OPTIMAL POLICIES FOR A MULTI-ECHELON INVENTORY
PROBLEM*

ANDREW J. CLARK! axp HERBERT SCARF?

1. Introduction?

In the last several years there have been a number of papers (Reference 1)
discussing optimal policies for the inventory problem. Almost without exception
these papers are devoted to the determination of optimal purchasing quantities at
a single installation faced with some pattern of demand. It has been customary
to make the assumption that when the installation in question requests a ship-
ment of stock, this shipment will be delivered in a fixed or perhaps random length
of time, but at any rate with a time lag which is independent of the size of the
order placed. There are, however, a number of situations met in practice in which
this assumption is not a tenable one. An important example arises when there
are several installations, say 1,2, -+ - , ¥, with installation 1 receiving stock from
2, with 2 receiving stock from 3, etc. In this example, if an order is placed by in-
stallation 1 for stock from installation 2, the length of time for delivery of this
stock is determined not only by the natural lead time between these two sites,
but also by the availability of stock at the second installation.

In this paper we shall consider the problem of determining optimal purchasing
quantities in a multi-installation model of this type. First of all, let us remark
that once the parameters of the model have been specified (lead times, purchase
costs, demand distributions, holding and shortage costs, ete.), the optimal pur-
chasing quantities may, in theory at least, be determined. The obvious way to
proceed would be to define a cost function for each configuration of stock at the
various installations, and in transit from one installation to another. We then
remark that this cost function satisfies the type of functional equation which al-
ways appears in inventory theory, and from which the optimal provisioning poli-
cies may be determined by a recursive computation. It is clear, however, that
this procedure is in general completely impractical since it necessitates the re-
cursive computation of a sequence of functions of at least N variables.

The question is, therefore, whether the obvious recursive computation of op-
timal policies may be simplified for our multi-installation problem without com-
promising the optimality of the solution. The answer is that such a simplification
may be obtained if several very plausible assumptions are incorporated in the
raodel. With these assumptions, it will be demonstrated in this paper that the
solution suggested by Clark-in Reference 3 is indeed optimal. The solution will
be described in detail below. It should be remarked here, however, that the virtue
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of the solution given by Clark is that it permits the optimal levels to be computed
separately by precisely those techniques which have been used in. the past for
the computation of optimal policies at a single installation.

In Section IV we shall discuss various applications of the multiple-installation
technique to problems in which several installations have the same supplier. The
type of complex discussed in Section IIT may be described by the scheme:

[1=0]=01---1)=1]
N 2 1

whereas the complex in Section IV has the scheme

A

N
(1l ]

Unfortunately, the results for the latter type of complex are not as satisfactory
as those for the former.

2. The Multiple-Installation Model and a Description of the Solution

Let us begin with a review of the model to be used for a single installation. An
extensive discussion of this model is given in Reference 2, and we shall summarize
here that material which will be of use to us.

A sequence of purchasing decisions is made at the beginning of a number of
regularly spaced intervals. The cost of purchasing an amount z will initially be a
general function ¢(z), though we shall subsequently restrict ourselves to certain
special cases. Delivery of an order ocecurs, say, M periods after the order is placed,
at which time the stock on hand is augmented by the amount of the order. Dur-
ing each period the stock on hand is depleted by an amount equal to the demand
during the period, which is an observation from a distribution with density func-
tion ¢(¢), the demands being independent from period to period. (The demand dis-
tributions may actually differ from period to period.)

In addition to the purchase cost, it is customary to charge several other costs
during each period. The first of these costs is a holding cost, proportional to the
stock on hand at the beginning of the period if it is positive; and the second, &
shortage cost proportional to the deficit of available stock at the end of the
period if there is such a deficit. If the stock on hand at the beginning of the period
is z, then the cost during the period, exclusive of purchasing costs, is given by

lfhx—!—pfm (t — z)¢(t) dt; >0
(1) Liz) = " :
y/ j; (t — 2)o(t) dt; 20
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where h and p are the marginal holding and shortage costs, respectively. It is
useful for us to introduce occasionally more general holding and shortage func-
tions than the linear ones described in Equation (1), and for these functions
there will be an analogous form for the one-period cost L(xz).

Any policy (sequence of purchasing decisions) produces a sequence of costs.
Costs whiech occur n periods in the future are discounted by an amount «, so
that we may form a total discounted cost as the result of any policy. The optimal
purchasing policy is that one which minimizes the total discounted cost.

Let us consider an inventory problem in which there are n periods remaining,
with z; units of stock on hand, w; units to be delivered one period in the future,
and generally w; units to be delivered j periods in the future, where j = 0, 1,
2,--+,x — 1. Let C.(z1, wn, -+ -, wn_y) represent the expectation of the dis-
counted costs, beginning with such a configuration of stock and following an
optimal provisioning scheme. Using the type of reasoning employed in Reference
2, this sequence of functions may be shown to satisfy the following functional
equation:

Calzr,wi, - -, wna) = 1\’I>1€1 {0(2) + L(z)
(2) .
+af Cn—l(xl_!_wl - t) We, * - ,w)‘_1,2)¢>(t> dt$1
0 i

where the minimizing value of z is the optimal purchase quantity for the given
stock configuration. In the writibg of this equation we are explicitly assuming
that all excess demand is backlogged until the necessary stock becomes avail-
able. This equation has been analyzed in considerable detail and we shall quote
for future use those facts of relevance to us.

1. The optimal policy (i-e., the minimizing value of 2) is a function of the total
stock on hand plus on order, regardless of the dates of delivery. This property
depends crucially on the assumption that excess demand is backlogged. More-
over, it may be shown that

Calzs,wr, -, wnm) = Lim) + afo Lz 4w, — e(t) dt + -+

(3) + Dﬁ)‘_]‘[; j; Lizy+ w4 v Fwg — b= - — ha)o(t)
cendly s falz oo wna),

and that f, satisfies the functional equation

) =i { oty = 4 [ [T == e - o)

(4) .
o) da - dha [ faaly = D400 dt}.
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If y* is the minimizing value in Equation (4), then y* ~ wu is the optimal pur-
chase quantity, where z; + w1 + -+ + w1 = w. (Obvious modifications in
Equations (3) and (4) are required when »n is less than the time lag.) These re-
sults (Reference 2) permit us to reduce the inventory problem with a time lag
to one in which essentially no lag exists.

2. The results mentioned above are valid for any ordering function c(z),
whenever excess demand is backlogged. Now let us restrict our attention to the
cost, function

(5) o) ={ KA 220

(K is the setup cost and ¢ the unit cost.) Let us also assume that the one-period
costs

ax_l‘i _{ Lly—t— - —t)elt) - o) dby -~ dis

are convex. (This is certainly correct if the holding and shortage costs are linear,
and in other cases also.) Then there exists a sequence of critical numbers (8., s.)
so that in period # it is optimal to order only if z; + -+ + o < 8, and if we
do order, we order an amount S, — {(z1 + - -+ + wn1) (Reference 4). The specific
form of the one-period costs is irrelevant; we can require only that they be convex.

3. An additional simplification occurs if K = 0. The upper and lower critical
numbers become the same and it is customary to denote their common value
by Z, . The optimal purchase quantity is given by

Max (0, 2, — (z1 -+ -+ - + who1)).

In this case, somewhat more is known about the properties of the functions
falw). First of all, £.(u) is always convex, and in addition, f'a(u) = —cforu £ Zs
(Reference 2).

Now let us turn our attention to the deseription of the multiple-installation
model. We shall make the following assumptions:

Assumption 1: Demand originates in the system at the lowest installation
(installation 1), and at no other point in the system.

Assumption 2: The cost of purchasing and shipping an item from any installa-
tion to the next will be linear, without any setup cost. The only exception to this
assumption will be at the highest installation, at which point a setup cost will
be permitted.

Assumption 3: At the lowest installation (installation 1), a linear holding and
shortage cost will be operative, in the same manner as the single-installation
problem described above. We make the assumption that holding and shortage
costs for the second installation do not depend only on the stock on hand at the
second installation, but are functions of this stock, plus stock in transit to the
first installation plus stock on hand at the first installation. Generally speaking,
the hiolding and shortage costs at any level will be assumed to be functions of the
stock at that level plus all other stock in the system which is actually at a lower
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level or in transit to a lower level. We shall call these costs the natural one- -period
costs at the level. They may, of course, be equal to zero.

Clark in Reference 3 has given the name “echelon” to the system consisting
of the stock at any given installation plus stock in transit to or on hand at a lower
installation. The echelons will be numbered according to the highest installation
in the echelon. Our assumption may be stated as requiring that the one- period
costs be functions of the echelon stock rather than installation stock. The simpli-
fications described in this paper are very crucially tied to this assumption and
assumption 2.

Assumption 4: Each echelon backlogs excess demand.

With these specifications in mind let us turn our attention to the determina-
tion of the optimal provisioning levels. The solution suggested by Clark is best
described by means of an example. We consider the case of two installations.
The natural lead time from installation 2 to installation 1 will be two periods in
this example. Let us denote the stock on hand at installation 1 by z; ; the stock
to be delivered one period in the future by w; ; and the stock on hand at, installa-
tion 1, plus on hand at installation 2, plus in transit from 2 to 1, by 22 (i.e., .
is echelon 2 stock). The one-period costs at installation 1 will be denoted bv

L(z.), and those at echelon 2 by L(zs). The unit shipping cost from 2 to 1 will
be denoted by ¢ .

We begin by solving the problem (that is, determining the single critical
numbers £, = 0, £, = 0, &3, £, , - - -) for installation 1 without any reference to
the remaining parts of the multiple-echelon system. Tn other words, we solve the
single-installation problem for the lowest echelon, assuming that delivery of any
order, regardless of its size, will be effected in two periods, and using in our calcu-
lations a unit cost equal to the transportation cost from the higher echelon, with-
out any reference to the original purchase cost. This would suggest that if at the
beginning of the nt* period the stock on hand plus on order at installation 1 is
less than Z., we order the difference; and if the stock is larger than Z, , we do
not order. The problem is, of course, that there may not be adequate stock at
installation 2 to fill such an order. In the solution given in this paper, it is shown
that we ship only that part of the order for which there is available stock at the
next highest echelon. This describes the optimal policy at the lowest msta]latmn
(Theorem 1, below).

The next question is that of the optimal quantity of stock to bring in at echelon
2. It will be shown in the next section that the optimal purchase quantities at
echelon 2 are functions only of z,, the stock at the two installations plus the
stock in transit. Moreover, the optimal policies for this echelon may be cora-
puted by the standard single-installation model using the ordering cost appro-
priate to this echelon, and the natural one-period costs described above (L(x2)).
The important idea is that we must in some fashion introduce a penalty at this
echelon for keeping a quantity of stock on hand which is insufficient o meet
the normal requests from the lower installation (Theorem 2, below). The pro-
cedure for doing this is quite simple: We merely introduce an additional one-
period cost at the second echelon which is precisely equal to the expected incre-
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ment in total cost at installation 1, because the stock at echelon 2 is inadequate
to bring the lower level’s stock up to the required point Z, .

In the example that we are discussing, the specific form for this additional
one-period cost may be found as follows: We recall the definition of the functions
Cn(21, wy) to be the minimum expected discounted cost at echelon 1 if there are
n periods remaining and if the stock on hand is z; ; and the stock on order, w, .
(This function is to be computed on the basis of an ordering cost equal to ¢,
the transportation cost.) For n = 1, Ci(z:, wy) = L(z1), and also Calz:, wy) =
L(z1) + af§ Lz + wy — £)¢(f) dt. In this expression for C, , the first term repre-
sents the expected one-period costs in the immediate period, and the second
term represents similar costs for the next period. Inasmuch as delivery of any
order takes two periods, there is no modification that can be made in these costs.
For n > 2, we use the decomposition described in Equation (3); that is,

(6) Culz,w) = Liz) + a [0” Lz + wy — D) @t + fulzy + 1),

The first two terms on the left-hand side are as described above; the third term
represents the optimal cost exclusive of those costs which it is impossible to
modify by a request for a shipment.

As in Equation (4), the functions f,(u) satisfy

falu) = M:B {&(y —u) + ffL(y — i — L)p{t)p () dby dia
(7) '= 3} |
+ “fo Fasly — D8 dty,

and the minimizing value is Z, . In other words, if 7, + w1 < Z, so that ordering
oceurs, the minimum cost will be

alén — u) +of ffL(f:n — b — 0)e(t)é(k) du dts
(8) 3
o[ faalen — 000

If, however, z: , the stock at both installations, plus stock in transit, is less than
Z, , we will only be able to ship z; — (2; 4+ 1) and therefore the minimum cost
will be

ez, —u) + & ffL(u — b — t)o{t)o () d dt

(9) o
+a f Faca(me — )@ (8) @b

Expression (9) is of course larger than Expression (8), and the difference in cost
is attributable exclusively to the insufficiency of stock at level 2. Therefqre,
the additional one-period loss to be charged to this echelon is given by Expression
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(9) minus Expression (8), or

ez — Fa) + o ff[L(Zz -t — ) — L(Z. — ts — ta)]o(t1)e(ts) dbrdts
(10)

o[ ez = £) = fas(Za — 1600 d,

if z» < . and zero if z. > £, . With this additional one-period loss to be charged
to the second echelon, the optimal policy is then computed using standard tech-
niques. Of course the specific values of Expression (10) involve the eritical
numbers &, and the functions f,(u), but these will have been computed already
for installation 1.

It is worth remarking that Expression (10) is a convex function of z,, so that
the optimal policy for the second echelon will be of the (S, s) type.

If there are more than two echelons, the same procedure is repeated, always
augmenting the natural one-period loss at the echelon by the increment in total
cost at the lower echelon due to the lack of available stock.

3. The Proof of Optimality

In this section we shall prove that the procedure suggested in the previous
section is indeed optimal. Because of notational difficulties, we shall restriet our
attention to the example described in the previous section although the ideas
are quite general. In order to be specific we shall assume the time lag in delivery
to installation 2 to be a single period.

Our approach will be to investigate the optimal solution for the entire system,
and show that it reduces to the solution given by Clark. The first step is to write
down a sequence of functional equations, analogous to Equation (3), but for the
entire system rather than a single installation. We define Cn(z; , w1, 22) to be the
minimura expected value of the discounted system costs if there are n periods
remaining; if stock on hand at installation 1isz; ; stock in transit, w, ; and system
stock, z;. At the beginning of the period two decisions are made: the first, a
decision as to how much system stock to order for delivery next period; and the
second, a decision as to the quantity of stock to be placed in transit to installa-
tion 1. The stock on hand plusin transit to installation 1 may be raised from z; +
w t0 ¥, where y is any number between z; + wy and 2., at a cost of a1y — 71 —
w,); and if such a decision is taken, at the beginning of the next period stock on
hand at installation 1 will be z, + wy — ¢ (¢ is the demand), and the stock in
transit will be ¥ — z; — w; . The system stock is, of course, not modified by this
decision; it can only be changed by a decision to introduce 2 units into the system
(at a cost of ¢(2)), and will become 12 + 2z — {. Therefore, if the two decisions de-
scribed by v and 2z are taken, the inventories (z1, w1, 22) become (z; + w1 — ¢,
Yy — x1 — w, Iz + z — {), and the discounted value of expected future costs
will be

(11) aj; Cost(lzm 4w —ty—z1—w, 2+ 2 — )¢(¢) di.
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In order to complete the accounting, we should consider the purchase (and trans-
portation), holding and shortage costs. The purchase and transportation costs
are given by

(12) c(z) + aly — z1 = wy).
The shortage and holding costs are given by
(13) Liz) + L{z),

the terms of which apply, respectively, to echelon 2 and installation 1.

Colzr , wr , 22) 18, of course, equal to the minimum of Expressions (11) + (12) -+
(13), when y and z are chosen optimally, and we therefore obtain the following
functional equation:

{ -
Colmy, wy, 22) = Min ic(Z) +aly — o — w) + Liz)

ZiTwy SYSze
0g:

(14) =
+ L{x) + af Coalzy + w1 — ¢, Yy — T — W, T+ 2 — DoY) d},
o

with the condition Cy = 0. _

Let us also introduce the functional equation which would be used to compute
. optimal policies for installation 1 in Zsolation. Let Co(z:, wi) be the minimum
expected value of the discounted costs for an n period problem at installation I,
which begins with z; units on hand and 1; units in transit. We are assuming that
the unit purchase price is the transportation cost and that all orders are de-
livered in two periods. C, satisfies

Calz, wy) = Min {cl(y -z — w) + L(z1)

(15) Yy Zz1+uy

-+ a_{ Cn—x(l'l +w -ty -z — w1)<;'>(t) dt}-

Of course, the solution of Equation (13) is of no clear relevance to Equation (14)
as yet.

Obviously Cy(z1, w1} = L(z1), and Ci(z,, w1, z2) = L(z1) + L(z2). In other
words, Ca(z1, w1, 22) = Ci(z1, W) + gu(xs). We shall show that Calzy, 1, 22)
may always be written as C,(z1, wi) + a function of z, alone, and this is the im-
portant, step in verifying that Clark’s solution is optimal.

Theorem 1. There is a sequence of functions g,(zs), with gi(zs) = L(zs), such
that

(16) Cn(xl s Wi, Ig) = Cﬂ(xl ) wl) + gﬂ(xz)‘

Moreover, it is optimal for installation 1 to provision without reference to in-
stallation 2, subject to the proviso that if insufficient stock is available at-installa-
tion 2, then installation 1 will be content with getting as much as it can.
We shall demonstrate this theorem by induction. Let us suppose that Equation
(16) is true for (n — 1), and we shall then demonstrate its validity for n. Sub-
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stituting in Equation (14), we obtain

Calzi, wy, 22) =  Min {0(2) +oaly — 2 — w) + L)

Zytwy Sy Szs
05
(17) + L(z) + o f Cos(m + w1 — £y — 2 — w)d() di

+ @ ‘[G gn_1($2 + z — t)d)(t) dt}

From Equation (17) we see that aside from the constraint that y be less than z,
the optimal selection of y is such as to minimize

C](y - 2 — w1) + L(Il) + Q‘/a‘ Cn.-—l(xl + w; — t; y— I — wl)d)(t) dt1

and this is, of course, the same as the single critical number #, for the problem
of installation 1 considered separately. If it turns out that z, = Z, , then the con-
straint z, 2 y is not operative, and we may therefore conclude that for z. = £, )

Calz1, Wy, Tp) = Cn(il?l, wy)

18) o
( -+ M;igl{c(Z) + L(z) + afo goalm 4+ 2 — e (1) dt}.

On the other hand, if z, < £, (and therefore 2y + w < Z,), installation 1 will
be thwarted in its attempt to bring its stock level up to %, . Because of the con-
vexity of the one-period costs, it is optimal to bring the stock level up as high as
possible and therefore y= z,. As a consequence, we see that for z, < £,,

Culz, w, 2) = oz — 2 — w) + L(z,)
(19) -+ a‘/; Coalze +wi — £, 20 — 2y — wi)o(t) dt
<+ Min Ic(Z) + L(z) + af gar(z2 + 2 — £)o(1) dt}-
zz20 L 0
Now we are interested in showing that Ca(zi, wi, 25) — Colzy, w1) is a fune-

tion of z; alone. From Equations (18) and (19), we see that this difference is
equal to

(20) Az, wr, 2) + Mzi?{«:(Z) + L(zy) + « foa-gn_l(xe + 2z — t)o(t) dt},

where

Az, wi, 1) = clm — 2 — w) + L(z,)

(21) =
+ af Colzi 4w — 420 — 20 — w)o(0) di — Culzi, wr),
(0]

when z» < £, and zero otherwise.
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In order to demonstrate Theorem 1, it is therefore necessary to show that
An(Z1, w1, 22) is in reality a function of z» alone, and of course we need only con-
sider the region z; < Z, . In this region, however,

Colz, w) = (s — 21 — wi) + L{z1)

(22) =
-4 af Cn_x(l‘x 4w — 4, & — 11 — wl)‘ﬁ’(t) dt,
0

and therefore Equation (21) may be written as

Anlzy, wr, 22) = ez — Za)

(23) + aj; [Cn_1<l'1 +w — LT — T — wl)
—_ Cn——l(l'], + w{ —_ t, Tn — Ty — wl)]qb(t) dt.
Qur theorem will be demonstrated if we can show that the integrand in Equation
(23) is independent of z; and w . But by Equation (6),
Crr(z1, w) = L(z) + « j; Lz, + w — y)é(y) dy + falz + w1,

and therefore the integrand in Equation (23) is given by

o) @ fﬂ Lz, — t — y)o(y) dy + fars(ze — 1)
24 0 »
- “fo L(E — t — 0)6(y) dy — fas(Zn— 1),

which is a function of z, alone. We have therefore demonstrated Theorem 1.
We have, however, demonstrated somewhat more. A, is now known to be a
funection of z», which may be written as

Au(z) = alze — i)
@) 4| [ Wm=t-y) - L - - 9e0sl) ddy
_'l- 44 jo.m [fn—l(xz - t) - fﬂ—l(fn - t>]¢<t) df,

for z» < %, and zero for z» > £.. But Equation (20), which represents ga(T2);
may be written as

(26) galzs) = Mzi? {G(Z) + Llz) + Mzo) + « f: gurlze + 2 — )o(t) dt}-

The solution of this equation provides us with the optimal.policy for the entire
system. As we see, all that is required is to augment the natural costs at echelon
2 by A(ZL'z).

Theorem 2. The functions g.(z,) satisfy Equation (26), by means of which the
optimal system stock may be obtained.
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4. Several Installations with the Same Supplier

In this section we shall generalize the model considered in Section III so as to
include the possibility of several installations with the same supplier. We shall,
however, retain the restriction that no installation has two different suppliers.
All of the assumptions that have previously been mentioned, such as back-
logging, no setup cost for transportation, etc., will be retained also in this model.
The only point in need of clarification is our assumption that the natural losses
should be functions of echelon stock, rather than installation stock. The notion
of an echelon in this model will be as follows: We begin by selecting a specific in-
stallation, say installation I. Associated with [ will be a number of other installa-
tions which receive, directly or indirectly, stock from installation I. The total
stock at 7, plus the stock in transit or on hand at these other installations will
comprice the echelon associated with installation 7. With this definition our as-
sumption will again be that the natural one-period costs are associated with
echelons, rather than installations.

Let us consider the following example of such a complex:

/! [*43]
[B2)
— [C1] 4 > (2]

N [Byf — [Ad]

The procedure which we have shown in the previous section to be optimal for
a simpler problem suggests the following procedure in this complex:

{1) For installations 41, 4, and 4; (which are terminal installations) com-
pute the optimal sequences of single critical numbers, assurning the in-
stallations to be in isolation; also that all requests for shipment are sup-
plied during the natural lead time, and that the purchase cost is given by
the transportation cost from the higher echelon.

(2) Augroent the natural costs at echelon B; by the increment in cost at A,
because of the inability to satisfy requests for stock at 4., and do the
same for B, . Then compute the optimal stock levels at By and B, sepa-
rately, assuming the availability of infinite stock from C;.

(3) Modify the natural costs at C, by the increment in cost at B; and B.»
because of the inability to satisfy requests for stock, and then compute
the optimal policy at C; .

If the directions given above are examined closely, it may be seen that they
are ambiguous on a number of points. The clarification of these points will show
where the Clark procedure departs from optimality in this model, whereas it was
optimal for the model considered in Section ITII. Even though the procedure is
not optimal, it has considerable merit, both in its ease of application and in its
approximate validity.

Pomnt 1. Shall we permit an arbitrary pair of installations to exchange stock;
and if so, at what cost, and with what lags?

As an example, we are posing the question as to whether A, shall be permitted
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to ship excess stock to A; . The desire to make this shipment might arise in two
different ways. First of all, there may be insufficient stock at echelon B: toraise
both A: and A; to their required critical levels, and the stocks left over at 4.
and A; may be out of balance by a sufficient amount so that it is wise to ship
both Bsand A, stock to 43 . Another possible cause of transshipment might be
a substantial anticipated drop in demand at 4, and an excess of carryover stock
which might profitably be shipped to 4.

In practice, however, transshipment of this sort would rarely take place. More-
over, if we permit this sort of transshipment to take place, the theoretical and
computational aspects of the problem become quite complex. It would be mean-
ingless for an installation to consider itself in isolation, inasmuch as its actual
stock levels in the future would depend on the disposition of stock at all other
installations. Since our primary aim is to be able to compute optimal-policies at
each installation separately, we shall assume that such transshipment is impos-
sible. It is gratifying that such an assumption does not run contrary to what is
done in practice. ‘

Point 2. If all requests cannot be satisfied because of insufficient stock at a
higher echelon, how is the available stock to be rationed among the requesting
installations?

The answer to this question bears very heavily on the optimality of the pro-
cedure suggested above. We shall consider the following concrete case:

(4]
— [B]

N
(4]
and assume, for definiteness, that all routes have a time lag of one'period, and
that the transportation cost ¢ is the same from B to 4; as from B to 4,. Let
L' and I? represent the one-period costs at installations 1 and 2, respectively,
and L the one-period cost at B. Let C,}(x:) and C.%(z,) represent the minimum
costs for 4; and A, computed separately, and let {Z.!} and {£,*} be the sequence
of single critical numbers for 4; and 4. . The C functions satisfy the customary
functional equations, for example:

(27) Cr.l(xl) = Min {cl(yx - ) + Ll(Il) + [“ Crlz-l(yl - 5)951(5) dt} )

vzl
and similarly for C,%

In the spirit of Section III, we define Cr(21, 2z, z3) to be the minimum system
cost if A, has z; units, 4; has z, units, and the B echelon has z; units. These func-
tions satisfy a functional equation analogous to Equation (17), i.e.,

Culzs, 22, 20) = Mm{cu) + ol — o)
(28) + Cl(yz — ) + z(xa) + Ll($1> + Lz(il‘e)

+ Oiff Cocalyy — by — b, @5 + 2 — &1 — bL)gr(t)a(t) dha dl‘-’} ’
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where the minimization is over the region ¥, = 21, ¥
z= 0.

The crucial ideas behind the optimality results of the previous section were
embodied in Theorems 1 and 2. The analogue of Theorem 1 for the model con-
sidered in this section would be that there exists a sequence of functions g.(zs)
with the property that

(29) Calzi, 22, 25) = Cal(z1) + CoXz) + gals).

Does there exist such a sequence of functions? And if there does, what light
is cast upon the question of allocation of stock (Point 2)?

Unfortunately the answer to the first of these guestions is in the negative.
The functions C,(z: , %2, 23) cannot be broken down in the form of Equation (29).
To see why this is so, let us assume that Equation (29) is valid for n — 1, and
see what the consequences of Equation (28) and this assumption would be for
Cu(z1 , 22, 23). We would have

v

T2, 25 2 Y1+ Yo,

Colzr, 22, 23) = Min{C(Z) + ol +y:— 2 — z2)

+ L(z) + L) + L) + « '[" Craalyr — t)éu(h) diy
(30)

+ @ _{ CE_i(ye —',Ifz)qﬁz(t‘z) dis

b [ gt + 2 = 4 = W)oulwIone) di i

Aside from the constraint that y; + ¥, be less than z;, the optimal selection of
1 would be Z.' and the optimal selection of y» would be £.2. If z; > &.! + Z.2,
the constraint is not operative, and from Equation (30) we would have

Cn(xx, Zz, z3) = Cnl(l‘x) + C:(%)

31
( ) -+ Min {C(Z) + Lizs) + a ff gar(zs + 2 — b — )i (t)da(te) dty dtz} .

z 20

So far, so good. We run into a problem, however, when z; < &' + &£.*. This
is, of course, the problem raised by Point 2, and the answer is given by Equation
(30). The numbers y; and y. should be selected according to the constraints

(32) Y1 Yo =23, N 201, Y = e
and such as to minimize
61(y1 + Yy — 2 — Iz) + Ll(xl) + LZ(IQ)
(33) )
4 f Cra(n — t)¢a(h) dby -+ af Coa(yz — ) pa(ts) dis.

Therefore, in order to allocate properly we must solve the minimization
problem (33) subject to the constraints (32). The problem is certainly solvable.
The dificulty, however, is in the form of the answer. The answer may depend
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not only on 3, but also on z, and z. (the stock at 4; and 4,). It may depend
on z; and z» ; generally it will not unless the stock levels z; and z; are seriously
out of balance. But if the solution to the minimization problem does depend on
z; and T2 , it will depend on them jointly and a factorization of the type given by
Equation (29) would not be obtained.

Let us assume that such a lack of balance does not oceur. Then y;, and y: would
be selected to minimize (33) subject to

(34) Y1 + 42 = 75, alone.
Call these solutions Z,'(z;) and Z.(z3). Then Equation (30) would read
Cn(xl; 272, 333) = C'nl(xl) + C',f(za) + An(x17 T2, 333)

(35) ) -
+ Min (o) + L) + & [ guain 2 — b = WDl6)oue) da)
where
Aa(zr, 22, 75) = (&) (1) + &' (2s) — 2 — m) + Lm) + Li(z)
(36) + Olj; Ci—l(fnl(xii) - tl)fbx(tl) dt, — C'nl(271)

ta f Cy(5.3(z) — )gelte) dly — C¥ (),

for z; < Za! 4+ Z.2 and zero, otherwise. However, just as in Section III, if z; < %!
and z; < Z?2, this may be shown to be a function of z; alone, and this is the func-
tion that is to be taken to augment the natural costs at echelon B.

We repeat that Equations (35) and (36) are derivable only by means of the
assumptions that the stock at installations 4, and 4. are not out of balance.
Since this is expected to occur rather frequently, it suggests that Clark’s ap-
proximation is an excellent one for this model.

5. Extensions

The discussion in Sections ITT and IV assumed that demand originates in the
system at the lowest installation (echelon 1) and at no other point in the system.
This, however, is not a necessary assumption and, in fact, the probability dis-
tributions used for the various echelons need have no relationship with each
other. This may be demonstrated by considering the proof of optimality in Sec-
tion III for the simple two-echelon example.

If fi(#) and f2(¢:) represent, respectively, the marginal demand distribution at
echelon 1 and echelon 2, and f(t; , ;) the joint distribution, then Equation (14)
may be rewritten as follows:

Coln,mn, ) = Min {c<z> +aly — 21— wy) + I(m) + Liz)

z1+wiSysSzs
0=z

(31) ..
+af f Cn-1(271+w1—i1,y—2:1—wl,xg—i—z—tg)f(tl,t«_»)dlhdh}c
¢ v
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Following through the proof of Theorem 1 by substituting
Cn(xl y Wiy 332) = C'n(xl » wl) + gﬂ(xﬂ)

in Equation (37), we obtain

Ca(zr, w1, 2) = Min {6(2) +oaly — o — w) + L{z)

z1+wiSyssse
05z

(38) + L(Il) -+ Olj; Cn—l(xl +w -,y -z — wl)fl(tl) dh

+ '[:n gn_l(xg +z— t?)fZ(t‘l) dtﬂ} ’

which is the same form as Equation (17). The remainder of the proof is the same
as in Section IIT,

The ability to assign different distributions to the various echelons has several
interesting applications. For example, the N-installation problem of Section ITI
may be interpreted as N stages of production, where the time required for pro-
duction in each stage is analogous to the delivery times in the inventory problem.
The final stage of production (analogous to installation 1 in the inventory
problem) is faced with an exogenous demand while each production stage may
incur random losses through spoilage. The probability distribution used for the
final production stage is the exogenous demand distribution augmented by
losses during the stage. This distribution is successively augmented by losses in
the other production stages to obtain distributions for these stages. The per unit
ordering cost for each stage is the fabrication cost in the immediately prior stage.
This example represents the case when the mean demand is an increasing fune-
ion of the echelon number, i.e., the higher the echelon, the higher the mean.

An example of the opposite case is encountered in the inventory problem where
items are regenerated through repair. Considering the problem of Section III
again, suppose that items issued from installation 1 are exchanged for damaged
items (on a one for one basis) which then undergo repair eycles of different dura-~
tions according to the degree of damage. Thus, if ¢ items are issued, then ¢ rep-
arable items are generated, with different portions, t1,¢s, - -+ (t = ;%) being
successively more remote, timewise, from being available for reissue. Here, the
net demand faced by echelon % is given by t — Dt & which is a decreasing func-
tion of k. If, throughout the repair cycle, items are scrapped as being uneconom-
ically reparable, then the mean demand as a function of echelon number may be
more general than the monotonically increasing or decreasing functions con-
sidered above.

Problems of the type described in Sections IIT and IV, together with the inter-
pretations mentioned above, may be combined to portray almost any inventory
and/or production structure. Such combinations may be used to make supply
repair, and production decisions in an integrated fashion. Of course, in each ap-
plication, the assumptions of the method must be analyzed with respect to their
validity or effect.
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