​(​x​​0​​ ∗​​​ + ​z​ x​ h​ + ​d​ s​ Y​ ​z​ y​ h​)​dh,  s  =  U, D.​ 19

	 (ii)	 ​​(​x​ U​ h ​ , ​x​ D​ h ​)​  ∈  ​B​ W​ h ​ ​(​q​U​​, ​q​D​​, ​Π​​ h​)​  

	 	       ≡  ​{​(​x​ U​ h ​ , ​x​ D​ h ​)​  ∈  ​R​ +​ 2 ​  :  ​q​U​​ ​x​ U​ h ​ + ​q​D​​ ​x​ D​ h ​  ≤  (​q​U​​ + ​q​D​​) ​x​​0​​ ∗​​​ + ​Π​​ h​}​.​

	 (iii)	​ (​x​U​​ , ​x​D​​)  ∈  ​B​ W​ h ​ ​(​q​U​​ , ​q​D​​ , ​Π​​ h​)​  ⇒  ​U​​ h​ (​x​U​​ , ​x​D​​)  ≤  ​U​​ h​ ​(​x​ U​ h ​ , ​x​ D​ h ​)​,  ∀ h.​

	 (iv)	​ ​Π​​ h​  ≡  ​q​U​​​(​z​ x​ h​  +  ​z​ y​ h​ ​d​ U​ Y ​)​  +  ​q​D​​​(​z​ x​ h​  +  ​z​ y​ h​ ​d​ D​ Y ​)​  ≥  ​q​U​​​(​z​x​​ + ​z​y​​ ​d​ U​ Y ​)​  +  ​q​D​​​(​z​x​​  +  ​z​y​​ ​d​ D​ Y ​)​,

			   ∀ (​z​x​​ , ​z​y​​)  ∈  ​Z​ 0​ h​.​

Condition ​(i)​ says that supply equals demand for the consumption good at ​U​ 
and ​D​. Conditions (ii) and (iii) state that each agent optimizes in her budget set, 
where income is the sum of the value of endowment ​​x​0∗​​​ of ​X​ and the profit from 
her intra-period production. Condition (iv) says that each agent maximizes profits, 

18 For brevity, the characterization of the equilibrium in the ​N​-economy is given in Appendix C. 
19 We have used the integral to include the possibility of a continuum of agents, as in the ​C​-model. The same 

equation with a summation sign applies when there is a finite number of agents. 
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where the price of ​X​ and ​Y​ are implicitly defined by state prices ​​q​U​​​ and ​​q​D​​​ as 
​​q​X​​  = ​ q​U​​ + ​q​D​​​ and ​​q​Y​​  = ​ q​U​​ ​d​ U​ Y ​ + ​q​D​​ ​d​ D​ Y ​​.20

Specializing to ​C​-models, in Arrow-Debreu equilibrium there is a marginal 
buyer ​​h​1​​​. All agents ​h  > ​ h​1​​​ use all their endowment and profits from production 
​(​q​U​​ + ​q​D​​) ​x​​0​​ ∗​​​ + Π  =  (​x​​0​​ ∗​​​ + Π)​ and buy all the Arrow ​U​ securities in the econ-
omy. Agents ​h  < ​ h​1​​​ instead buy all the Arrow ​D​ securities in the economy.

It is clarifying to describe the equilibrium for ​C​-models using the Edgeworth box 
diagram in Figure 11. The axes are defined by the potential total amounts of ​​x​U​​​ and ​​
x​D​​​ available as dividends from the stock of assets emerging at the end of period 0. 
Point ​Q​ represents the economy total final output from the actual equilibrium choice of 
aggregate intra-period production ​(​z​x​​, ​z​y​​)​ , so ​Q  =  (​z​y​​ ​d​ U​ Y ​  +  ​x​​0​​ ∗​​​  +  ​z​x​​ , ​z​y​​ ​d​ D​ Y ​  +  ​x​​0​​ ∗​​​  +  ​z​x​​),​ 
where we take the vertical axis ​U​ as the first coordinate.

The 45-degree dotted line in the diagram is the set of consumption vectors that 
are collinear with the dividends of the aggregate endowment ​​x​​0​​ ∗​​​.​ The steeper dotted 
line includes all consumption vectors collinear with the dividends of ​Y​. The curve 
connecting the two dotted lines is the aggregate intra-period production possibility 
frontier, describing how the aggregate endowment of the riskless asset, ​​x​​0​​ ∗​​​  ,​ can be 
transformed into ​Y​. As more and more ​X​ is transformed into ​Y​ , the total output in ​U​ 
and ​D​ gets closer and closer to the ​Y​ dotted line.

The equilibrium prices ​q  =  (​q​U​​ , ​q​D​​)​ determine parallel price lines orthogonal 
to ​q​. One of these price lines is tangent to the production possibility frontier at ​Q​.

In the classical Edgeworth Box there is room for only two agents. One agent takes 
the origin as her origin, while the second agent looks at the diagram in reverse from 
the point of view of the aggregate point ​Q​ , because she will end up consuming what 
is left from the aggregate production after the first agent consumes. The question 
is, how to put a whole continuum of heterogeneous agents into the same diagram? 
When the agents have linear preferences and the heterogeneity is one-dimensional 
and monotonic, this can be done. Suppose we put the origin of agent ​h  =  0​ at ​
Q.​ We can mark the aggregate endowment of all the agents between ​h  =  0​ and 
any arbitrary ​h  = ​ h​1​​​ by its distance from ​Q.​ Since endowments are identical, and 
each agent makes the same profit, it is clear that this point will lie ​​h​1​​​ of the way on 
the straight line from ​Q​ to the origin at 0, namely at ​(1 − ​h​1​​)Q  =  Q − ​h​1​​ Q​. The 
aggregate budget line of these agents is then simply the price line determined by ​
q​ through their aggregate endowment, (their aggregate budget set is everything in 
the box between this line and ​Q​). Of course looked at from the point of view of the 
origin at ​0,​ the same point represents the aggregate endowment of the agents between ​
h  = ​ h​1​​​ and ​h  =  1.​ (Since every agent has the same endowment, the fraction 

20 These equations define any equilibrium in which some ​X​ remains after production. A more comprehensive 
definition of Arrow-Debreu equilibrium would explicitly include all four prices ​​q​U​​ , ​q​D​​ , q ​ ​X​​ , ​q​Y​​​. In such an equilib-
rium ​​q​X​​  ≥ ​ q​U​​ + ​q​D​​​ and ​​q​Y​​  ≥ ​ q​U​​ ​d​ U​ Y ​ + ​q​D​​ ​d​ D​ Y ​​ , otherwise any agent could sell the Arrow securities and buy the 
asset, owing nothing on net and pocketing the profit. As long as ​X, Y​ are both in positive supply after production, 
the reverse inequalities must hold, for otherwise the opposite trade would make a profit. If ​Y​ is not produced at all 
and ​​q​Y​​  > ​ q​U​​ ​d​ U​ Y ​ + ​q​D​​ ​d​ D​ Y ​​ , then we can lower ​​q​Y​​​ until this becomes an equality without disturbing equilibrium, since 
then there would be even less incentive to produce. If all of ​X​ is used up in production, however, then we could be 
left with ​​q​X​​  > ​ q​U​​ + ​q​D​​​ , since nobody has ​X​ to sell, and lowering the price ​​q​X​​​ might create more intended produc-
tion. Thus the equations describing equilibrium in which no ​X​ remains after production consist of (i), (ii), (iii), and 
(iv), but where we weaken the inequality in (4) to hold only for ​− ​x​​0​​ ∗​​​  < ​ z​x​​  ≤  0​ . 
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​(1 − ​h​1​​)​ of the agents can afford to buy the fraction ​(1 − ​h​1​​)​ of ​Q.​) Therefore, the 
same price line represents the aggregate budget line of the agents between ​​h​1​​​ and 1, 
as seen from their origin at ​0​ , (and their aggregate budget set is everything between 
the budget line and the origin 0).

At this point we invoke the assumption that all agents have linear utilities, and 
that they are monotonic in the probability assigned to the ​U​ state. Suppose the prices ​
q​ are equal to the probabilities ​​(​γ​ U​ ​h​1​​​ , ​γ​ D​ ​h​1​​​)​​ of agent ​​h​1​​ .​ Agents ​h  >  ​h​1​​​ , who are more 
optimistic than ​​h​1​​ ,​ have flatter indifference curves, illustrated in the diagram by the 
indifference curves near the origin 0. Agents ​h  <  ​h​1​​,​ who are more pessimistic than ​​
h​1​​,​ have indifference curves that are steeper, as shown by the steep indifference 
curves near the origin ​Q.​ The agents more optimistic than ​​h​1​​​ collectively will buy at 
the point ​C​, where the budget line crosses the ​​x​U​​​ axis above the origin, consuming 
exclusively in state ​U​. The pessimists ​h  <  ​h​1​​ ​ will collectively choose to consume at 
the point where the budget line crosses the ​​x​D​​​ axis through their origin at ​Q​ , the same 
point ​C,​ consuming exclusively in state ​D​. Clearly, total consumption of optimists 
and pessimists equals ​Q,​ i.e., ​​(​z​y​​ ​d​ U​ Y ​  +  ​x​​0​​ ∗​​​  +  ​z​x​​ , 0)​  +  ​(0, ​z​y​​ ​d​ D​ Y ​  +  ​x​​0​​ ∗​​​  +  ​z​x​​)​  =  Q.​

Figure 11. Equilibrium in the Arrow-Debreu Economy with Production: Edgeworth Box
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From the previous analysis it is clear that the equilibrium marginal buyer ​​h​1​​​ must 
have two properties: (i) one of her indifference curves is tangent to the produc-
tion possibility frontier at ​Q​ , and (ii) her indifference curve through the collective 
endowment point ​(1 − ​h​1​​)Q​ cuts the top left point of the Edgeworth Box whose top 
right point is determined by ​Q​.

Finally, the system of equations that characterizes the Arrow-Debreu equilibrium 
is given by

​(3)	 (​z​x​​ , ​z​y​​)  ∈ ​ Z​0​​​

​(4)	 Π  = ​ z​x​​ + ​q​Y​​ ​z​y​​  ≥ ​​ z ̃ ​​x​​ + ​q​Y​​ ​​z ̃ ​​y​​ ,    ∀ (​​z ̃ ​​x​​ , ​​z ̃ ​​y​​)  ∈ ​ Z​0​​ .​

​(5)	 ​q​U​​ ​d​ U​ Y ​ + ​q​D​​ ​d​ D​ Y ​  = ​ q​Y​​​

​(6)	 ​γ​ U​ ​h​1​​​  = ​ q​U​​​

​(7)	 ​γ​ D​ ​h​1​​​  = ​ q​D​​​

​(8)	 (1 − ​h​1​​)(​x​​0​​ ∗​​​ + Π)  = ​ q​U​​ ​((​x​​0​​ ∗​​​ + ​z​x​​) + ​z​y​​ ​d​ U​ Y ​)​​.

Equations (3) and (4) state that intra-production plans should be feasible and 
should maximize profits. Equation (5) uses state prices to price the risky asset ​Y​. 
Equations (6) and (7) state that the price of the Arrow ​U​ and Arrow ​D​ are given by 
the marginal buyer’s state probabilities. Equation (8) states that all the money spent 
on buying the total amount of Arrow ​U​ securities in the economy (described by the 
RHS) should equal the total income of the buyers (described by the LHS).21

B. The L-Economy

In the ​L​ -economy, ​J  = ​ J​​ Y​,​ and each contract ​j​ uses one unit of asset ​Y​ as collateral 
and promises ​(j, j)​ for all ​j  ∈  J  = ​ J​​ Y​.​ Agents can issue debt using any contract; in 
particular they could choose to sell contract ​​(​d​ U​ Y ​ , ​d​ U​ Y ​)​.​ But they do not. Geanakoplos 
(2003), and Fostel and Geanakoplos (2012a) proved that in the ​C​-model, there is a 
unique equilibrium in which the only contract actively traded is ​​j​​ ∗​  = ​ d​ D​ Y ​​ (provided 
that ​​j​​ ∗​  ∈  J​) and that the riskless interest rate equals zero.22 Hence, ​​π​​j​​ ∗​​​  = ​ j​​ ∗​  = ​ d​ D​ Y ​​ 
and there is no default in equilibrium. Even though agents are not restricted from 
selling bigger promises, the price ​​π​j​​​ rises so slowly for ​j  > ​ j​​ ∗​​ that they choose not to 
issue ​j  > ​ j​​ ∗​​. In other words, they cannot borrow more on the same collateral without 

21 As mentioned in footnote 20, these equations apply to equilibria in which some ​X​ remains after production. 
For equilibria with ​− ​z​x​​  = ​ x​​0​​ ∗​​​​ , we need to weaken inequality (4) in exactly the same way we weakened the corre-
sponding inequality at the beginning of this section. For such equilibria, Figure 11 changes so that ​Q​ is on the ​Y​ line, 
but the price line (indifference curve of ​​h​1​​​) might be flatter than the tangent to the production possibility frontier 
at ​Q​. In case there is no production, the price line (indifference curve of ​​h​1​​​) might be steeper than another tangent 
to the production possibility frontier at ​Q​ , but it will always be a tangent. 

22 This holds only if there is a positive amount of ​X​ and ​Y​ in the economy after production. If there is no ​X​ 
remaining after production, then the interest rate can be positive. If there is no ​Y​ produced, then no loans are traded 
and the ​L​-equilibrium is also an ​N​-equilibrium. 
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raising the interest rate prohibitively fast: they are effectively constrained to ​​j​​ ∗​​. 
Fostel and Geanakoplos (forthcoming) also showed that in every equilibrium in ​C​ 
and ​​C​​ ∗​​-models there are unique state probabilities, such that ​X​ and ​Y​ and all the 
financial contracts are priced by their expected payoffs.23

As we saw in Section IIA, in equilibrium there is a marginal buyer ​​h​1​​​ at state ​
s  =  0​ whose valuation ​​γ​ U​ ​h​1​​​ ​d​ U​ Y ​ + ​γ​ D​ ​h​1​​​ ​d​ D​ Y ​​ of the risky asset ​Y​ is equal to its price ​p​. 
The optimistic agents ​h  > ​ h​1​​​ collectively buy all the risky asset ​​z​y​​​ produced in the 
economy, financing this with debt contracts ​​j​​ ∗​​. The pessimistic agents ​h  < ​ h​1​​​ buy 
all the remaining safe assets and lend to the optimistic agents.

The endogenous variables to solve for are the price of the risky asset ​p​ , the mar-
ginal buyer ​​h​1​​​ and production plans ​(​z​x​​ , ​z​y​​)​. The system of equations that character-
izes the equilibrium in the ​L​-economy is given by

(9)	​ (​z​x​​ , ​z​y​​)  ∈ ​ Z​0​​​

(10)	​ Π  = ​ z​x​​ + p ​z​y​​  ≥ ​​ z ̃ ​​x​​ + p ​​z ̃ ​​y​​ ,  ∀ (​​z ̃ ​​x​​ , ​​z ̃ ​​y​​)  ∈ ​ Z​0​​.​

(11)	​ (1 − ​h​1​​)(​x​​0​​ ∗​​​ + Π) + ​d​ D​ Y ​ ​z​y​​  =  p ​z​y​​​

(12)	​​ γ​ U​ ​h​1​​​ ​d​ U​ Y ​ + ​γ​ D​ ​h​1​​​ ​d​ D​ Y ​  =  p​.

Equations (9) and (10) describe profit maximization. Equation (11) equates money ​
p ​z​y​​​ spent on the asset, with total income from optimistic buyers in equilibrium: all 
their endowment ​(1 − ​h​1​​) ​x​​0​​ ∗​​​​ and profits from production ​(1 − ​h​1​​)Π,​ plus all they 
can borrow ​​d​ D​ Y ​ ​z​y​​​ = ​​π​​j​​ ∗​​​​ ​​z​y ​​​from pessimists using the risky asset as collateral. Equation 
(12) states that the marginal buyer prices the asset.

We can also describe the equilibrium using the Edgeworth box diagram in 
Figure  12, provided that ​− ​x​​0​​ ∗​​​  < ​ z​x​​  <  0​. As in Figure 11, the axes are defined 
by the potential total amounts of ​​x​U​​​ and ​​x​D​​​ available as dividends from the stock 
of assets emerging at the end of period 0. The probabilities ​​γ​​ ​h​1​​​  =  ​(​γ​ U​ ​h​1​​​ , ​γ​ D​ ​h​1​​​)​​ of 
the marginal buyer ​​h​1​​​ define state prices that are used to price ​​x​U​​​ and ​​x​D​​ ,​ and to 
determine the price lines orthogonal to ​​γ​​ ​h​1​​​​. One of those price lines is tangent to 
the production possibility frontier at ​Q,​ representing the economy total final output, 
​Q  =  ​(​z​y​​ ​d​ U​ Y ​ + ​x​​0​​ ∗​​​ + ​z​x​​ , ​z​y​​ ​d​ D​ Y ​ + ​x​​0​​ ∗​​​ + ​z​x​​)​.​

The dividend coming from the equilibrium choice of ​X,​ ​​x​​0​​ ∗​​​ + ​z​x​​​ , lies at the inter-
section of the “​X​-dotted” line starting from ​0​ and the “​Y​-dotted” line starting at ​Q.​ 
The dividends coming for the equilibrium investment in ​Y​ , ​​z​y​​ ​(​d​ U​ Y ​ , ​d​ D​ Y ​)​,​ lies at the 
intersection of the “​Y​-dotted” line starting at ​0​ and the “​X​-dotted” line starting at ​Q.​

Again, we put the origin of agent ​h  =  0​ at ​Q.​ We can mark the aggregate endow-
ment of all the agents between ​0​ and any arbitrary ​​h​1​​​ by its distance from ​Q.​ Since 
endowments are identical, and each agent makes the same profit, it is clear that this 

23 Again this is true as long as not all the ​X​ is used up in production. 
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point will lie ​​h​1​​​ of the way on the line from ​Q​ to the origin, namely at ​(1 − ​h​1​​)Q 
=  Q − ​h​1​​ Q​. Similarly, the same point describes the aggregate endowment of all 
the optimistic agents ​h  > ​ h​1​​​ looked at from the point of view of the origin at 0.

In equilibrium, optimists ​h  >  ​h​1​​​ consume at point ​C.​ As in the Arrow-Debreu 
equilibrium they only consume in the ​U​ state. They consume the total amount 
of Arrow ​U​ securities available in the economy, ​​z​y​​ ​(​d​ U​ Y ​  − ​d​ D​ Y ​  )​.​ Notice that when 
agents leverage asset ​Y,​ they are effectively creating and buying a “synthetic”  
Arrow ​U​ security that pays ​​d​ U​ Y ​ − ​d​ D​ Y ​​ and costs ​p − ​d​ D​ Y ​​    , namely at price ​​γ​ U​ ​h​1​​​    
=  ​(​d​ U​ Y ​  − ​d​ D​ Y ​  )​/​(p − ​d​ D​ Y ​  )​.​

The total income of the pessimists between ​0​ and ​​h​1​​​ is equal to ​​h​1​​ Q.​ Hence, 
looked at from the origin ​Q,​ the pessimists must also be consuming on the same 
budget line as the optimists. However, unlike the Arrow-Debreu economy, pessi-
mists now must consume in the cone generated by the 45-degree line from ​Q​ and 
the vertical axis starting at ​Q​. Since their indifference curves are steeper than the 
budget line, they will also choose consumption at ​C.​ However at ​C,​ unlike in the 
Arrow-Debreu equilibrium, they consume the same amount, ​​x​​0​​ ∗​​​ + ​z​x​​ + ​z​y​​ ​d​ D​ Y ​ ,​ in 
both states. Clearly, total consumption of optimists and pessimists equals ​Q,​ i.e., 
​​(​z​y​​ ​(​d​ U​ Y ​ − ​d​ D​ Y ​)​, 0)​ + ​(​x​​0​​ ∗​​​ + ​z​x​​ + ​z​y​​ ​d​ D​ Y ​ , ​x​​0​​ ∗​​​ + ​z​x​​ + ​z​y​​ ​d​ D​ Y ​)​  =  Q.​

From the previous analysis we deduce that the marginal buyer ​​h​1​​​ must satisfy 
two properties: (i) one of her indifference curves must be tangent to the production 
possibility frontier at ​Q​ , and (ii) her indifference curve through the point ​(1 − ​h​1​​)Q​ 
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must intersect the vertical axis at the level ​​z​y​​ ​(​d​ U​ Y ​ − ​d​ D​ Y ​ )​,​ which corresponds to point ​
C​ and the total amount of Arrow ​U​ securities in equilibrium in the ​L​ -economy.24

C. Overinvestment and Welfare: Proofs

Proof of Proposition 1:

Part (i): The Edgeworth Box diagrams in Figures 11 and 12 allow us to see why 
production is higher in the ​L​-economy than in the Arrow-Debreu economy. In the 
​L​-economy, optimists collectively consume ​​z​ y​ L​ ​(​d​ U​ Y ​ − ​d​ D​ Y ​ )​​ in state ​U,​ while in 

the Arrow-Debreu economy they consume ​​z​ y​ A​ ​d​ U​ Y ​ + ​(​x​ 0​ ∗​ + ​z​ x​ A​)​.​ The latter is evi-

dently much bigger, at least as long as ​​z​ y​ A​  ≥ ​ z​ y​ L​.​ So let us begin with an interior 
L-equilibrium in Figure 11. Suppose, contrary to what we want to prove, that  
Arrow-Debreu output of ​Y​ were at least as high, ​​z​ y​ A​  ≥ ​ z​ y​ L​.​ Since the total economy 
output ​​Q​​ L​​ maximizes profits at the leverage equilibrium prices, at those leverage 
prices ​​(1 − ​h​ 1​ L​)​ ​Q​​ A​​ is worth no more than ​​(1 − ​h​ 1​ L​)​ ​Q​​ L​​. Thus, ​​(1 − ​h​ 1​ L​)​ ​Q​​ A​​ must lie 
on the origin side of the ​​h​ 1​ L​​ indifference curve through ​​(1 − ​h​ 1​ L​)​ ​Q​​ L​.​ Suppose also 
that the Arrow-Debreu price is higher than the leverage price: ​​p​​ A​  ≥ ​ p​​ L​.​ Then the 
Arrow-Debreu marginal buyer is at least as optimistic, ​​h​ 1​ A​  ≥ ​ h​ 1​ L​ .​ Then, ​​(1 − ​h​ 1​ A​)​ ​Q​​ A​​ 
would also lie on the origin side of the ​​h​ 1​ L​​ indifference curve through ​​(1 − ​h​ 1​ L​)​ ​Q​​ L​.​  
Moreover, the indifference curve of ​​h​ 1​ A​​ would be flatter than the indifference curve of ​​
h​ 1​ L​​ and, hence, cut the vertical axis at a lower point. By property (ii) of the marginal 
buyer in both economies, this means that optimists would collectively consume no 
more in the Arrow-Debreu economy than they would in the leverage economy, a 
contradiction. It follows that either ​​z​ y​ A​  < ​ z​ y​ L​​ or ​​p​​ A​  < ​ p​​ L​.​ But a routine algebraic 
argument from profit maximization (given in Appendix B) proves that if one of these 
strict inequalities holds, the other must also hold weakly in the same direction. (If 
the price of output is strictly higher, it cannot be optimal to produce strictly less.)25

Part (ii): The argument to prove the overinvestment with respect to financial 
autarky is completely analogous to the argument in part (i) using instead Figure 12 
and Figure C1 (the Edgeworth box for the ​N​-economy given in Appendix C). ​​∎

Proof of Proposition 2:
At arbitrary state prices ​( ​p​U​​ , ​p​D​​)​ , define the budget sets of a fixed agent ​h​ in the 

three economies by Figure 13. The budget set for each agent ​h​ in the ​L​-economy is 
equal to her budget set in the Arrow-Debreu economy restricted to the cone between 
the vertical axis and the 45-degree line, while in the ​N​-economy the budget set is 

24 In case all ​X​ is used in production, the Figure can allow for the possibility in (i) that the indifference curve of 
the marginal buyer is flatter than the tangent of the production possibility frontier. In case there is no production, the 
marginal buyer must be ​​h​1​​  =  1​ , and her indifference curve must be tangent to the production possibility frontier at ​
Q  = ​ x​​0​​ ∗​​​​. But this could be steeper than another tangent there that defines the relative prices of ​X​ and ​Y​.

25 If the ​L​-equilibrium involves maximum production of ​Y​ , there is nothing to prove. Suppose the ​L​-equilibrium 
has no production of ​Y​ , then it is an ​N​-equilibrium and even agent ​h  =  1​ would not like to produce. We can then 
use exactly the same proof to contradict that there is positive production in Arrow-Debreu. 
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further restricted to lie between the 45-degree line and the ​Y​-payoff line. As shown 
in Fostel and Geanakoplos (forthcoming), so long as there is positive ​X​ remaining in 
the economy, the equilibrium asset and contract prices in all three economies ​N​ , ​L​, 
and Arrow-Debreu are determined by the state prices ​( ​p​U​​ , ​p​D​​)​ , and the budget sets 
are as described.

Letting ​​p​U​​ + ​p​D​​  =  1​ , we can use these budget sets to define the aggregate excess 
demand correspondence for ​​x​U​​​ in each economy by ​​E​ U​ L ​( ​p​U​​), ​E​ U​ AD​( ​p​U​​), ​and E​ U​ N​( ​p​U​​)​ , 
respectively. By strict monotonicity of the individual utilities, for all small enough ​​
p​U​​ ,​ every point in ​​E​ U​ AD​( ​p​U​​)​ and ​​E​ U​ N​( ​p​U​​)​ is positive.

Let there be an ​L​-equilibrium with state prices ​​(​p​ U​ L ​ , ​p​ D​ L ​)​​ at which some ​X​ remains 
after production, and suppose there is no other ​L​-equilibrium at those prices with 
more output ​Y​. Then ​0  ∈ ​ E​ U​ L ​ ​(​p​ U​ L ​)​​ , and total demand must be equal to total supply ​​
z​ y​ L​​​​d​ U​ Y

 ​​. Let ​​(​x​ U​ hL​, ​x​ D​ hL​)​​ be the equilibrium consumption choice in the ​L​-economy for 
each agent ​h​. Suppose ​​z​ y​ L​​​​d​ U​ Y ​​ is not the maximum profit maximizing production at 
those prices. Then no agent is willing to demand more in the ​L​-economy at those 
prices, for otherwise there would be an ​L​-equilibrium with more production at those 
prices. Hence, by the nesting of the budget sets, any Arrow-Debreu equilibrium at 
those prices must involve the same or less demand and thus production. If there is 
no Arrow-Debreu equilibrium at those prices, every point in ​​E​ U​ AD​​(​p​ U​ L ​)​​ is negative. By 
the upper semi-continuity and convex valuedness of the correspondence ​​E​ U​ AD​​, and 
the excess demand at low prices described in the last paragraph, there must be an 
Arrow-Debreu equilibrium state price ​​p​U​​  < ​ p​ U​ L ​​ with ​0  ∈ ​ E​ U​ AD​​(​p​U​​)​​. See Figure 14. 
But at a lower ​U​ state price, production cannot be higher. So some ​X​ must still 
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remain, and we have a genuine Arrow-Debreu equilibrium. A similar argument 
works for ​N​-economies. ​∎​

Proof of Proposition 3:
With constant returns to scale, the state prices must be the same in all three econ-

omies, assuming that there is positive production in all three. As seen already in 
Figure 13, the budget set of each agent ​h​ is strictly bigger in the Arrow-Debreu econ-
omy than in the ​L​-economy, which is strictly bigger than in the ​N​-economy. Hence, 
either the equilibria are identical or the Arrow-Debreu equilibrium allocation Pareto 
dominates the ​L​-economy equilibrium allocation, which in turn dominates the  
​N​-economy equilibrium allocation. ​∎​

D. The CDS-Economy

We introduce into the previous ​L​-economy a CDS collateralized by ​X.​ Thus, we 
take ​J  = ​ J​​ X​ ∪ ​J​​ Y​​, where ​​J​​ X​​ consists of a contract promising ​(0, 1)​ , and ​​J​​ Y​​ consists 
of contracts ​( j, j)​ as described in the Leverage economy above. As in the ​L​-econ-
omy, we know that the only contract in ​​J​​ Y​​ that will be traded is ​​j​​ ∗​  = ​ d​ D​ Y ​ .​

As we saw in Section IIA, for interior production that leaves positive X and Y 
in the economy, there are two marginal buyers ​​h​1​​  > ​ h​2​​ .​ Optimistic agents ​h  > ​
h​1​​​ hold all the ​X​ and all the ​Y​ produced in the economy, selling the bond ​​j​​ ∗​  = ​ d​ D​ Y ​​ 
using ​Y​ as collateral and selling CDS using ​X​ as collateral. Hence, they are effec-
tively buying the Arrow ​U​ security (the payoff net of debt and CDS payment at state ​
D​ is zero). Moderate agents ​​h​2​​  <  h  < ​ h​1​​​ buy the riskless bonds sold by more 
optimistic agents. Finally, agents ​h  < ​ h​2​​​ buy the CDS security from the most opti-
mistic investors (so they are effectively buying the Arrow ​D​).

E(pU)

EN(pU)

EAD(pU)

pU

EL(pU
L)

  

 

 

 

 

Figure 14. Excess Demands
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The variables to solve for are the two marginal buyers, ​​h​1​​​ and ​​h​2​​​ , the asset 
price, ​p​ , the price of the riskless bond, ​​π​​j​​ ∗​​​​ , the price of the CDS, ​​π​C​​​ , and produc-
tion plans, ​(​z​x​​ , ​z​y​​)​. The system of equations that characterizes the equilibrium in the 
​CDS​-economy with positive production of ​Y​ is given by

(13)	​ (​z​x​​ , ​z​y​​)  ∈  ​Z​0​​​

(14)	​ Π  =  ​z​x​​  +  p ​z​y​​  ≥  ​​z ̃ ​​ x​​  +  p ​​z ̃ ​​ y​​ ,  ∀ (​​z ̃ ​​ x​​ , ​​z ̃ ​​ y​​)  ∈  ​Z​0​​.​

(15)	​ ​π​U​​  ≡  ​ 
p  −  ​π​​j​​ ∗​​​ ______ 
​d​ U​ Y ​  −  ​d​ D​ Y ​

 ​  =  1  −  ​π​C​​​

(16)	​ ​ ​γ​ U​ ​h​1​​​ _ ​π​U​​ ​  =  ​ ​d​ D​ Y ​ ___ ​π​​j​​ ∗​​​ ​​

​(17)	 ​ ​γ​ D​ ​h​2​​​ _ ​π​C​​ ​  =  ​ ​d​ D​ Y ​ ___ ​π​​j​​ ∗​​​ ​​

(18)	 ​(1  −  ​h​1​​)(​x​​0​​ ∗​​​  +  Π)   +  (​x​​0​​ ∗​​​  +  ​z​x​​) ​π​C​​  +  ​π​​j​​ ∗​​​ ​z​y​​  =  ​x​​0​​ ∗​​​  +  ​z​x​​  +  p ​z​y​​​

(19)	​ ​h​2​​ (​x​​0​​ ∗​​​  +  Π)  =  ​π​C​​ (​x​​0​​ ∗​​​  +  ​z​x​​)​.

Equations (13) and (14) describe profit maximization. Equation (15) rules away 
arbitrage between buying the Arrow ​U​ through leveraging asset ​Y​ and through 
selling CDS, while using asset ​X​ as collateral, assuming that the price of ​X​ is ​1​. 
Equation  (16) states that ​​h​1​​​ is indifferent between holding the Arrow ​U​ security 
(through buying asset ​Y​ and selling contract (bond) ​​j​​ ∗​​) and holding the riskless bond ​​
j​​ ∗​​. Equation (17) states that ​​h​2​​​ is indifferent between holding the CDS security and 
the riskless bond. Equation (18) states that total money spent on buying the total 
available collateral in the economy should equal the optimistic buyers’ income in 
equilibrium, which equals all their endowments and profits ​(1 − ​h​1​​)(​x​​0​​ ∗​​​ + Π)​ , plus 
all the revenues ​(​x​​0​​ ∗​​​ + ​z​x​​) ​π​C​​​ from selling CDS promises backed by their holdings ​
(​x​​0​​ ∗​​​ + ​z​x​​)​ of ​X,​ plus all they can borrow ​​π​​j​​ ∗​​​ ​z​y​​​ using their holdings ​​z​y​​​ of ​Y​ as collat-
eral. Finally, equation (19) states the analogous condition for the market of CDS, 
that is the total money spent on buying all the CDS in the economy, ​​π​C​​ (​x​​0​​ ∗​​​ + ​z​x​​),​ 
should equal the income of the pessimistic buyers, ​​h​2​​ (​x​​0​​ ∗​​​ + Π).​

By plugging the expressions ​p − ​π​​j​​ ∗​​​  = ​ π​U​​ ​(​d​ U​ Y ​ − ​d​ D​ Y ​)​​ and ​​π​U​​ + ​π​C​​  =  1​ from 
equation (15) into equation (18), and rearranging terms, we get

(20)	​ (1 − ​h​1​​)(​x​​0​​ ∗​​​ + Π)  = ​ π​U​​ ​(​x​​0​​ ∗​​​ + ​z​x​​ + ​(​d​ U​ Y ​ − ​d​ D​ Y ​)​ ​z​y​​)​​.

Combining equations (16) and (17) yields

(21)	​​ 
​γ​ U​ ​h​1​​​ ___ 
​γ​ D​ ​h​2​​​

 ​  = ​  ​π​U​​ _ ​π​C​​ ​​ .
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It might seem that ​​π​U​​ , ​π​C​​​ are the appropriate state prices that can be used to value 
all the securities, just as ​​γ​ U​ ​h​1​​​ , ​γ​ D​ ​h​1​​​​ did for the leverage economy. Unfortunately, this is 
not the case. There are no state prices in the CDS-economy that will value all secu-
rities. Of course we can always define state prices ​​q​U​​ , ​q​D​​​ that will correctly price ​
X​ and ​Y​. The equilibrium price ​p​ of ​Y​ and the price ​1​ of ​X​ give two equations that 
uniquely determine these state prices:

(22)	​ p  = ​ q​U​​ ​d​ U​ Y ​ + ​q​D​​ ​d​ D​ Y ​​

(23)	​ ​p​X​​  =  1  = ​ q​U​​ + ​q​D​​​ .

Equations (22) and (23) define state prices that can be used to price ​X​ and ​Y​ , but 
not the other securities. If they priced all the other securities, then every agent would 
demand either the up or down Arrow security. But in CDS-equilibrium, some agents 
collectively must hold a portfolio paying off ​​z​y​​ ​(​d​ D​ Y ​ , ​d​ D​ Y ​ )​​ , since that part of the risky 
asset payoff cannot be tranched. Hence, ​​π​U​​ , ​π​C​​​ over-value ​Y​ and ​​q​U​​, ​q​D​​​ over-value ​​j​​ ∗​​. 
It follows that

(24)	​​ 
​γ​ U​ ​h​1​​​ ___ 
​γ​ D​ ​h​1​​​

 ​  > ​  ​γ​ U​ ​h​1​​​ ___ 
​γ​ D​ ​h​2​​​

 ​  = ​  ​π​U​​ _ ​π​C​​ ​  > ​  ​q​U​​ _ ​q​D​​ ​  > ​  ​γ​ U​ ​h​2​​​ ___ 
​γ​ D​ ​h​2​​​

 ​​ .

As before, we can illuminate equilibrium using an Edgeworth box diagram in 
Figure 15. The complication with respect to the previous Figures 11 and 12 is that 
now there are four state prices to keep in mind. The state prices ​​q​U​​ , ​q​D​​​ determine 
orthogonal price lines, one of which must be tangent to the production possibility 
frontier at ​Q.​ The optimistic agents ​h  > ​ h​1​​​ collectively own ​(1 − ​h​1​​)Q,​ indicated 
in the diagram. Consider the point ​​x​1​​​ where the orthogonal price line with slope 
​−​q​D​​/​q​U​​​ through ​(1 − ​h​1​​)Q​ intersects the ​X​ line. That is the amount of ​X​ the 
optimists could own by selling all their ​Y​. Similarly the point ​​y​1​​​ where the line 
intersects the ​Y​ line is the amount of ​Y​ the optimists could own by selling all their ​X​.

Extend the line with slope ​− ​π​C​​/​π​U​​​ through the point ​​x​1​​​ in one direction until it 
hits the vertical axis at ​​C​O​​​ and in the other direction until it hits the horizontal axis. 
This represents the final consumption optimists could get by tranching ​​x​1​​​ , either 
selling it to buy the CDS, or using it as collateral to sell the CDS. By (24) this line 
is flatter than the price line.

The budget set of the optimists is far bigger than the tranching of ​​x​1​​​ allows. Scale 
up ​​x​1​​​ by the factor ​​γ​ U​ ​h​1​​​ + ​γ​ D​ ​h​2​​​  >  1​ , giving the point ​​x​ 1​ ∗​​. That is how much riskless 
consumption those agents could afford by selling ​X​ (at a unit price) and buying the 
cheaper bond ​​(at the price ​π​​j​​ ∗​​​  < ​ d​ D​ Y ​)​​. Now draw the indifference curve of agent ​​h​1​​​ 
with slope ​− ​γ​ D​ ​h​1​​​/​γ​ U​ ​h​1​​​​ from ​​x​ 1​ ∗​​ until it hits the vertical axis. By equation (16), that is 
the budget trade-off between ​​j​​ ∗​​ and ​​x​U​​​. By (15) this line must pass through ​​y​1​​​ and 
meet the vertical axis at ​​C​O​​​. It shows that the optimists can obtain the same amount 
of the Arrow U by turning all their goods into ​​y​1​​​ and using that as collateral to sell 
the riskless bond ​​j​​ ∗​​. Similarly, draw the indifference curve of agent ​​h​2​​​ with slope ​
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− ​γ​ D​ ​h​2​​​/​γ​ U​ ​h​2​​​​ from ​​x​ 1​ ∗​​ until it hits the horizontal axis. By equations (15)–(17), this is 
the same point that the tranching line hits the axis, and the new line represents the 
budget trade-off between ​​j​​ ∗​​ and ​​x​D​​​. These last two lines together form the collective 
budget constraint of the optimists. It is convex, but kinked at ​​x​ 1​ ∗​.​ Notice that unlike 
before, the aggregate endowment is at the interior of the budget set (and not on the 
budget line). This is a consequence of lack of state prices that can price all securities. 
Because they have such flat indifference curves, optimists collectively will choose to 
consume at ​​C​0​​ ,​ which gives ​​x​U​​  =  (​x​​0​​ ∗​​​ + ​z​x​​) + ​z​y​​ ​(​d​ U​ Y ​ − ​d​ D​ Y ​ )​​.

The pessimistic agents ​h  < ​ h​2​​​ collectively own ​​h​2​​ Q,​ which looked at from ​Q​ 
is indicated in the diagram by the point ​Q − ​h​2​​ Q​. Consider the point ​​x​2​​​ where the 
orthogonal price line with slope ​− ​q​D​​/​q​U​​​ through ​(1 − ​h​2​​)Q​ intersects the ​X​ line 
drawn from ​Q​. Scale up that point by the factor ​​γ​ U​ ​h​1​​​ + ​γ​ D​ ​h​2​​​  >  1​ , giving the point ​​x​ 2​ ∗​​. 
This represents how much riskless consumption those agents could afford by selling 
all their ​Y​ for ​X​ , and then selling ​X​ and buying the cheaper bond. The budget set for 
the pessimists, including the tranching line in the interior, can now be constructed 
as it was for the optimists, kinked at ​​x​ 2​ ∗​​. Pessimists collectively will consume at ​​
C​P​​ ,​ which gives ​​x​D​​  =  (​x​​0​​ ∗​​​ + ​z​x​​)​. Finally, the moderate agents ​​h​1​​  <  h  < ​ h​2​​​ 
collectively must consume ​​z​y​​ ​d​ D​ Y ​ ,​ which collectively gives them the 45-degree line 
between ​​C​0​​​ and ​​C​P​​ .​

Figure 15. Equilibrium in the ​CDS​-Economy: Edgeworth Box
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The picture can be derived from the equations, as we just saw. But one can also 
work in the opposite direction. For example, the convexity of the budget set makes 
clear which lines are steeper and guarantees the inequalities in (24). A simple 
geometric argument shows that because the budget lines meet at the ​45°​ line at ​​x​ 1​ ∗​​ , 
the triangle they form with the ​(​π​U​​ , ​π​C​​)​ line guarantees equation (21).

E. CDS and Underinvestment: Proofs

Proof of Proposition 4:
The geometrical proof of Proposition 4 uses the Edgeworth box diagram for the 

​L​-economy in Figure 12 and is almost identical to that of Proposition 1. Consider 
an ​L​-equilibrium in which not all of ​X​ is used in production. The optimists in the 
​CDS​-economy consume ​​z​ y​ CDS​​(​d​ U​ Y ​ − ​d​ D​ Y ​)​ + ​(​x​ 0​ ∗​ + ​z​ x​ CDS​)​​ which is strictly more than 
in the ​L​-economy as long as production is at least as high in the ​CDS​-economy. So 
suppose ​​z​ y​ CDS​  ≥ ​ z​ y​ L​​ and ​​p​​ CDS​  ≥ ​ p​​ L​ .​ This implies that ​​q​ U​ CDS​  ≥ ​ γ​U​​ ​(​h​ 1​ L​)​​. By (24), ​​
γ​U​​ ​(​h​ 1​ CDS​)​  ≥ ​ q​ U​ CDS​​. Hence, ​​h​ 1​ CDS​  ≥ ​ h​ 1​ L​​. By the same argument given in the geo-
metrical proof of Proposition 1 in Section VC, consumption of the optimists in the 
​CDS​-economy cannot be higher than in the ​L​-economy, which is a contradiction. 
Thus, either ​​z​ y​ CDS​  < ​ z​ y​ L​​ or ​​p​​ CDS​  < ​ p​​ L​.​ But as we show in the Appendix B, profit 
maximization implies that if one inequality is strict, the other holds weakly in the 
same direction. ​∎​

Proof of Proposition 5:
Let us begin with an interior CDS equilibrium. In Figure 15, define the point 

​(1  −  ​k​1​​)Q​ as the intersection of the ​OQ​ line with a price line starting at ​​C​O​​​ with 
slope ​− ​q​D​​/​q​U​​​. Notice that ​(1  −  ​k​1​​)Q​ is just to the southwest of ​(1  −  ​h​1​​)Q​. Similarly 
define the point ​(1  −  ​k​2​​)Q​ as the intersection of the ​OQ​ line with a price line starting 
at ​​C​P​​​ with slope ​− ​q​D​​/​q​U​​​. Notice that ​(1  −  ​k​2​​)Q​ is just to the southwest of ​(1  −  ​h​2​​)Q​. 
Finally, define the point ​(1  −  k) Q​ as the intersection of the ​OQ​ line with a price 
line starting at the northwest corner of the Edgeworth Box with slope ​− ​q​D​​/​q​U​​​. At 
the prices ​(​q​U​​ , ​q​D​​)​, the pessimistic agents ​h  ∈  [ 0, k ]​ can just afford to buy all the ​​x​D​​​ 
in the economy, which costs ​​q​D​​ ​z​Y​​ ​d​ D​ Y ​​  more than ​​C​P​​​. At the prices ​(​q​U​​ , ​q​D​​),​ the opti-
mistic agents ​h  ∈  [ k, 1 ]​ can just afford to buy all the ​​x​U​​​ in the economy, which costs 
​​q​U​​ ​z​Y​​ ​d​ D​ Y ​​  more than ​​C​O​​​. It follows that ​(​k​1​​  −  k)/(k  −  ​k​2​​)  =  ​q​U​​/​q​D​​​.

Define ​​h​​ ∗​​ as the agent with ​​γ​ U​ ​h​​ ∗​​  =  ​q​U​​.​ By the concavity of the function ​​γ​ U​ h ​​  in ​h​ , 
it follows that

	​​ 
​γ​ U​ ​h​1​​​ − ​γ​ U​ ​h​​ ∗​​ _______ 
​γ​ U​ ​h​​ ∗​​ − ​γ​ U​ ​h​2​​​

 ​  ≤ ​  ​h​1​​ − ​h​​ ∗​ _ ​h​​ ∗​ − ​h​2​​
 ​​ .

But by (24),

​	​ 
​γ​ U​ ​h​1​​​ − ​γ​ U​ ​h​​ ∗​​ _______ 
​γ​ U​ ​h​​ ∗​​ − ​γ​ U​ ​h​2​​​

 ​  = ​  ​γ​ U​ ​h​1​​​ − ​γ​ U​ ​h​​ ∗​​ _______ 
​γ​ D​ ​h​2​​​ − ​γ​ D​ ​h​​ ∗​​

 ​  > ​  ​γ​ U​ ​h​1​​​ ___ 
​γ​ D​ ​h​2​​​

 ​  > ​  ​q​U​​ _ ​q​D​​ ​​ .
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It follows that ​(​h​1​​ − ​h​​ ∗​)/(​h​​ ∗​ − ​h​2​​)  > ​ q​U​​/​q​D​​​. Hence, ​(1 − ​h​​ ∗​)Q​ lies just to the 
northeast of ​(1 − k) Q​. It follows that at prices (​​q​U​​​, ​​q​D​​​), the pessimistic agents ​
h  ∈  [ 0, ​h​​ ∗​ ]​ cannot afford to buy all the ​​x​D​​​ in the CDS economy.

Suppose that investment in the CDS-economy is at least as high as in the 
Arrow-Debreu economy and that ​​q​U​​/​q​D​​  ≥ ​ q​ U​ A​/​q​ D​ A​​. Then, ​​h​​ ∗​  ≥ ​ h​ 1​ A​.​ Also, keeping 
the price of ​X​ at 1 in both economies, profits in the Arrow-Debreu economy are less, so 
wealth in the Arrow-Debreu economy is less than in the CDS-economy. Fewer agents 
​h   ∈    ​[0, ​h​ 1​ A​]​​ with less wealth each can buy less ​​x​D​​​ in the Arrow-Debreu economy 
than the agents ​h  ∈  [0, ​h​​ ∗​]​ in the CDS-economy. But since investment is less in 
the Arrow-Debreu, there is more remaining ​​x​D​​​ in the Arrow-Debreu economy that 
needs to be consumed. This contradiction proves the proposition in the interior case.

Suppose now that in the CDS equilibrium all the ​X​ is used in production. Then, ​​
h​2​​  =  0​. We can no longer be sure that ​​π​U​​  =  1 − ​π​C​​​. The ​(1 − ​π​C​​ , ​π​C​​)​ line 
through ​​x​1​​​ may now lie strictly below the budget lines formed by the indifference 
curves of ​​h​1​​​ and ​​h​2​​  =  0​ meeting at the point ​​x​ 1​ ∗​​. If so, by raising ​​π​C​​​ , the line will tilt 
until it hits the vertical axis at ​​C​O​​​. At this point we must have ​​π​U​​  =  1 − ​π​C​​​. This 
same line will hit the horizontal axis to the left of the end of the budget set. The same 
geometric argument mentioned earlier shows that

	​ ​ ​γ​ U​ ​h​1​​​ _ 
​γ​ D​ ​h​2​​​

 ​  ≥ ​  ​π​U​​ _ ​π​C​​ ​  > ​  ​q​U​​ _ ​q​D​​ ​  > ​  ​γ​ U​ ​h​2​​​ _ 
​γ​ D​ ​h​2​​​

 ​​ .

But now we can repeat the same proof, reaching a contradiction from the hypothe-
sis that equilibrium output in the Arrow-Debreu economy is strictly less (and thus 
involves the retention of some ​X​ and all the Arrow-Debreu equations). ​∎​

It is worth pointing out that all our proofs remain intact if we allow positive 
endowments ​​y​ 0​ ∗​​ of Y. The pure exchange economy is thus a special case of our model 
(obtained by taking ​​Z​​ h​  =  { 0}) .​

Appendix A

Table A1—Financial Innovation and Total Investment in ​Y, −​z​x​​ ,​ for Varying ​k​

​L​-economy ​N​-economy Arrow-Debreu ​CDS​-economy

​k​

1 0 0 0 0
1.1 0.43 0.34 0 0
1.2 0.60 0.46 0 0
1.3 0.73 0.54 0 0
1.4 0.83 0.60 0 0
1.5 0.92 0.65 0.21 0.14
1.6 1 0.69 0.48 0.33
1.7 1 0.72 0.68 0.48
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Appendix B

Profit Maximization.—In every equilibrium, each agent must be maximizing 
profit. Without loss of generality, we can suppose that every agent chooses the same 
production ​(​z​x​​ , ​z​y​​).​ Since by assumption the mass of agents is normalized to 1, total 
holdings in the economy are then ​(​x​​0​​ ∗​​​ + ​z​x​​, ​z​y​​).​ Consider two asset prices ​p, q,​ and 
production plans ​​z​​ p​  =  (​z​ x​ p​, ​z​ y​ p​), ​z​​ q​  =  (​z​ x​ q​, ​z​ y​ q​)​ that maximize profits at the corre-
sponding prices, so ​​z​ x​ p​ + p ​z​ y​ p​  ≥ ​ z​ x​ q​ + p ​z​ y​ q​​ and ​​z​ x​ q​ + q ​z​ y​ q​  ≥ ​ z​ x​ p​ + q ​z​ y​ p​​. Adding the 
inequalities and rearranging, ​(p − q) (​z​ y​ p​ − ​z​ y​ q​)  ≥  0.​ So ​p  >  q​ implies ​​z​ y​ p​  ≥ ​ z​ y​ q​ ,​ 
and ​​z​ y​ p​  > ​ z​ y​ q​​ implies ​p  ≥  q.​

Appendix C

In the ​N​-economy no financial contracts can be traded using the assets as collat-
eral, and hence ​J  =  ∅.​ This situation corresponds to financial autarky. As before, 
given our assumptions, ​(​z​x​​ , ​z​y​​)​ is the aggregate production. In equilibrium there is a 
marginal buyer ​​h​1​​​. All agents ​h  > ​ h​1​​​ use all their endowment and profits from pro-
duction ​​x​​0​​ ∗​​​ + Π​ and buy all the ​Y​ produced in the economy. Agents ​h  < ​ h​1​​​ instead 
hold all the ​X​ in the economy. This equilibrium can be seen in an Edgeworth box as 
shown in Figure C1.

Table A2—Financial Innovation and Welfare for Varying ​h​

​L​-economy ​N​-economy Arrow-Debreu ​CDS​-economy

​h​ 

​h  =  0​ 1.000112835 1.000282087 2.400112835 2.471551724

​​h​ 2​ CDS​  =  0.348​ 1.000112835 1.000282087 1.020297567 1.050666524

​​h​​ AD​  = ​ h​​ L​  = ​ h​​ N​  =  0.3545​ 0.999983529 0.824954173 1.000019677 1.0495

​​h​ 1​ CDS​  =  0.388​ 1.072199212 0.86286584 1.07223797 1.050623002

​h  =  1​ 1.714268009 1.199938033 1.714329977 1.679771242

Table A3—CDS and Nonexistence

 ​N​-output Arrow-Debreu 
output

 ​CDS​-output CDS volume

​k​

1 0 0 0 0
1.1 0.37081 0 0 0
1.2 0.54768 0 0 0
1.3 0.69823 0 0 0
1.4 0.83664 0 0 0
1.44 0.8899 0 0 0
1.441 0.8913 0.0056 0.0035 0.9975
1.45 0.9031 0.0567 0.0359 0.9752
1.5 0.96825 0.3197 0.0209 0.8600
1.55 1.0323 0.5548 0.3734 0.7590
1.6 1.09552 0.77 0.5271 0.6705
1.65 1.1579 0.971 0.6722 0.5926
1.7 1.21958 1.1617 0.8098 0.5236



Vol. 8 No. 1� 283Fostel and Geanakoplos: collateral investment

The endogenous variables to solve for are the price of the risky asset ​p​ , the mar-
ginal buyer ​​h​1​​​ and production plans ​(​z​x​​ , ​z​y​​)​. The system of equations that character-
izes the equilibrium in the ​N​-economy is given by

	​ (​z​x​​ , ​z​y​​)  ∈ ​ Z​0​​​

	​ Π  = ​ z​x​​ + p ​z​y​​  ≥ ​​ z ̃ ​​x​​ + p ​​z ̃ ​​y​​ ,  ∀ (​​z ̃ ​​x​​ , ​​z ̃ ​​y​​)  ∈ ​ Z​0​​​

​	 (1 − ​h​1​​)(​x​​0​​ ∗​​​ + Π)  =  p ​z​y​​​

	​​ γ​ U​ ​h​1​​​ ​d​ U​ Y ​ + ​γ​ D​ ​h​1​​​ ​d​ D​ Y ​  =  p​.

The first and second equations describe profit maximization. The third equation 
equates money ​p ​z​y​​​ spent on the asset, with total income from optimistic buyers in 
equilibrium: all their endowment ​(1  −  ​h​1​​) ​x​​0​​ ∗​​​​ and profits from production ​(1  −  ​h​1​​)Π​. 
The final equation states that the marginal buyer prices the asset.

Figure C1. Equilibrium Regime in the ​N-Economy: Edgeworth Box
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