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ON THE APPLICATIONS OF A RECENT COMBINATORIAL ALGORITHM

by

Ter je Hansen" and Herbert Scarf™™

I. Introduction

In a recent series of papers [7; 8, 9], one of the authors has
described an algorithm for a class of problems in mathematical economics
and programming which had not previously been examined from a computatiocunal
point of view. The present paper is meant to serve several purposes: to
summarize those applications of the algorithm which are presently known,
to suggest some computational simplifications for an important special case
and to compare the algorithm with similar procedures suggested by Hansen

[3], Cohen [ 1], Kuhn [ 5]}, and Shapley [10].

The algorithm is based upon the combination of two apparently
unrelated considerations. One is the remarkable technique devised by Lemke
and Howson [ 6 ] for the numerical calculation of Nash equilibrium points
for a two person non-zero sum game. The second component invelves replacing
the familiar notions of a feasible basis and a pivot step, as they are used
in linear programming, with an alternative construction known as a primitive

get.
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In order to review the definition of a primitive set, let

1 k
T=(r, .. M) be a collection of vectors in n dJdimensional Euclidian

space. The first n members of [I are assumed to have the form

1

m = (0, Ml’ e Ml)
2

To= (Mz, 0, ... MZ)
n

T = (Mn, Mn, vou 0)

and the remeining vectors are arbitrary aside from the stipulation that

0< ni < Mi for 1 =1, ... n, and for all j > n . As we shall see

in our subsequent discussion the first n vectors in Tl play a role ana-

logous to the slack variables of a linear programming problem.

In formulating the definition of a primitive set it is cenvenient
to adopt the notation that if X%, y, ... z are vectors, then min(x, y, ... 2)
is the vector each of whose coordinates is the minimum of the corresponding
coordinates of x, ¥, ... z .

: i i
Definition: A set of n distinct vectors = 1, ce. om0 is de-

fined to be a primitive set if there are no vecters nj e T with ﬂJ >

b i
min(m 1, S

The definition has an obvious geometrical interpretation as the
ir 4
il

following figure indicates. 1In this example the vectors w P



3

and 3 form a primitive set since there are no vectors in T interior

to that tramnslate of the non-negative orthant whose origin is shifted to

3,4,

the vector min{m 1, m o, o 3) .

The basic combinatorial theorem, whose proof will be reviewed

in Section III, may now be stated.

Theorem 1. Let

be a matrix and b = (b}, ... bn)' a non-negative vector, such that the

jth column of A 1s associated with the jth vector in Tl . Assume that

the set of non-negative vectors x , satisfying Ax = b, is bounded.
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: n
Then there exists a primlitive set w °, ... m , so that the columns

j veo form a feasible basis for Ax = b .
1’ n

II. Some Applications of Theorem 1

In this sectiom, six distinct applications of the algorithm under-
lying Theorem 1, will be described. Each of these examples involves selecting
a set T and establishing a correspondence between the vectors nJ and

the columns of the matrix A in a way consistent with the goal of the pro-

blem.

In the first five examples the vectors wj for j =n+l, ... k
n
will be assumed to lie on the unit simplex § = {w[?ni =1, m 201, a
specielization which permits a geometrical interpretation somewhat easier
to visualize than the general case. As the following figure indicates, a
primitive set then corresponds to a subgimplex of S with sides parailel
to the coordinate hyperplanes, each passing through a specific vector in

the primitive set, and with no vectors in 1 interior te the subgimplex.

i

In the event that a vector 7~ with j <n is one of the members of the

primitive set, the corresponding side of the subsimplex lies in that coecr-
dinate hyperplane whose jth coordinate is equal to zero.

Moreover, in these five examples, the only property of primitive
sets to be used in the application of Theorem 1, is that if k 1is large,

and if the vectors in [ are distributed with some regularity throughout



the simplex S, then the n vectors in a primitive set must be cleose to

each other, and have their j':h coordinates close to zero if ﬂj , for

J£n, 1is a member of the primitive set. Both the sixth application, and

the algorithm underlying Theorem 1, make use of a variety of other proper-

ties associated with this concept.
n
1. Let £ .(w), ... £ (m), with £ (»w) >0, and Zf (n) =1,
1 n i - L 1
be the image of 1w under a continuous mapping of the simplex § into it=

self. 1In order to determine an approximate fixed point of the mapping,

3

the vectors 1w~ , with j > n, are selected with some regularity through-
out the simplex, possibly with a higher density in a region in which an

approximate fixed point is expected to lie.
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The column of A assoclated with n”° , for j>n, will con-

sist of n«1 zeros, and a single one, with the entry one located in some

row i with fi(wj) Z-Wi . The vector b 1is an arbitrary positive vector.

The hypotheses of Theorem 1, are clearly satisfied and we conclude

i b

that there exists a primitive set v 1, <e. m " such that the columns

jl, . jn form a feasible basis for Ax = b . Since for this example,

the columns of a feasible basis form a unit matrix, if T represents the

collection of indices referring to slack vectors in the priwmitive set then

i

for 1 £ T, there is a vector 11

in the primitive set with fifﬂj) 2’ﬂé .

In other words for every index 1 , there is some vector in the subsimplex

corresponding to the primitive set, whose ith coordinate i3 non~decreasing
under the mapping. Any vector in the geometric subsimplex will therefore
serve as an approximate fixed point, in the sense that it is clese to its
image. The degree of the approximation may be improved by selecting k

very large, or by taking a local iinear approximation to the mapping.

Brouwer's theorem, itself, follows by a simple passage to the limit.
It is interesting to note, from a pedagogical point of view, that this procf

avoids the tedious construction of a simplicial subdivision of the simplex.

2. For our second application, let () be an upper semi-con-
tinuous, convex, point to set mapping of the simplex S into itself.
Kakutani's theorem states that there exists a vector n* which is a fixed

point in the sense that it is contained in o(r*) .



In order to obtain an approximate fixed point by means of Theorem
1, we select the set [l as before. The column of the matrix A associated

N

with a vector 77 , with j >n will be given by

(q%_- ﬂi +1, ... qi - ni + 1)’ ,

where qJ = (q{, co qg) is an arbitrary vector in m(wj) . If the vector

b=¢(l ... 1)', the hypotheses of Theorem 1 are clearly satisfied, and

hj i
we may conclude that there exists a primitive set = 1, ces , such

that the columns jl, ov s jn form a feasible basis for Ax = b . The al-

gorithm underlying Theorem 1 will therefore provide us with non-negative

x.'s satisfying

i

J_ ]
T(qy - m + 1)Xj <1,
with strict equality unless . belongs to the primitive set, and with

3

all of the m''s corresponding to positive xj’s members of the primitive

set.

Any vector in the geometric subsimplex corresponding to this pri-
mitive set will serve as an approximate fixed point in the sense that it
will be close to a vector 7w which ig in turn close to its image «(m}
Rather then providing precise bounds for the degree of approximation, let
us pass to the limit by considering an ever finer sequence of grids on the

simplex and by selecting a subsequence for which the vectors in the primitive



set, the gq's associated with these vectors, and the corresponding x's ,
all converge. The non-slack vectors of the primitive set will tend to a
single vector 7% , and the upper-semi-continuity of the mapping guarantees

that the limiting vectors qJ associated with the limiting positive xjﬂs

are all in o(n*) . The equations Ax = b become,

Z(qf_ -n*i+1)xj§ 1,
b

with equality if ﬂ: >0,

Kakutani's theorem will follow, if we can demonstrate that ij =1,

To see this let us first add those equations for which ni >0, and equality

holds, obtaining

with N the number of positive coordinates in 7 . But

z (qi - nz +1) = T qg +N=-1

* *
'rri>0 'rri>0
<N, so that
N, >N and Tx, > 1.,
jj" 1=

To obtain the reverse inequality, let us notice that if all

n: >0, the above inequalities are in fact equalities and produce the



desired result. If, on the other hand some component of w* 1is zero, say

the first compoment, then the inequality

Z(qi - w: + l)xj <1
j ‘

becomes

E(q{ +Dx; <1, from which
b

we immediately derive the statement £x, <1,

]

If we now define g* = Equj » then q¥ ¢ p(n*) from the con-
j

vexity of this set, and moreover o* < n* , so that q* = m% , thereby

demonstrating Kakutani's theorem.

Since the selection of a convergent subsequence is not possible
in an actual application of Theorem 1, we must have recourse to approximate
techniques, which have in fact worked very well in practice. It is inter~
esting to note, from a theoretical point of view, that Theorem 1 provides
a proof of Kakutani's theorem based on a single limiting process, rather

than the double limit which is to be found in the customary proof.

3. Qur third application of Theorem 1 inveclves a technique used
by Debreu [ 2] and others to demonstrate the existence of a competitive
equilibrium. Let () be an upper semi continuous convex mapping ¢f the
simplex S into some bounded set Z , and assume that for each » and

each q e o(r) we have mw q < 0 . The theorem then concludes that there
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exist w+ and gq* ¢ (%) such that % < 0.

This result can be demonstrated by an appeal to Kakutani's theorem,
so that the technique of the previous example may be used. But in this proof,
Kakutani's theorem is applied in a space of dimemsion 2n , which increases
the computational burden substantially if an actual approximation is desired.
On the othér hand, Theorem 1 may be applied directly to this problem without

increasing the dimensionality of the space.

Take [1 as in the previous examples, and let b be a positive

]

vector such that b 4+ 2 > 0 . Then associate with the vector m for

j>n, acolumm in the matrix A given by (q{ + bl’ R qi + bn)“ with
qj an arbitrary vector in w(wj) . Again, the hypotheses of Theorem 1
j A
1

are satisfied and we obtain a primitive set w7 ', ... T ™ such that the

columns jl’ oue jn form a feasible basis for Ax = Db .

As in the previous example, the grid size is successively refined
and a subsequence is selected so that the vectors in the primitive sets,

the feasible bases and their associated activity levels, and the vectors

]

q- associated with the columns of the feasible basis all converge. We de-
note by mn* the common limit of the non-slack vectors in the primitive set.

As a consequence of the upper semi-continuity of the mapping all of the

limiting qj's associated with non-slack vectors in the limiting feasible

basis will be in ¢(r*) . The equations Ax =b , become

2(q] +by)x, < by
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with equality if n; >0 ., If we multiply the ith inequality by ﬂ:

and sum over 1 we obtain

Eﬂn:(qi + bi)xj = Zﬂ:bi and

since Trm ] < 0 by assumption we have

191
T b,x, > Trb
myby%y 2 Imgby or
>1.
Exj >
The inequalities
|
'E(qi + bi)xj < bi , therefore
imply
qux <b,(1l-Zx)<0
jr = j7 ="
and

o vl
q* ?q xj/Exj R

which is in o(mw*) , will satisfy the conclusions of the theorem.

4. The next application of Theorem 1, described in detail in
[ 9], involves the approximation of equilibrium prices in a general equi-
librivin model with an activity analysis formulation of production. It is

well known that the existence of equilibrium prices can be demonstrated
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either by Kakutani's theorem or by the theorem of the previous example.
Both of these techniques, however, require the calculation of the market
demand functions on each iteration of the basic algorithm, a step which
may be expensive in terms of computer time, and which is avoided for a ma-
jority of the iterations if the procedure to be described is followed.

On the other hand, Kakutani's theorem need only be applied in a space of
dimension equal to the number of commodities actually appearing in the con-
sumers' demand functions, and if this is a relatively small proportion of
the total number of commodities, one of the previous techniques may be pre-

ferable. Some comparisons are examined in Hansen's thesis [ 3 1.

Let the stock of commodities prior to production be given by the
vector w , for convenience, assumed to be positive. The market demand

functions gl(ﬁ), coo gn(n) are non-negative, continuous on the simplex
S, and satisfy the identity mn-E(r) = mw for all price vectors.

Production will be described by an activity analysis matrix

in which each column represents a possible production activity, inputs being
represented by negative numbers and outputs by positive numbers. We make
the assumption that {x|x >0, Bx +w 2 0} is bounded an assumption quite
gimilar to one customarily made in this area of study, in order to guarantee

the impossibility of producing without inputs.
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A competitive equilibrium is a price vector m and a set of ac-

tivity levels x , such that
a, E(m) = w + Bx

b, for every column b, of B, nvbj < 0, with equality if

i

In order to apply Theorem 1 to the determination of approximate

3

equilibrium prices, let 1 be as before, and associate with =~ , for

j>n, a column of the matrix A in the following fashion. First find

an activity bz in B which maximizes njﬂbz  If this maximum is posi-

tive, then the jth column of A 1is given by -b On the other hand

E »
h : .th .
if the maximum profit at the prices 7w~ is <0, the j column will
be (gl(n), oo gn(n))' . Finally we define the vector b teo be equal to
L
It is easy to see that Theorem 1 is applicable, and that we may
jl jn
find a primitive set ™ 7, ... ™ such that the columns jl’ onn jn cor-

respond to a feasible basis for Ax =b . We have, in other words, a non-

negative solution to the equations

Ey‘igi(ﬁj) = Wi + Eijij >

with the xj and yj > 0 only for those columns corresponding to the vec-

tors in the primitive set. (Here we are using yj tec refer to those com-



14

ponents of the x wvector corresponding to a column of demands.) Again we
pass to the limit, obtaining & common price T , 4and a non-negative solu-

tion to the equations

a * E--1
Y%i(ﬂ) w, +Ix.b,

iy

If we recall the construction of the matrix A, we see that

gnibij > 0 for those xj >0, and morecver y > 0 implies that

Eﬂzbiz < 0 for all productive techniques. We cannot have y = 0, since

>0, which is impossible. Therefore n*-b, = 0

then 0 = g¥*.w + Exjn*ob ;

]

for those j with xj >0, Finally if we multiply the above equations by

ni and sum we have

y InjE, (n*) = Enjw, ,

so that y = 1 ., The price vector n* and the activity levels =x there-

fore represent a competitive equilibrium.

5. Our fifth application involves the approximation of the optimal

solution of a concave programming problem given by

max  glm)

A

subject to fk(ﬁ) 0, k=1, ...m,

iV

1 0.

g(m) 1is assumed to be concave and the functions fk(n) are assumed to be
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convex. All functions are assumed to be twice differentiable. For technical

reasons that will become apparent later n, is a dummy variable such that

1

2 20, ¥y
amy Bwl Tt amy

for any 1 .

We further assume that the feasible region is bounded in the sense

that no non~negative vector nn with ™= 0 and whose coordinates sum to

1is in the feasible region. Furthermore we assume that there exists a non-negative
0 0

vector 1  whose coordinates sum to 1 satisfying fk(n )< 0 for all k .,

Now a necessary and sufficient condition for n%* to represent the
optimal solution of the above programming problem is that there exists a non=

negative vector A¥ such that

3f

k
2.0 gk<o,
i i
with equality if ﬂi >0, and
fk(ﬂ*) <0,

with equality if A; >0,
In order to apply Theorem 1 to the determination of an approximate
j

solution of the above programming problem we associate with =~ , for

j>n, a column of the matrix A in the following way. If fk(nj) <0



16

for all k , then the jth column of A is given by ‘jﬁ% + 1, ...,

an
' . 1
jﬁ@ +1 . 1f fk(nj) >0 for some k then the jth column of A
anJ
n
Bfk Bfk '
will be - —-? +1, ooy, - N + 1 . Finally we define the vector
Bﬂl ann

b to be equal to (1, sosy 1.)' s

Since the first row of A consists of 1's (aside from the columns
referring to slack vectors)the x's are bounded and Theorem 1 is obviously

3 j
applicable. There is therefore a primitive set = 1, saag T R such that

the columns jl’ eeoy jn form a feasible basgis for Ax = b ., We have con-

sequently a non-negative solution to the equations

o8 -
+ Ty, = 4+ 1 + Tx. = 1
i

with aj a column of A associated with the derivatives of the f func-
tions and with ¥y 0 yj and xj > 0 only for the columns corresponding
to the vectors in the primitive set. (Here we are using y; to refer to

th
that component of the x vector corresponding to the i slack vector and

similarly yj for those components associated with the derivatives of the

objective function.) Again we pass to the limit obtaining a common vector

m* , and a non-negative solution to the equations

3 of,
vy +Y a—n%"'l)*'):"k -3;~;;+1 =1.
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If we recall the construction of the matrix A we have that y > 0 implies

that the vector n* satisfies all the constraints and that Xy >0 implies

that fk("*)*z 0 . We shall now argue that y > 0 and that y + Exk =1
the desired result will then follow.
th 0 %
If y =0, and we multiply the i equation by mosm and

i

sum, we obtain

0-* 0“* . k - 0.»*;,
Ey;(”i m ) + T nm, - ) S;f =y ;"i) 0.

This will lead to a contradiction if we can show that both terms on the
left hand side are non-negative, with the second strictly positive. But

the first term is surely non-negative, since if ¥y >0 then n; =@ .
In order to see that the second term is positive, we observe that if X, >0
(which must be true for at least ome k ), then fk(n*) >0, and from

the convexity assumption

af
0> fk(ﬁo) - fk(n*) > E(Wg - n:)5;§ .

This demonstrates that y > 0, and as a consequence, that all of the con-

straints are satisfied by n*
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To complete the argument observe that Exk + vy =1 unless
¥4 >0. 1If ¥y > 0, however, n: = () and by assumption n* does not

satisfy all of the constraints, a contradiction.

If we define A; = xk/y , then

) * 3f)
T P EE SO0
with equality if ﬂ: >0 and
£ (mk) < 0

with equality if x.l‘: >0,

6. The final application to be discussed was the first to be
discovered and originally motivated the development of Theorem 1. In this
example the algorithm provides a set of sufficient conditions for the core
of an ®n person game to be non empty, and a procedure for determining an
approximate vector in the core, While it is possible to demonstrate the
sufficiency of these conditions by the use of Kakutani®s theorem, the proof
is very awkward and the resulting algorithm quite inefficient, when compared

to a direct application of Theorem 1.



19

For each subgset S of the set of integers N = (1, 2, ... n) ,

let ES denote that Euclidean space of dimension equal to the cardinality
of S and whose coordinates correspond to the elements of S . Tf u e EN s

its projection to ES will be denoted by us .

A cooperative n person game is described by associating with

each coalition 8, a set of utility vectors V which can be achieved

S 2

by that coalition. The sets VS are assumed to have the following properties:

1. VS is a closed, non empty subset of ES .

2. If ueV, and v e ES with v<u, then veV

S s’

3, For each individual i, V(i) = {ui'ui < 01 .

4. The set of non-negative vectors in VN ig bounded.

A utility vector u ¢ EY is said to be "blecked” by the vector

S

velV if u” < v . The core of the game consists of those wvectors in

S b

VN which are blocked by no vectors in any VS .

In order for the core to be non-empty some supplementary condi-
tions must be assumed to hold for the game. A natural set of conditions,

which apply to a large class of n person games, may be formulated in terms

of the concept of a balanced collection of coalitions. A ccllection T = {S]

is said to be balanced if the equations L x, = 1, for i =1, ... n,
s={1i}
have a non-negative solution with Xg = 0 for those § nmnot in T . And

the game is said to be balanced if for every balanced collection T, a
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vector u whose projections uS are in Vs for all S ¢ T, must also

be in VN .

Theorem 1 may be applied to determine an approximation to a vec-
tor in the core of a balanced n person game. We construct the set ]
with the first n vectors as before. Then for every coalition S, con-
sisting neither of a single player nor all of the players, we take a large

J

number of vectors - whose projection into ES is in V and whose

S i
coordinates corresponding to players not im 5§ , are arbitrary but large
numbers. The vectors in T may therefore be divided into a number of dis-
tinct groups, each corresponding to a specific coalition. If a vector cor-
responds to a coalition 8§, the columm in the matrix A , associated with
this vector will have a one in row i if 1 ¢ 8, and zeros otherwise.

The vector b is taken as {1, 1, ... 1)’ .

If Theorem 1 is applied we obtain a primitive set =« °, ... m

such that the columns jl’ oo jn form a feasible basis for Ax = b .

These columns will be associated with a distinct set of coalitions Sj s s Sj
1
31 hj
which clearly form a balanced collection., I1f u =min(mr °, ... m ), then

S

ue VN since the game is balanced and u J eV for j=1, ... n.

But u cannot be blocked by any of the vectors used in forming 11, since

]

this would require m©° > u, and contradicts the definition of a primitive
set. The vector u will therefore serve as an approximation to a peoint in
the core of the game, with the approximation becoming better the more vectors

are selected in 1 .
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I11. The Proof of Theorem 1

The algorithm which underlies Theorem 1 is based on the observa-

tion that primitive sets permit a replacement operation anmalogous to that

of a pivot step in linear programming. In general, if a specific vector

3 3 3

. n , .
™ % ina primitive set w 7, ... 1 is removed, there will be a unique

replacement nj ¢ 1 so that the new collection of vectors also forms a
primitive set. 1In ordér to make this statement precise, the following as-
sumption, similar to the non-degeneracy assumption of linear programming,
is required.

Non-Degeneracy Assumption: No two vectors in Tl have the same

ith coordinate for any 1 .

This assumption, while necessary for the algorithm, does cause
difficulty in practice, since for several applications the most natural selec-
tion of the gset Il is one in which this assumption is not satisfied. Sec-
tion IV will be devoted to a discussion of one technique for resolving this

problem.

Given the assumption of non-degeneracy, the following thecrem
may be demonstrated (see [8 ], for the details of a proof).

3 i iy
Theorem 2. Let T , ... T be a primitive set and m a

gspecific member. Then aside from one exceptional case there is a unique

. j

vector m ¢ T which yields a primitive set when it replaces m e The

exceptional case arises when the primitive set consists of n-l vectors
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from the first n vectors of 1], one vector n

with j >n, and we
are attempting to remove the latter vector. In this case no replacement is

possible.

The algorithm for Theorem 1 alternates between the operation of
replacing a vector in a primitive set, and a pivot step for the equations
Ax =b ., Since the set {x{x >0, Ax =b} is assumed to be bounded, an
arbitrary column outside of a feasible basis can be brought into the basis
by a pivot step, and if we make the standard non-degeneracy assumption of

linear programming, a unique cclumn will be removea.

Let us begin with a primitive set consisting of the vecters

nz, oo ﬁn and a single vector nJ with § >n . 1In order for this to

yield a primitive set nJ must be that vector im [I (other than the first
n members of [l ), with the largest first coordinate. On the other hand
the columns 1, 2, ... n form a feasible basis for Ax =b , since the

vector b is assumed to be non-negative.

In each iteration the algorithm will typically be in a position
b i
1

s . , ; . 1 n
gimilar to this. The primitive set will contain the vectors 7w °, ... m

with none of them equal to ﬁl , and the feasible basis for Ax =b will

be given by the columns (1, jz, - jn) . The two sets of indices, which

we wish to make identical in all coordinates, will in fact be equal in n-1
coordinates, and differ in the remaining one. At each position other than
the first one there will be two operations which lead to a similar state.

3

One possibility is to remove the vector 1 from the primitive set, and
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1 \ .
either to terminate if is introduced into the primitive set, or to be
lead to a new position in which n-1 of the coordinates are identical.

The other possibility is to introduce column jl into the feasible basis

for Ax = b, and either to terminate if column 1 is removed, or again to
be lead to 2 new position with n-1 identical coordinates. 1In the original
position only one of these two operations can be carried out since cthe other
alternative is the exceptional case referred to in Theorem 2. In any sub-
sequent position we select that alternative other than the one used in ar-

riving at that position.

The Lemke-Howson argument demonstrates that the algorithm cannot
cycle, since if the first position tc be repeated occurs in the middle of
the algorithm there would necessarily be three alternatives available at
that step rather than two. And if the first position to be repeated is
the original one, there would necessarily be two alternatives, rather than
one. Since the number of positions is finite, the algorithm must termin-
ate, and it can only do so with a solution to the problem. This councludes

the proof of Theorem 1.

In order to carry out the algorithm it is necessary to describe
the specific procedure to determine the replacement for a vector in a pri-
mitive set. We begin by remarking that as a consequence of the non-degen-
eracy assumption, each column of a primitive set will have pre;isely one
coordinate equal to the corresponding coordinate of m = min(wjl, AP njn) .

b

If a specific vector mn % s removed, and the minimum ' calculated for

3
the remaining n-1 vectors, then one of these vectors, say B , will
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nave two of its coordinates equal to those of n' . Let the index 1% be

h| b
such that "is = ﬂi* = Mg o The replacement for @ is then determined

by examining all vectors nj in T with ni > n% for all 1 # i¥ and

selecting that one with the largest value of ni* .

The argument that this rule produces the unique replacement for

j

™ & may be found in the references previously cited. It should be remarked
that the rule has a geometric interpretation which is particularly simple

if the vectors in I, éther than the first n members, are all located

on the simplex. In this case a primitive set 1s described by a subsimplex
of S, with sides parallel to the coordinate hyperplanes, with each side
containing precisely one member of the primitive set, and with no vectors

in T interior to the subsimplex.
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jcc

To remove a specific vector w =, we continuously reduce the
i

subsimplex by moving the face on which = % ig situated into the subsim-

b
plex until it first touches another vector in the primitive set, n P -

i
We then enlarge the new subsimplex by moving the face on which P was

originally situated until we first touch a vector nj ¢ 1, which them

i
becomes the replacement for o .

IV. A Procedure for Resolving Degeneracy

As we have seen in Section II, most of the applications of Theorem
1 currently known, involve a set [l whose members, aside from the first
n, are on the simplex S . While it is reasonable to expect other appli-
cations of the general theorem to be developed in the future, this special
case will clearly continue to be of comnsiderable importance, and to warrent

further study.

If we have no a priori information which emphasizes certain re-
gions of the simplex it would seem useful, in implementing the algorithm,
to select the non-slack vectors in 1 distributed regularly over the entire
simplex. And in the interest of accuracy the number of vectors in 1 should

0
be extremely large; examples have involved as many as 103 such vectors,

The apparent problem raised by such a large number of vectors is
that the replacement operation described in the previous section seems to

require the examination of all vectors in I , so as to determine that
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vector which maximizes a specific coordinate subject to inequality restric-
tions on the remaining coordinates. If, however, the non-slack vectors in
1 are selected with sufficient regularity, it seems reasonable to hope that

this search procedure can be converted into a simple algebraic calculation.

We shall assume that the non-slack vectors in 1 comprise all of
those positive wectors on the simplex S5, whose coordinates are rational

nuabers with a given denominator, i.e. all vectors of the form (kIfD, v kn/D),
with ki positive intergers summing to D .

The problem immediately raised is that this definition of 1

does not satisfy the non-degeneracy assumption, since for any i there

. . th . .
will be many vectors in [I with the same 1 coordinate. Some systematic

procedure must be introduced for breaking ties and deciding which of two

vectors with identical ith coordinates should be congidered to have the
larger one. The algorithm will be successful as long as the tie-breaking
rules satisfy the customary properties of a complete ordering for each co-

ordinate.

In this section we shall use the following procedure for resclving

degeneracy.

DEFINLITION: Let x = (xl, aes xn) and y = (yl, ves yn) . We

define Xy to be larger than Y (written X > ¥y Y if and only if the
i

vector (xi, oo Xy XKyy o weo xi_l) is lexicographically larger than

(¥g5 cor Y Tpp ooe ¥y 9) o
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This definition, which produces a different tie-breaking rule for
each coordinate, can never result in a tie between two vectors in any coor-
dinate, unless the two vectors are identical. Moreover, the rule produces
an extremely simple characterization of & primitive set, identical with that
found in Hansen's thesis, and the replacemenﬁ operation can be carried out
very rapidly without searching through all of the vectors in [ . The algoritim
which results is identical with an algorithm subsequently proposed by Kuhn
[ 5] for the case of Brouwer's theorem, and has a simple geometric interpre-

tation intimately related to the work of Cohen [1], and Shapiey [10].

Given any n non-slack vectors in I let us form a matrix K

whose columns are the numerators of these vectors.

k1 kyg o0 Ky
K=|.
ko ko, ek

The following theorem gives necessary and sufficient conditioms for such
a matrix.to represent a primitive set. The case in which some of the first

n vectors in I are in the primitive set will be examined later.

Theorem 3. Let K be an n x n matrix with positive integral
entries, and whose column sums are identical. The columns represent the
vectors of a primitive set, if and only if there is a permutation I{j)
of the integers (1, 2, ... n) , and a rearrangement of the columns of
K such that the jth column of K is identical with column j-1 ; ex-

cepting the entry in row I(j) which is one unit smalier and the entry in
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row 1(}) - 1 which is one unit larger. If j =1, j-1 is to be inter-

preted as n, and similarly for I(j) .

As an example, the columns of

10 10 10 11 11
20 20 21 20 20
30 31 30 30 30
10 9 9 9 10
30 30 30 30 29| ,

with D = 100 satisfy the conditions of the Theorem if the permutation is

given by

] I(3)

P o N e
Vi N W B e

In order to prove Theorem 3, let us begin by demonstrating a series
of lemmas whose conclusion will show the necessity of these conditions.
Let us assume that the columns of K are rearranged so that the first row
is strictly increasing according to the lexicographical ordering described
above. Since the columns, after division by D, form a primitive set, each
column will have precisely one entry which is the smallest element in its
row, according to the ordering described above. The row in which this entry

is to be found in tolumn j defines the permutation I(j) .
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Lemma 1, No row of K consists of identical elements.

Let us assume, without loss of generality, that all of the ele-
ments in the first row are identical, and let I{j*) = 2 ., By definition,

the second coordinate of (klj*’ k2j*’ e knj*)g s 1s lexicographically
P ¢
smaller than the second coordinate of (kll’ k21, oo knl) . But this

must also be true of the first coordinate since k = k which con-

11 1% 7
tradicts the assumption that the colummns are arranged in increasing lexi-

cographical order.

Lemma 2. In any specific row of K, mno two elements can differ

by more than 1.

Without loss of generality we again restrict cur argument to the

first row, and assume that k, 2 kll + 2 . But then the vector

(k 1, k ses knn + 1) has its ith component lexicographically

In 21
larger than the lexicographic minimum of the elements in the ith T oW,

for every 1 . This contradicts the definition of a primitive set.

Lemma 3. The elements in the second row of K are also lexico-

i i : 2o < Lk,
graphically increasing, in the sense that k2j* < . < k2n k&,l

2 2
< ... <k for some j¥% .
W ;
2 2 % i*1
Since the top row is lexicographically increasing we must have
k = ,,, =k and k + 1=k = ,,, =k for some j* .

1,1 1, j*-1 1, j*-=1 1, j* Ln
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But then k21 < .. < kZ,j*-l , and ij* < ... X an . In order to prove
2 2 2 2
Lemma 3, we need only show that kzn < k21 o ILf the reverse inequality were
2
true, the vector (k =1, k, , ... k + 1)' would have all of its
1L,n 2, o n,n

components strictly larger than the lexicographic minima of the corresponding

rows.

Lemma 3 may be applied, by induction, to show that every row is
lexicographically increasing, as we read from its mipnimum to the righr,
reaching the last column, and then beginning with the first column and con-
tinuing to the right, In this cyclic fashion the elements in row i begin

‘in that column j for which I(j) =i, with some constant, increase by
one unit at some point and then stay constant. 1In the first row the increase

comes at that column where I(j%) =2 , and by induction a similar phenomenon

k k.+1 ... k1+1

occurs in the remaining rows. This demonstrates the necessity of the con-

ditions described in Theorem 3.

In order to show that the conditions are sufficient we shall pro-
ceed by induction on the size of the matrix. Let K satisfy the conditions

of the theorem and k = (kl, k,, <»o kn) be a vector with positive integral

2’

components summing to the column sums of K and such that (ki’ . kn’
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k k

P ki-l) is lexicographically larger than (kij’ oo kn

T

for 1 =1, ... n and j such that I(j) =1i .

Let us remark that for some row i, we must have ki = min (kij) R
j

For otherwise ki 21 +min (kij)‘z kil with strict inequality for at least
i

one 1, contradicting Eki = Ekil o

There is no loss in generality in assuming that kl = min (klj) L'

]

11
3 o
But then (ki, o kn’ kl + k2’ o kiwl) is lexicographically larger

than (k k

ay K15 T E

for i =3 ... n and I(i) =1 .

g
ij, . e zj, CRCE ) ki"‘l’j)

This is easy to see for if the tie is broken by one of the first n-i ele-

ments of these vectors it will be broken as before. Since k., < k if

1= %15

the tie is not broken by one of the first (n~i) elements we must have

k, =k,,, and if the tie is originally broken by k it will be broken

1 13 2’

in the same way here. A similar remark holds if the tie is broken by some

element after kz .

k

The same argument shows that (k1 + kz, 3 cee

kn)" is lexico-

8 . .th
graphically larger than (kll + k21, k31 200 knl) . Therefors the 1

entry in (k1 + k2, cen kn)’, is strictly larger, in our ordering, than

the lexicographic minimum in the ith row of the (n~1} x n matrix
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If I(j*) =2, then the j*vlsc and j*th columns of this matrix are
identical, and if oﬁe of them is deleted, ‘the remaining columns satisfy
the conditions of Theorem 3. This contradicts the induction assumption
and verifies that the conditions are sufficient for K to represent a pri-

mitive set.

Theorem 3 provides a very compact description of those primitive
sets in which no slack variables appear. 1t alsoc permits a remarkably
simple description of the replacement for a given vector in a primitive

set.

Theorem 4. Let K represent a primitive set with ne slack vec-

tors. Then the vector (k] ... k; y' , defined by

1y 3
k;j = kij +1 for i =1I(j), I(.j+1) - 1
kij = kij - 1 for =I(j) - 1, I(j+L)
and kij = kij otherwise,

is the unique replacement for column j , unless one of the components of
k' 1is zero, in which case a slack vector replaces column j . If IL{j) =

I(j+1) - 1, then k;j = kij + 2 for this common value of i, and if



I(j) - L = I(j+1), k;j =k

matrix satisfying the conditions of Theorem 3, since the non-degenerate

1j

- 2 for the common row.

ordering guarantees that the replacement must be unique.

-1, ]

for the four elements in rows

I(j) = 1)

(i),

I(341) - 1,

It is sufficient to show that this replacement generates a new

33

and j+1 (modulo n) are all identical except

and I{j+l) .

Assuming, for the moment that these four rows are distinct, the submatrix

consisting of these four rows and three columns is given by

with

-1 [

1(3)
I(j+1) - 1
I(j+l)

and d positive integers.

submatrix given by

j-1

b+1

d+1

j=1 k|
a a+l

b+1 b
C C

d+1 d+1

j j*t

a a+l
b+1 b
c+l e+l

d d

j+l

a+l
b

e+l
d

The suggested replacement for column j 3

will produce a new

which clearly satisfies the conditions of Theorem 3, with & new permutation

Il

defined by I'(j) = L(j+l)

and TI'(j+l) = I(j),

and equal to

I

otherwise.
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In the case in which I(j) = I(j+1) - 1, the three columns differ

only in three elements and the appropriate submatrix of K is

i-1 j j+l
I(j) - 1 a a+l a+l
I(3) b+1 b b+l
I(j+1) c+l c+l c .

The replacement rule produces a submatrix

j=1 j j+1
a a a+l
b+1 b+2 b+1
c+l c ¢

again satisfying the conditions of Theorem 3, with the same new permutation

as before,

The third possibility, I(j+1) =I(j) - 1, presents us with

j=1 j j+l
I(j+1) - 1 a a a+l
I(j+1) b b+1 b
(i) c+l c c s

and after replacing column j we obtain

i-1 i i+l
a a+l a+l |
b b-1 b

c+l ctl c -
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Again we satisfy the conditions of Theorem 3, with the same modified per-
mutation, unless b = 1 . 1In this case the ith slack vector will replace

column j, where i = I(j) . This demonstrates Theorem 4.

The following examples of the replacement operation may be useful,

If the second column is removed in

(10 10 10 11 11 |
20 20 21 20 20
30 31 30 30 30
0 9 9 9 10

36 30 30 30 29| ,

- el

we obtain

10 10 10 11 11
20 21 21 20 20
30 29 30 30 30
10 10 9 9 10
30 30 30 30 29

and if the first column is subsequently removed from this latter matrix we

have

11 10 10 11 11
21 21 21 20 20
29 29 30 30 30
10 10 9 9 i0
29 30 30 30 29 ,

These operations can eagily be programmed for a high speed computer, and
carried out with considerable rapidity, so that even those problems requiring

as many as 10,000 iterations present no serious difficulty.
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In order to complete the version of the algorithm being developed
in this section, we need to characterize those primitive sets which contain
some slack vectors, and to describe the replacement operation when slack

vectors are involved.

Consider a2 primitive set which contains the slack vectors

i1 i j i

m n~m
T, «ss ™ , and n-m non-slack vectors

y ses T . Let us form
an n x (n-m) matrix whose columns are the numerators of the non-slack

vectors.

The following theorem extends Theorem 3, and characterizes those

matrices which represent primitive sets containing some slack vectors,

Theorem 5. Let K be an n x (n-m) matrix with positive integral
entries and whose column sums are identical. The columns of K, along

i i
with the slack vectors 1, cee represent the vectors of a primitive

set if and only 1if

1. The entries in rows i 12, 0o im are all ones, and

1’

2. The (n-m) x (n-m) square submatrix of K obtained by de-

leting rows i., 1 ¢eo 1, represents a primitive set of dimension n-m .
2’ m

1’



The proof of this theorem may be obtained by arguments virtually
identical with those of Theorem 3 and will be omitted. As an example the

columns of

— ~
1 1 1
49 49 50
1 2 1
1 1
15 14 14

describe three vectors which form a primitive set in conjunction with the
first and fourth slack vectors.

The replacement operation is essentially identical with that given
in Theorem 4, with minor modifications to accomodate the slack vectors. If a
non-slack vector is removed from K the replacement operation is carried out
on the square submatrix representing a primitive set of dimension n-m . A slack
vector will be introduced only if the incoming column has a zero cemponent, and
in this case the number of columns in K shrinks by one. This cccurs for ex-

ample if the middle column is removed in the above matrix, vielding a new matrix

ﬂ.l 1,.
49 50
1 1
1 1
F15 14_|

whogse two columns form a primitive set along with the first, third and fourth
slack vectors.

If, on the other hand, a slack vector is removed from a primitive set
the number of columns in K increases by one. The coperation is the reverse cof

deleting the middle column in the case
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and this determines precisely the location of the incoming non-slack column.

In the above example if the first slack vector is deleted we obtain

—

1 1 2

49 50 49

1 1 1

1 1 1
15 14 14 |,

and if the third slack vector is then deleted the resulting matrix is

1 1 1 2]
49 49 50 49
12 1 1
1 11
15 14 14 14 |

This completes the discussion of primitive sets and the replace-
ment operation, when the vectors in [ are ordered by the cyclic lexico-
graphical ordering. A Frotran program for that part of the algorithm in-

volving the replacement operation is given in Sectiom VI.#*

V. Some Geometric Considerations

In this section we shall continue with the assumption that the

vectors in {1, aside from the first n , consist of all of those pesitive

vectors on the simplex 5, whose coordinates are rational numbers with a
given denominator D . Theorem 3, provides us with a simple characterizarion
of primitive sets, if the cyclic lexicographic ordering is used to resolve
degeneracy.

As we have seen, one of the applications of Theorem 1 is the ap-
proximation of a fixed point of a continuous mapping of the simplex into

itself. As a consequence, a proof of Brouwer's theorem may be obtained

*For convenience in programming, the FORTRAN statement treats slack in a
slightly different fashion from that described in this section.
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by a suitable limiting process. The customary proof of Brouwer's theorem
makes use of Sperner’'s Lemma, a combinatorial theorem concerned with a label-

ing of the vertices of a simplicial subdivision of the simplex.

In a paper published in 1960, Kuhn [4 ] examined the particular
subdivision of the simplex consisting of those gsubsimplices whose vertices
have non-negative rational coordinates with a given denominater D . [t
is by no means trivial to determine when a given set of n vectors repre-
sent the vertices of a subgimplex in this subdivision; Kuhn's paper contains
a theorem fully answering this question. In our terminoclogy, Kuhn's theorem
may be described as saying that n such vectors represent the vertices

of a subsimplex if and only if the n vectors form a primitive set.

As the following figure indicates, there is a slight difference
in emphasis between a subsimplex in Kuhn's subdivision and the geometric

objects which we have previously associated with primitive sets.
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The three vectors (1, 2, 3)', (2, 1, 3)' and (2, 2, 2)'
are the vertices of the heavily market subsimplex in the center of the

figure, and the matrix

1 -2 2
2 1 2
3 3 2

represents a primitive set. But for us, the geometric object associated
with a primitive set is a subsimplex such that the side parallel to the

th . ., th
i coordinate hyperplane contains that vector with the smallest i

coordinate, and is therefore the subsimplex represented by the dashed lines.

If the vector (2, 2, 2)' 1is removed from this primitive set,

the new matrix

1 2 1
2 1
3 3 4

is obtained, and both Kuhn'’s simplex and the one associated with a primitive

set coincide.

In a recent paper [ 5], Kuhn has given an algorithm for approxi-
mating fixed points of a continuous mapping using this particular simplicial
subdivision, and a replacement operatiom in which a vertex is reﬁoved from
a subsimplex and replaced by a vertex of that unique adjacent subsimplex
containing the remaining n-1 vertices. The determination of the vertex

to be removed is based on the Lemke-Howson techmnique. It should be clear
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that this algorithm is identical with that described in Section IV, aside

from slight differences in the treatment of vectors on the boundary.

The algorithm may be placed in the setting of an arbitrary simpli-
cial subdiﬁision, rather than the particular one described above, with a
possible decrease in computational efficiency. This point was realized in
an earlier paper by Cohen [ 1], more concerned with a proof of Sperner's
lemma than with numerical approximations, in Kuhn's paper, and in an un-

published manuscript by Shapley [10].

VI. A FORTRAN Version of the Main Program

DIMENSION K(40, 40), I10(40)
COMMON N, INDEX, K, JOUT
1 READ M, N, MAXI
INDEX = 1
JOUT = 1
DO 10 I =1, N
DOS J=1, N
5 K(I, J) =1
10 CONTINUE
PO15 J=1, N
K(L J) =M+ 2-N
K(J, J) =K(J, J) =1
10(3) = J

15 CONTINUE
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c INFUT OVER. THE SUBROUTINE IS CALLED TO DETERMINE JOUT.
16 CALL SUBROUTINE

IF (JOUT. EQ. 0) GO TO 500

c THE SUBROUTINE GIVES THE COLUMN OF THE PRIMITIVE SET TO BE REMOVED.
TERMINATION IS INDICATED BY RETURNING A VALUE OF JOUT = 0 TO THE
MAIN PRCGRAM.

JP = JOUT + 1
IF(JOUT. EQ. N) JP = 1
LOO = 10(JOUT)

L10 = T0(JOUT) - 1
IF (L10. EQ. 0)L10 = N

L0l = T0(JP)

L1l = I0(JP) - 1

IF (L1l. EQ. O)Lll = N

K(L00, JOUT) = K(LOO, JOUT) + 1

K(L1l, JOUT)

K(L1l, JOUT) + 1

1
—

K(LOL, JOUT) = K(LOl, JOUT)

]
-

K(L10, JOUT) = K(L10O, JOUT)
I0(JOUT) = LO1
10(JP) = LOO
INDEX = INDEX + 1
IF (INDEX. EQ. MAXL) GO TO 500
GO TO 16

500 WRITE...

END
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