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A DYNAMIC THEORY OF CONSUMER'S CHOICE
by

Herbert Scarf

Summary

In this paper we discuss a theory of consumer's choice, based on the
idea of utility maximization, subJject to constraints in expenditures. A
description is given of those utility functions for which future tastes
are independent of past consumption, and an even smaller class is described
for which tastes are stationary in time. It is shown that the utility
function will have these properties only if it is a discounted sum of
functions pertaining to consumption in the separate periods. The discount
factor leads to the notion of a personal interest rate, which may be
constant, or a function of the consumption level.

The question of whether a decreasing ratio of expenditure to total
wealth is compatible with such a utility function is discussed. The case
of constant personal interest is examined in detail and it is shown that
no stationary utility function permits a decreasing ratic of expenditure to
wealth for a sufficiently wide range of market interest rates. On the other
hand, an example is given of a utility indicator with a variable personal
interest rate, which predicts a decreasing ratio of expenditure to wealth

for all market interest rates.



I. Introduction

In this paper we shall discuss several mathematical problems that arise
in the construction of a dynamic theory of consumer's choice. During the
last several years there have been at least two mathematical approaches to
the problem of consumer's choice over time, that of Friedman (3) and that
of Modigliani and Brumberg (5). Our discussion will be similar in spirit,
though not in detail, to that offered by Modigliani and Brumberg, in the
sense that these authors view the problem specifically as one of utility
maximization, subject to constraints on expenditures.

The problem faced by a consumer is first of all, that of expressing
preferences among alternative streams of consumption bundles. Let

X be such a stream of consumption bundles, where x, is a

1’ X2, X3J t

vector whose jth component represents the number of units of commodity
to be consumed in time period +t. We shall begin by assuming that the

preferences of the typical consumer are expressed by a utility function

U‘(x1? %55 ves ),

such that when alternative consumption streams are presented to the consumer,
he will attempt to secure that stream with the highest utility.

Actually we shall assume somewhat more; 1in the general case, the
consumer does not select levels of consumption for all future time periods,
but rather he takes a series of actions which lead to consumption levels,

perhaps depending randomly upon the actions taken. For this reason the



consumer should, ideally at least, be able to express preferences among
probability distributions of consumption streams.;/ This consideration
leads to the fact that U(xl, X5y vee ) is a Bernoulli utility indicator,
with preferences being ranked according to expected utility. Of course,
if the Bernculli utility indicator is left in a perfectly general form,
there is very little that can be said about the actual behavior of the
consumer. There is an enormous variety of behavior consistent with a
general utility function, and if we are interested in predicting specific
patterns of consumption and saving over time, some restrictions must be
made as to the form of the utility function.

Qur restriction, which seems gquite plausible as a first approximation,
may be described by saying that the future tastes are independent of past
consumption. As we shall show in Section II, this implies that the

utility function U may be written in the following form:

(1) U(Xl: X0 X35 see) = (pl(xl) + ‘31(Xl) CP2(X2)
+ By (%)) By(%,) @(x)+..,with B >0 .

At this point we are being deliberately vague as to whether the number

of time periods under consideration is finite or infinite. The reasoning

l/ No distinction will be made in this paper between subjective and objective

probability distributions.
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which produces (l) is valid for both of these cases. The function ﬁn may
be looked uponas the personal discount factor which is operative in time
veriod =n . Bn is a function rather than a constant, and therefore the
personal discount factor depends on the level of consumption during the

period. The personal interest rate would, of course, be defined by

l-Bn
B

n

and is in no way connected with the market rate of interest.

To be somewhat realistic, it should probably be assumed that for large
n, Bng O, that is consumption at a time exceeding the possible life-time
of the consumer should be discounted completely. Howevey it is occasionally
useful to introduce as an additional restriction on the Bernoculli indicator
U, the assumption that future tastes are not only independent of past
consumption, but are also stationary over time. This assumption will be
introduced primarily for the purposes of mathematical simplification; it
requires that the argument of the Bernoulli indicator be an infinite sequence
of consumption vectors. As a consequence of the assumption of stationary
tastes it will be shown in Section II, that the utility indicator may be

written in the form

(2) UGy, %y +ee) = 0(x)) + Blxy) 9(xy)

b B0 Blsy) @(xg) +eee

again with >0 .



It should be remarked that there are corresponding expressions if the
consumption takes place continuously over time, rather than at discrete
time intervals. In particular (2) is replaced by an expression of the

form

o - i(x(e)as
(3) U((-) = [ e o(x())at

where x(t) is the vector valued rate of consumption, i(x) is the
personal interest rate (rather than discount factor) corresponding to a
consumption rate x (it is generally > O , but may actually be negative)
and U(x(-)) is the utility associated with the consumption plan x(t)
(0 <t E.oo). The function ¢ appearing underneath the integral sign in
(3) is analogous to the function ¢ appearing on the right hand side of
(2). We shall find it convenient to work with the continuous version (3),
rather than the discrete version (2).

In Section III we shall discuss the behavior of the consuming unit
when guided by a utility indicator of the form (3). For simplicity we
shall assume that there is a single item of consumption so that the wvector
function x(t) appearing in (3) will actually be a scalar, and that the
price of this item remains constant over time (the price will be taken as 1).
This general item of consumption will be assumed to be completely non-durable,
so that no inventories are carried. The income rate of the consumer will be
assumed to be a known function of the time I(t) (random fluctuations of

this income will be examined in a future paper.) Strictly speaking we mean
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I(t) to be the income component which is independent of returns on
investments and interest payments on loans. Any expenditure plan will
result in excesses or deficits of expenditures over assets and any
disparity between assets and expenditures is meant to be converted into
investments or borrowings at the market rate of interest j . The only

constraints that we shall impose on the expenditure plan are

. x(t) >0 and

()

0]

b. f

-t w -0
e T x(v)ar <m_ o+ [ e It r(t)at =,

where MO represents assets at time t=0. (We shall always use M in
this sense, and talk of it as the assets, meaning the discounted value
of current plus future assets.) The latter constraint is a very weak one;
it is equivalent to assuming that the present value of indebtedness at time
t +tends to zero as t — 00 . Other constraints, such as a limit on the
actual indebtedness at any time are also possible, but we shall not discuss
them in this paper.

In Section III we determine the expenditure plan which maximizes (3)
under the constraints (4), when the personal interest rate i 1is a constant,

and ¢ 1s an increasing concave function. The sclution is as follows

Theorem I.
1. If 1 < j then the optimal consumption plan x{(t;j,M) consists of

(possibly) an interval (O, to) in which x=0, and in (to, o) x(t)



satisfies the differential equation

(5) == 1) T

to is taken as the smallest possible value such that the solution

satisfies (4).

2. If 1> j, then x(t) consists of (possibly) an interval (to,oo)
in which x =0, and in (O, to) x(t) satisfies (5). t, is taken as the

largest possible value such that the solution satisfies (4).
3. If i=3, then x(t) = jM.

The general features of the solution are clear: if 1 < j, then
expenditures are increasing steadily over time. If M is thought of as
the capital of the consumer at t = O, then the capital at time t, M(t),
will be an increasing function of the time,g/and expenditures are proceeding
at a rate which is less than the interest on the capital. It is probably
fair to call this type of consumer a saver.

On the other hand if 1 > j, the situation is reversed, and the

consumer is dissaving.

2/
M(t) satisfies the equation

|
1]

JM(t) = x(t).
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We should remark that 1t is possible for there to be no optimal
consumption plan. It is possible to construct examples in which any
consumption plan can be improved. Theorem 1 only applys to the case in
which an optimal consumption plan exists.

Actual data on consumption patterns seem to indicate that the ratio
of consumption to income falls as income rises. This would seem to be
reflected in our theory by the statement that EigﬁiLMl should be
strictly decreasing in M . 1In Section IV we shall take a look at this
topic. It will be shown that as long as the personal interest rate 1
is constant, there is no utility function ¢ which has the property

that X(O;&,M)

is decreasing in M for all Jj . The only utility
indicators which are in any way close to fulfilling this condition are
o(x) = log x or o(x) = x° ,é/ and for these utility functions ﬁ- is
actually independent of M, for each fixed J . This seems to indicate,
in no uncertain terms, that the personal interest rate should depend on
the rate of consumption. In Section V an example of g utility indicator
with a variable personal interest rate is given, for which Eigiﬁﬂﬂl is
strictly decreasing for all jJ .

We should like to thank K.J. Arrow, L. Hurwicz, and S. Karlin for

a number of stimulating conversations on these topics.

3/

ILinear transformations are possible.



II. The Independence Assumption.

There are several excellent discussions in the literature of Bernoulli
utility indicators, and we shall not repeat these discussions here (6,1).
The main points are the following: Consider a set consisting of a number
of alternatives, and with a preference relationship which permits one to
compare an arbitrary pair of probability distributions for these alternatives.
If the preference relationship is assumed to have a number of simple and
intuitively plausible properties, then it may be shown that there is a utility
indicator U , defined on the set of alternatives, with the property that
one probability distribution is preferred to another if its expected utility
is larger. Moreover, the function U is unique up to a linear transformation,
in the following sense: 1if U' = a+bU with b > 0 , then preferences
ranked according to the expectation of U are the same as preferences
ranked according to the expectation of U' , and if U' and U are not
related in this linear fashion, then they express different preferences for
probability distributions over the alternatives. We shall take it for
granted, in the remainder of this paper, that all preference relationships
will be such as to imply the existence and uniqueness of a Bernoulli utility
indicator in this sense.

Now let us turn our attention to the independence assumption described
in Section I. We consider, as the space of possible alternatives, all
sequences of consumption vectors, Xqs Xyy eee (These may be finite sequences,

if we wish, or else infinite.), and along with this a Bernoulli utility
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indicator Ul(xl, x2, ... ). Preferences over probability distributions are
obtained by ranking the expectations of this function. In particular, all
probability distributicns for which consumption in the first period is not

random, but actually equal to Xl’

we consider all consumption streams which are equal to Ei in the first

may be compared. This implies that if

period, then preferences are determined by ranking the expectations of
Ul(xl’ Xps Xz ee ), and therefore Ul(xl, Xpr Xgp ee ) as a function

of x2, X +¢. 1s a Bernoulli utility indicator for consumption from

3)

period two onward, given that the consumption in period 1 is Ei . But

according to our assumption about future tastes being independent of past

consumption, we see that as Ei ranges over all possible values, the

family of functions of x,, Xz eves Ul(§i, Kpy Ky ees ) should be
equivalent Bernoulli indicators, and therefore should be linked by a linear

relationship. This implies that

(6) Ul(xl’ Koy oo ) = cPl(xl) + Bl(xl) U?_(Xg’ eer )

for some P15 Bl >0 and U2 . In order to obtain (1), we apply the same

argument to the function UE’ etc.

If in addition to the independence of future tastes and past consumption
we also require that tastes be stationary over time, the preceding argument

implies that Ul(xl, Xpy X3y oeo ) and Ul(xe, X3 »..) are equivalent

Bernoulll indicators for each fixed SE and therefore,



11~

(1) U (s s e ) = 00x) + B(x) U (xyy oen )

We may therefore drop the calendar date from the utility indicator and by
the iteration of (7) we obtain (2).

It is interesting to note that unless the personal discount factor
B 1s constant, the function ¢ should not be interpreted as a utility
indicator, in the sense that if ¢ 1is changed by a linear transformation
the over-all tastes of the consumer are actually modified.

If the consumer is depicted as consuming continuously over time, at a
rate x(t), then the Bernoulli utility indicator wauld associate a number
with each such function. We may arrive at such a number, by a limiting
operation on (2), by letting the periods between successive consumption
choices approach zero. If the personal interest rate is considered to be
proporticnal to the time between successive consumption decisions, then

(2) becomes

n

a
1
U(x(-)) ~nZ=J; ;{U}j T+ (% (AL )AL o(x(nat)) .

If we multiply (normalizing) U by At, and pass to the limit, we obtain

oo - I 1(x(e))at
(8) U(x(-)) =/ e p(x(t))at ,

(¢}

where 1i(x) may be interpreted as the personal interest rate corresponding
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consumption rate x . This formula, for the case of stationary independent
tastes, may also be derived directly by considerations similar to those of
the discrete time period model. We shall find it convenient to work with

the continuous time model rather than the discrete model.

IIT. The Optimal Consumption Plan for Constant Personal Interest Rate.

In this section we shall discuss the optimal consumption plan when
the consumer is guided by a utility function of the form (8), and with a
constant personal interest rate. In this case ¢ may be considered as a
proper utility function, and we shall assume that as a function of the
rate of consumption it is both increasing and concave.

The only constraints that we shall impose on the possible consumption

plans x(t) are

a; x(t) >0 | and

© s
b3 [ e Jt x(t)at <M .
o S

(j is the market rate of interest.)
The problem is to determine the function x(t) which maximizes (8), subject
to the constraints (9). The mathematical technique is similar to that used
by Karlin in (4), and Karlin and Arrow in (3).

Let us begin by assuming the existence of an optimal consumption plan

x*(t), and deduce several conditions that must by satisfied by this plan.
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As was remarked in the introduction, it is possible for there to be no optimal
consumption plan. For the moment, let us consider the case where the personal

interest rate 1 is smaller than the market rate Jj. If x(t) 1is any other

consumption plan satisfying (9), then for any € between zero and one

6x*(t) + (1-0)x(t) is a consumption plan which satisfies the constraints.

The utility of this latter plan is given by
o 1
(10) J(8) = fé e ™1t U(ex*(t) + (1-8)x(t))at .

J(8) 1is concave in 6, and therefore, a necessary and sufficient condition

that it assumes its maximum at ©=1 is that J'(1) >0 . But

(11) J'(1)

]

{:O eIt U (x*¥(t)) (x*- x)dt

e 10 i o)) (e73% st (s) - e It (1))at.

Let us integrate this last expression by parts, defining C(t) by the

expression

(12) c(t) = 4: e x(e)ae

and C*(t) in a corresponding way. Since C(oo) = C*¥(oo0) = M, (we are
comparing the optimal plan with other plans that utilize all resources.) the

integration by parts yields
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o}

(13) 0<% é% {'e(j'i)t U'(x*(t)?} { C*(t) - C(tz} at
and therefore, C*(t) maximizes the integral
(a4 5 (N weren) cwar

for all choices of C(t) arising from a feasible consumption plan x(t) .
This remark permits us to deduce some simple properties satisfied by
the optimal consumption plan x*(t) . First of all, let us suppose that

there 1s some interval of t-values such that

(15) S veren} >o, say,
t in (a,b). We shall show that this is impossible, unless C*(t) is
actually constant in this interval. For, assume that it is not constant, so
that ©*(b) > c*¥(a) . Then we can construct a consumption plan x(t) such
that C(a) = C*¥(a), and C(b) = C*(b), and C(t) > C*(t) for t Dbetween
a and b . (A simple graph will show that this is possible.) This clearly
improves the integral (14) so that if (15) holds, we must have x*(t) =0
in (a,b). But since J < i this contradicts (15) and therefore (15) can
never hold.

We have shown that g%— e(‘j”i)t U'(x*(t)) must be everywhere < 0.

An argument similar to that of the preceding paragraph shows that if this

function is ever strictly less than zero in an interval, then x*(t) =0
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in this interval. These remarks may be summarized in the following lemma.

Lemma 1: The optimal consumption plan x*(t) is composed of pieces,
in which x*(t) is either identically zero or given by the solution of the

differential equation
(16) L {e(J‘l)t U'(x*(t))} - 0.

The next step is to show that when j < 1 +the only place where x*(t)
can be identically zero is (possibly) in an interval connected to the origin,
and that if this interval is given by (O, to) with t >0, then
x*(to + 0) = 0.

Let us begin by assuming that the optimal strategy contains an interval
of zero consumptiocn which is not connected to the origin. The function

C*(t) will then have the appearance of the solid line in Figure 1.

FIGURE 1.
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We mean to compare the optimal policy with one whose C€(t) function has the
form of the dashed line in Figure 1. This comparison policy may be obtained

in the following way: ©pick a point t slightly to the left of to. t, is

2 2

in an interval in which x*(t) satisfies the differential equation (16).
It may be shown directly from this equation, since j< 1 and ¢ is

increasing and concave, that x*(t) is increasing, and therefore, if t2

* policy by beginning at t

is close to t, x*(t2) > 0. We change the x 5
with a slightly lower value of x(t2 + 0), and continuing by means of the
differential equation until the two C functions intersect, as is shown in
Figure 1. There will always be such an intersection point if x(t2 + 0) is
taken sufficiently close to x*(ta).

If x*(t) 1is, indeed, optimal then the integral appearing in (11) must

be >0, when x 1s the comparison poclicy described above. Let us show that

this is false; x* and x agree everywhere, except in the interval from

t, to t,, and we may therefore write (11) as
%o -it N * tl -1t *

A L e e (X)) (x7 - xat + [T T ot (X (1)) (x7 - x)at .
2 o]

Consider the first integral in (17). 1In the interval (tg, to) x*(t)
satisfies the differential equation (16). This implies that

(5-1)t

(18) N (¥ (e)) = e ot (x*(x, - O)),
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and therefore the first integral is equal to

(3-1)t %o

e oQ(x*(td—O)) [t e-jt(x*-x)dt.

(19)
2

Now consider the second integral. For this range of +t wvalues,

x*¥(t) = 0, and therefore the second integral is

t
—01(0) [ T et y(v)at
t

o

t . . s
- —01(0) [ LeItLIDE L (yas

(o]
(3-1)t_ t, _ ‘
< —p0)e - °f1emd g(v)at
tO
(3-1)t &, _
< =o' (x*(t - 0))e o LTI (4)at,
t
Q

since X*(to-O) >0 and @' 1s a strictly decreasing function of fts

argument.
Therefore (17), which is meant to be > 0 if x* 1s optimal, 1

S

actually
(3-1)t t b
° f °e Jt(x*—-x)dt - J 1 e_‘]txdt

< o' (x"(t -0)) e
(o] t +
2 o}
(3-1)t .
= ¢'(X*(to-'0))e °9 1 e_jt(x*-:f)dt = 0,
t
2

which shows that x* 1is not optimal if it contains an interval of zero

consumption which is not connected to the origin.
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On the other hand let us assume that x*(t) indicates zero consumption
for the interval (O,to). We shall show that this policy is only optimal if
x*(to-+0) = 0. For suppose that x*(to+-O) > 0. In this case let us
compare, by means of (ll), the x* policy with one whose C(t) function is

given by the dashed line in Fig. 2. The solid line is meant to be C*(t).

FIGURE 2.

The dashed policy indicates no consumption in (O’tl_) and consumption

according to the differential equation in (pv 00), with

a N
[ 7 -3t

o x(t)dt = A{ Let us show that such a policy can be constructed when

x*(to+ 0) >0 and t is close to to. For consider the consumption curve

1

which follows the differential equation in (tl,co ) and for which

x(tl4-0) = 0. For t, close to t_, C{w) for this policy, will be close

1
to the Cf(oo) for the policy which follows the differential equation from

t_ onwards and for which x(to+ 0)= 0. But for such a policy Clow) </V,
since [ e-th(t)dt is monotone in the initial conditions (because of the

properties of @' and ¢".) Therefore for t, close to to , discounted

1

expenditure will be less than P4 if we start out with zero expenditure at
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t Raise the expenditure gradually at t

1" 1’
actually equal to PV7 and we get the dashed policy.

Now let us compute (11) where x isthedeshedpolicy. This integral may

be written as

Yo _1t %0 it
(20) [~ e O (x*(t)) (x%—x)dt + { e ' (x*¥(t)) (x*-x)dt.

tl o)

In the first integral x¥ = 0 and therefore it may be written as

to -it
—0'(0) [ e T "xdt
by

Consider the second integral in (20) In this integral x* satisfies
the differential equation and therefore

. (3-1)t
I () = e g (an(e,),

s0 that the integral may be written as
(3-1)t ©
e ocp‘(x*(to)) [ eI (x%ox)at.
t
ol

Now let us pick tl so close to to such that

(3-1)%, (3-1)t
9'(0) e > ' (x¥(t ) e ’

which we can do since x*(to) > 0. Then (20) is less then

until discounted expenditure is
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(§-i)t [ ® to .
e ’ Ocp'(x*(to))lf e-jt(x*w-x)dt - J e-Jtycdt;
t

to 1 .J

= 0,

and this shows that x* is not optimal if t_ >0 and x*(to +0) > 0.
If these remarks are combined, they indicate the procedure for con-
structing the optimal consumption plan when i < j. Pick an initial
consumption level x%*(0) > O, and solve the differential equation (5)
with this initial condition. If there is an initial condition such that
the resulting solution gives fa%—jtx*(t)dt = /V/, then x¥ 1s the
optimal plan. On the other hagd if all solutions give rise to an x*(t)
with fq;_jt)dé(t)dt >>A/7, then we must have recourse to an initial
inter;;l of zero consumption, say (O, g)). But the point t is quite

simple to determine. Solve the differential equation (5) with the initial

condition x*¥(0) = 0. Then
it o
o} -Jt
(21) e M = [ eIV x¥(1) at,
o

and the actual optimal plan is given by x*(t—to) for ¢ > to.

This disposes of the case when the personal rate of interest is
less than the market interest rate. A similar set of remarks may be made
when the personal interest rate 1 1s larger than the market rate. By
reasoning similar to that used above it is possible to show that the
optimal consumption plan consists of at most two parts: a part governed
by the solution of the differential equation (5) and a part of zero con-
sumption. In this case however the zero consumption level, if it exists,
must be connected to infinity, rather than to the origin. It is also
possible to show that if such an interval (to, @ ) exists, then

* - = .
x(to 0) =0
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Therefore to solve the problem in the case where 1 > j, we select
an initial condition x*(0) > 0, and solve the differential equation (5)
with this initial condition. If the solution becomes negative at some
point to, then cut it off at this point and continue with zero con-
sumption. In either event this defines a function x¥(t). If for this

function fDe'_J13x*dt < p7 take a larger initial consumption, if
o]

@
g e—jt:x*dt >>A¢, take a smaller, until equality is reached. The point
to may be found by solving the differential equation backwards with the
initial condition of zero consumption.

These remarks constitute Theorem I of Section I.

It might be instructive to develope an example at this point. ILet

us consider ¢(x) = log x. Then the differential equation (5) becomes

g% = (j-i) x, whose solution is
x(t) = x(0) e(jal)t, and in order to have
@ ‘
J =% x(v)at =fv1 we select x(0) = i /7, so that
o b4
(22) we(t) = 1 MelI-DT,

It is interesting tc note that in this case we never have intervals of

zero consumption.

If the optimal consumption plan is used the discounted assets at

time t, M(t), satisfies the differential equation
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aM .
T =3 M =<y,
from which we see that

M (t) = /\4 e(j_i)t s

and therefore the optimal consumption plan is to consume at a rate pro-

portional to the assets, the proporticnality constant being the personal
interest rate. The utility functions o(x) = ¥ for @< 1 also lead

to consumption at a rate proportional to assets, but with different pro-
portionally constants. In this later case, for certain relations among

the parameters , it may be possible to construct an infinite sequence of
consumption plans which lead in the limit to an infinite utility, where-
as the plans themselves essentially defer consumption for longer and

longer periods.

IV. The Behavior of the Optimal Consumption Plan §§_P’?varies.

As in the preceding section we consider a consumer whose utility
function is composed of a constant personal interest rate i, and a
single period utility function ¢ which is concave, increasing. When
an optimal consumption plan exists it will depend on time, the market
interest rate j and the value of the assets A4 « We may therefore
denote this optimal plan by x(t; j, ﬁ4).

Let us denote by /Vf(t) the assets of the consumer at time t.
Then 1t is easy to see thatfvf(t) satisfies the differential equation

(23) M s M) - x),

dt
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with the initial condition M (0) = /\7

Lemma 2. If the personal interest rate is less than the market
interest rate, then/M/(t) 1is incressing and x(t) < 3M(t). 1If on the
other hand the personal interest rateislarger than the market rate then
/\4 (t) 1is decreasing and x(t) > j/x7(t).

The proof of this important proposition depends on the following
observation. Let x(t) be the optimal consumption plan, and fV7(t) the
associated function measuring assets at time t. Let t¥* be any point
greater than zero and let us consider the problem of selecting a con-
sumption plan in the interval from t* to infinity, which maximizes
utility subject to the constraint
foo &3 (-t L) at < M(w®).

t* -
It follows, from the assumption of the independence of future and
past consumption , that the optimal plan for this problem is to continue,
from t* cuwards, the optimal plan for the original problem. This
observation implys that in order to demonstrate that x(t) < j fV7(t)
(in the case 1 < j say), it is sufficient to demonstrate this fact for
t = 0. But this is quite easy, since according to Theorem 1, the con-

sumption rate x(t) is increasing when i < j. Therefore

M (o) = fooe-jtx(t)dt

(@]

¢ 9]
> x(0) [ e It ay
(@]

_ xfO}
==
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It follows that x(t) S‘jﬁ7(t), and from the differential equation for
TV1(t) we see that it is always increasing for i < j. For i > j we
use an argument based on the fact that x(t) decreases.

In the process of this argument we observed the interesting fact

that
(k) x(t; 3, M) = x(0; 3, M (£)),

as an identity. If we differentiate both sides of (24) with respect to

t, we get

L3

ax (3 3,M) _ 3x(o; M aM
oM at

(25) 4

ax aM

Since both T and 1T

that X (%;,ﬂ," M) > 0. More in fact may be said. Instead of (24) we

have the same algebraic sign we may conclude

may use the identity

(26) x(est s 3,M(0) = x(v s 3,Me)).

Differentiating both sides of this identity with respect to %, we obtain

x(x_5 3, M)
aM

> 0, for all to. We obtain

Lemma 3. The wealthier the consumer (in terms of present plus
future assets) the larger his expenditure.

The type of behavior described in Lemmas 2 and 3 is of course what
one would expect. It is interesting to see that these characteristics
arise from a mathematical formulation of the problem, though hardly sur-
prising. We shall now turn our attention to a more subtle type of behavior

and see whether it may be accounted for in our model.
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The quantity ]\1 is not in any way synonymous with income, though
barring unusually large legacies etc., one would expect it to be high
for people with high incomes and low for people with low incomes. There
seems to be considerable evidence that people with high incomes, while
they spend more than people with low incomes, actually spend a smaller
fraction of their income than people with smaller incomes. In our model
this might be described by saying that

rX( s',M)1
A

oM =

(27)

and we shall now examine the conditions under which this is true. We
shall begin by establishing a sufficient condition for (27), and then

investigate its necessity.

d 1
Theorem 2. If ix E%;W'S.O , then

X {g m}

—8-/\%—— <0 for all J > 1.

v 3 x(03 3,[T)

On the other hand if é% 3 > 0, then 1\7
® <0 forall j<i,

In
both of these cases the assumption is made that an optimal consumption

plan exists.
Iet us demonstrate the first part of the theorem under the assumption

that the market interest rate is larger than the personal interest rate.
. - . a ¢ .
We begin by noticing that if = xo" < 0, then the optimal consumption

plan requires a positive consumption rate when t = 0. To see this we
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first remark that since E%% is a negative decreasing function it must

be finite when x = 0, and this implies that %; (x) is zero when x = O.
If there is an interval of zero consumption connected to the origin or if

x(0) = 0, then the part of the optimal consumption plan which is non-zero

would satisfy the equation
ax _ . L.y @1
E.E— (l"J) cpn

with an initial condition equal to zero. But with this initial con-
dition and %} (0) = 0, the solution would be identically zero which is
impossible., Therefore the consumption plan is always strictly positive,
and given by the differential equation.

Now

5 x(0; 3,M)

(28) !;_’Il

has the same sign as

(29) Max// — X

M-

Y

dt

i-3) o' _
(30) C;—/,f\—?—?—x—%ﬁ—-x,

where everything is evaluated at t = 0. If we take the formula

M- foce"jt x(t)at
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and integrate by parts we obtain

C s

o0,
’\4 . % £ e-Jt %% dt

o0}

x, 0) Pt
_j+£TJ_£ J %r( (t))at

so that
7n @ s oot

(31) —‘lf—xu [ emIY 8 (x(1))at.
-3 ° ®

4
But Q%W is decreasing and x(t) is increasing so that

1 ! X 1 o' %
e or (<)) < o5y S (x(0).

Using (31) we see that

iMi!.S_X < ;%;-(x) }D e—‘jtx(t )dt
(32) ° |
:;{%n-(x)/\//. (x = x(0; J)M)')

The right hand side of (32) is, of course, negative and we multiply by

its reciprocal we reverse the sense of the inequality, obtaining
M- o
n —— X <OQ
(33) R =% or —x <

If we examine (30) we see that this is just what is needed to demonstrate
the first part of the theorem. The second half of the theorem may be
demonstrated in the same way. ©Some care must be taken because there may

actually exist an interval of zero consumption connected to .
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Now let us turn our attention to the necessity of the conditions
described in Theorem 2. As we shall see these conditions are not only
sufficient but actually necessary if the optimal consumption plan is
to have the property that the higher the assets, the smaller is the
actual fraction of the assets spent. Let us begin by investigating the
optimal consumption plan when the market rate of interest is close to
the personal interest rate. Of course, when the two interest rates are
the same the optimal consumption plan is x(t) =1 f”7. We shall find
it convenient to assume that for J close to i there are no inter-
vals of zero consumption, so that the consumption is governed by one
differential equation. This assumption may be relaxed but the argu-
ment becomes more tedious.

The differential equation implies
(3 U s 5,M)) = orxtos 3,M))

and 1f we differentiate both sides of this equation with respect to j

and then set J =1, we obtain

3x( 05 3,M) x5 3 ™MD
3 « s 0] .
J=1 g=i

ce GG

We may use this expression to obtain an explicit value for

. o9
aX(OéJJ’/\7)§ by differentiating the relationship Aﬁ7= / e_jtx(t,J hq)dt
J=1 0

with respect to j, and then setting Jj=i, so that

o . oo, .
(36) 0=—1[M[veay s [ oit 22LE; 1D .
o} e} J j=1
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and as a consequence

M, 26 M)
(37) (054, =1IVIT<P' 1] _

3J

j=1

This is an explicit expression for the rate of change of initial
consumption with respect to the market interest rate,ryq being held con-
stant, and therefore we may represent the actual initial consumption
x(0; j,P/1) for market rates close to the personal interest rate i,

by the Taylor series expansion
(1 lv]

1M _Q”'(_VV_)_ )
(38) x(033,[¥) = i{\/|+(j-i) : Q (il + .

\
The ratio of initial consumption to totel assets is given by

cp'(i!\/)

x(03 3,11 |
) M o M.

M

o e 0

=i+ (§-1) {1 +

It is clear that if we require the left-hand side of (39) to be

decreasing in h/]for all market rates § ¢lose to 1 and larger than 1,

t

then we must have %; §$W%§%"§ 0, and if we require the left-hand side

to be decreasing for all market rates [ close to i and less than i,

t
then we must have d_ (igﬁézgﬁ > 0. These results form a converse to
dx [x9"(x) )=

Theorem 2.

Theorem 3. If x(0; J, ) is decreasing for Jj >1i then

t t
g—x %} <0, and if it is decreasing for Jj < i then d_ —‘P—) > 0.

dx | xo"
/

It follows from Theorem 3 that the only utility functions ¢ for
x(05 3,

which we may have decreasing for all market interest rates
!
are the utility functions satisfying the condition %W = ¢cX where ¢

is a negative constant. Such a utility function, however, must be
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equivalent to either log x or some power of x, and for utility functions
of this form if an optimal consumption plan exists then consumption is
strictly proportional to total assets. The upshot of this argument is that
the property of a strictly decreasing ratio of consumption to

assets for all market interest rates cannot be explsined by a constant
personal interest. My own feeling on this matter is that that the personal
interest rate is indeed dependant upon the consumption level, and in the
next section we shall examine utility functions with variable personal
interest to see whether a strictly decreasing ratio of consumption to

assets may be obtained. It is , of course, possible for alternative

explanations to be offered.

V. The Optimal Consumption Plan with Variable Personal Interest Rate.

In the previous sectlion we arrived at the conclusion that a decreasing
ratio of consumption to total assets for all market rates of interest
could not be explained by a constant personal interest rate 1. The question
arises as to whether this phenomenon can be explained by a variable per~
sonal Interest rate. In this section we shall exhibit a simple stationary
utility function with a variable personal interest for which the ratio of
consumption to agsets is strictly decreasing, for all market interest rates.
We are not contending that this utility function has much in the way of
economic significance; it is merely meant to be an example of a variable
interest rate and has been chosen primarily because of the simplicity of
the calculation. We shall defer the general problem of a variable interest
rate until a subsequent paper.

The general stationary utility function is



In the process of preparing this report the author became awsre

of the fact that the example given in this section is slightly
artificial, in the sense that an infinite utility may be obtained
for any J and M, If the personal interest rate % isg
replaced by 1 + % » this can no longer happen. The techniques of
this section may be applied tc this new interest rate with only
minor changes,

i(x)
o(x)

]

(40)

X

L]

This interest rate decreases as consumption increases, as it should. For
émall levels of consumption there is an exceptionally high interest rate,
expressing a strong preference for immediate consumption, while for large
consumption levels the personal interest rate is small ex?ressing an indif-
ference between present and future consumption.

The selection of ¢(x)as identically 1 may seem somewhat surprising.
However, ¢ itself is not to be interpreted as & utility indicator. 1In

fact, it is easily to see that

i(x) = and

RO M+

p(x) == + b, with b > 0,

describes a preference pattern equivalent to (40) and this latter repre-
sentation of the preference pattern may appear to be somewhat more reason-
able.

Now let us turn our attention to the problem of maximizing
t dg

@® X
(1) U(x(-) = e FE L
o}

with respect to the constraints

QO N
x(¢) >0, and [ e 9% x(t)at <M.
Q
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It is clear that an optimal consumption plan can never be zero on an inter-
val, unless that interval is connected tc oo, and we shall only consider
plans of this form. Let x* be optimal, positive in (O, T) except perhaps
for isolated zeros and zero thereafter (T may be ), and x any other

plan of the same type, satisfying the constraints, We define

(k2) J(8) = U(6x*+ (1-8)x ). If =x¥ is optimal it is necessary

that J'(1) > 0, and we obtain

r -l S
(43) o<fe?" £ il’:‘—%‘}(—){%ﬁﬂdudt.

We change the order of integration in (43) and obtain

T T'ft__%_Td
o< fErlul=x(u) ;o0 xKE) o 4y

x*(u) 2
P
ju T o w0k (E)
T _. e L € dt
= [ ™I [ x*(u)'-x(u)] du
o 2
x*(u)
. u -jt .
We define, as before, C(u) = [ e “ x(t)dt, and a corresponding

o
function C¥ so that C(T) = ¢*(T) = PJ1, and then integrate by parts.

If we define t at
. T é x*i§5
eJu e dt

(45) r(w) = &

u

o) ]

1 |c —

then (4L) becomes
T
o< [ [ c*(u) = c(u) ] £(u) du,
o

so that C*(u) maximizes
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Q

J ¢(u) f(u)du, subject to the constraints on the definition of C. At
o

this point we may reason precisely as we did in Section IIT, to show that
if f(u) is Qifferent from zero in an interval, then x* most be identi-
cally zero in that interval. But in our case this is impossible, and we
may therefore conclude that f(u) = 0, or

t at

2 iy T X*(E
[x*(u)] =cel? [ e it , for 0<u<T,

where c¢ 1is a constant depending on j andl\q . But this is equivalent
to
- 2 ® ‘£ X*(E

x*(u)] = c e [ e at, for all u.
u

(46)

If we take the logarithmic derivative of both sides of (46) we obtain

the somewhat more useful form

o
xX*(E
d log x*(u) _ ., e .
(b7) 2 du = - ‘ft dg
® J x*(E)
e dt
u

By differentiating (47) we see that x* satisfies the differential

equation
18 a° log x*(u) 1 ,, 5 4 log x*) ..p 4 1og x*)e
8 2= B e A Ch i e

which we shall also find useful.
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We shall now turn our attention to showing that the optimal consumption
plan requires a decreasing ratio of consumption to assets for all market

interest rates.

Lemma 4.  The optimal consumption plan is unique.

We shall not include in this paper a proof of the actual existence
of the optimal consumption plan, but such a proof may be given. Suppose
that there is a value rv7o > 0, for which there are two distinct optimal

consumption plans, xf and x%. If we examine (47) when u =0, and

tag
o~/ ¥
realize that [ e © dt is the optimal utility which must be the same
0

d log x*(u)
du ’

same for both plans. Let us also show that x*(0) is the same for both

for both plans, we see that evaluated at u = 0, is the
plans. For if this were not so, then we could find a consumption problem
which begins at time t = —A, with a value ofl»7(-A), such that the
optimal consumption plan with these conditions gives Pq(o) = qu. But we
have two alternative ways of continuing from t = O,  and they cannot both
satisfy (46) for t > -A unless x*(0) 1is the same for both plans. There-
fore log xf(u) and log x;(u) are both solutions of the same second order
differential equation (48), with the same initial conditions, and they must
be identical. This proves Lemma L.

The next lemma is the crucial one in demonstrating the decreasing ratio

of consumption to assets.

Lemma 5. Letp4(t) be non-decreasing at the point +. Then

2
a logzx* u) > 0, at this point. If}vq(t) is non-increasing at t then
du
dzlog x*(u)
———5———%-< 0 at the point 1.

du2
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Let us consider the increasing case. It is clearly sufficient to
consider t = 0O only. As in the case of constant personal interest rate

we have (see (26)),
(49) x(t + t, 5IM0) =x(t_, 5,M®)).

We take the logarithims of both sides of (49) and differentiate with respect

to to’ obtaining

3 10g x(t + 1, 3, M (0)) 3 log (x(t ), 3,M(+))

ot = ot :
(@] (o]

We now differentiate both sides of this expression with respect to t ,

obtaining

108 x(t + vy, 3, M (0)) 108 (x(t.), 1,ME)) ;M
Btg i 8t057\4 a

When to and t are both zero, the expression

) lOg(X(to)) J)M(o))
ato

1

by (4 and this is certainly increasin
5 ( optimal utility) (+7), Y &

is equal to % -

in Pﬂ(o). This proves Lemma 5.

We are now ready to prove the main theorem of this section.

Theorem 4. The optimal consumption plan for the utility function con-
sidered in this section always requires a decreasing ratio of expenditures

to assets.
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Let us begin by considering the special case where the optimal con-

sumption plan gives rise to an non-decreasing M(t) for all t > 0. Then

2
from Lemma 5, we have d logzx u) > 0. Now we are interested in
du
gIW (X<Q$%’pq)) which has the same sign as
M ax
(50) at

—_—— —X.
iM -x
Using the same argument as the one immediately following (30), we have

@®
jM—-x = fe-JtSi—}-c-dt
E at

o
_ -jt d log x(t)
-Of e x(t) e at.

But d log x(t) is increasing, so that

dt

J,\ﬂ > d log x(t) '
dat t=0

™M

i =X
(51)
. & M
T dt o x

But this is the same as saying that (50) is negative, which we wanted to
prove. The proof when M(t) is decreasing for all t runs along the same

: : , aM
lines. We run into a possible problem only when it is equal to zero for
some t with ,\4(1:) > 0. As we shall show this can only occur when x*(t) is
constant for all t. For suppose that M '(0) =0 (we take t = 0, with no

loss in generality). Then x(0) = jM(O), and from Lemma 5, we have

p)
dlog x(u) :<u =0, at t

du

0. But from (48) since J > 2 gl_}{%g_}g_ (see (47)), we

]

obtain
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1 . d log x
(52) —z—Txo_J 2-—-——-———du

This tells us, however, (see (47)) that the optimal utility is equal
to x(0) = jM(O). But it is easy to see that this utility may be
obtained by the policy x*(u) = j [\4(0), and since this is the optimal
utility, this implies that x*(u) = Jl\/](O) is the optimal consumption
plan for this initial condition.It also is true, from (52) that

1 1 2

M OR J, so that T;TYBT = J

It is easy to show from these observations that no optimal plan
other than a constant consumption level ever gives rise to a zero of
Pﬂ'(t). For if this were to occur the optimal consumption plan past
that zero would be constant, and equal to er7(t) at the zero. How-
ever the differential equation may be solved backwards and yields the

[3
same constant consumption plan for all time; a plan for which M (t) = 0.

This demonstrates Theorem 4 in the following way. If 1\4< /\40 = —1—2
J
then the consumption ratio decreases, and similarly if M>M . At

o}

M =/\7 it is easy to show by a separate argument that < is
o / io

larger than the corresponding consumption ratios for larger /V] and

smaller then the corresponding ratios for smaller /\//
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