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1. Introduction

The multi-echelon inventory problem is concerned with the determination
of optimal purchasing and trans-shipment rules for a single item which may
be stocked at several installations and whose use is subject to stochastic
variability. The problem is a sequential decision problem whose solution
may be found, at least theoretically, by a sequence of dynamic programming
calculations. The calculations, however, involve functions of at least as
many variables as there are installations to be considered, and possibly even
more. It is the computational burden imposed by working with functions of
several variables that makes it necessary to resort either to approximations
or to simplifying assumptions.

In a previous paper [2], a list of assumptions was presented that reduced
the problem of calculating optimal policies to the recursive calculation of
functions of a single variable for one very restrictive type of multi-echelon
situation, the arrangement of the various installations in series: n—n—1—

-—2-1. A procedure, which again involved functions of only one vari-
able, was also suggested for the more general multi-echelon situation in which
a single installation was capable of shipments to several alternative instal-
lations, and reasons were given for our belief that this procedure, while not
optimal, represented a good approximation.

Admittedly, work remains to be done in the refinement of our method
and in the examination of alternative approaches for a general multi-echelon
arrangement. However, even for the extremely simple echelon structure
described above, one of the assumptions of our previous paper has been
criticized, and it is the purpose of this paper to weaken this assumption.

The assumption in question is assumption 2 [2, p. 478], that the cost of
shipping stock from installation 2 to installation 1, or more generally from
any. installation other than the top one to its immediate successor, is pro-
portional to the quantity of stock shipped, with no setup or reorder cost.
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To demonstrate the relevance of this assumption, we shall refer to the ex-
ample that is considered in detail in {2]. (The reader is advised to consult
that paper for notation, for the other assumptions which we are not describ-
ing explicitly, and for background material.)

Consider a situation with two installations, 2— 1, with demand arising at
installation 1 according to a probability distribution with density . The
stock at installation 1 immediately prior to ordering is x,, and the stock at
installation 1 plus the stock at installation 2 plus the stock in transit is
denoted by x,. To be specific, we shall assume that the lead time in
delivery from installation 2 to installation 1 is two periods, and that de-
liveries to installation 2 are effected in a single period. We shall also
denote by w, the stock in transit to installation 1 marked for delivery next
period.

The state of the system is described by the three variables x,, w,, x:, and
the optimal purchase and shipment policy may be found by the recursive
calculations of functions Ci(x,, w:, x:), defined as the minimum discounted
expected cost if there are n periods remaining in the program and if the
current state is (r,, w,,x:). Of course, it is precisely this calculation that
we wish to avoid.

The procedure described in [2] begins by neglecting the second installation
and computing the optimal policies at installation 1, disregarding the possi-
bility that there may be no stock at installation 2 to implement these
policies. It is assumed that excess demand at each echelon is backlogged.
For this reason the optimal policy at the lower installation, computed by
itself, will depend on stock on hand plus stock on order [l}; moreover,
the optimal policy may be found by means of the recursive calculation

1) fulu) = min {cl(y —u)+ a=§§L<y — E — Ede(E)eE dE dE:

4]
+ ag:f.-my ) de} .

with ¢, the unit cost of shipping stock from installation 2 to installation 1,
L(y) the expected holding and shortage cost per period as a function of
stock on hand at the beginning of the period, and « the discount factor.
In the calculation, fi and f; are set equal to zero. The relationship between
f+(#) and the minimum cost functions Ca(x;, w,) associated with the lower
level alone is

2) Culz, wy) = Lixy) + QSL(xx + wy — E3pEYdE + falzy + wi) .

(See [1], or [2, p. 477].)

Now if L(y) is convex, as it is generally assumed to be, the optimal policy
will be defined by a sequence of critical numbers 2%, %%, --- such that if
1 + w, < £* at the beginning of period n, an order is placed for the dif-
ference; if x, + w, = £*, no order is placed. '

The problem is to integrate this sequence of decisions, which would be
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optimal if installation 1 were considered by itself, with the constraint im-
posed by the possibility that the total system stock xz. may itself be less
than z* making it impossible to raise the stock on hand plus the stock on
order at the lower installation to this desired level.

In our previous paper we demonstrate that if x < %, all the stock at the
higher installation should be shipped to the lower, and on the other hand,
if x» > £*, just that part should be shipped which is sufficient to raise stock
on hand plus stock on order at the lower installation to X¥*. This specifies
part of the system-wide optimal policy.

There remains the problem of determining the appropriate purchasing
decisions for echelon 2. If these decisions were to be made independently
of their influence on the lower level, insufficient stock would be procured.
The important feature of the optimal system policy as demonstrated in (2]
is that purchasing decisions for the entire system may be made on the
basis of the consideration of system stock alone if the “natural” echelon
holding and shortage costs are augmented by an additional shortage cost
function that penalizes the system for its inability to deliver the required
amount of stock to the lower level.

The additional shortage cost function may be computed in the following
intuitive way: If x. > %", there is no constraint on the delivery of stock
to the lower level, and therefore the additional shortage cost will be zero.
On the other hand, if x: < %, stock on hand plus stock on order at the
lower level can be raised to at most x,. If r, + w, = u < ", then

Flw) = c(E —w) + aﬂw' — £ — Ede(E ) ED . ks
+ agfn-l(f" — DeBdE

with f.(#) the minimum discounted cost for the future of the program
(exclusive of those costs beyond our immediate control). We cannot achieve
this cost, since it is impossible to raise u to the level ¥*; at best we can
raise it to x,, thereby incurring a cost of

ez — ) + aﬁﬂuxz - o= EDo(E)0(E) dE, dE: + agf,-mx, ~ B dE .

The difference between these two expressions is the additional cost to be
charged to the system because of its inability to meet requests from below;
it may be written

Aalr) =z — B + a=§ S[L(xz — & —E)— L — £ — Enlo(Ew(En dE. dE:
+ agtf,.-xx, ~E) = FrmilE" = DR dE
when z; < °, and A.{x;) = 0 otherwise.
If this cost is added to the “natural” holding and shortage cost for the

system [say L(x.)], then the optimal system policy is obtained by means of
the standard functional equation
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@ e = min {o) + L) + A5 + a{guein + 2 - D@}

This intuitive argument summarizes the procedure for the determination
of optimal policies given in our previous paper, which also contains a rigor-
ous demonstration of its validity, based on the theorem

Calxy, Wy, x2) = Caly, W) + ga(z0) .

Our problem now is to attempt to incorporate a setup cost associated with
the transportation of items from installation 2 to installation 1. It is there-
fore appropriate to ask, still on the intuitive level, for the part played by
the assumption of no setup cost in the previous policy. First of all, the lack
of a setup cost was responsible for the simple description of optimal policies
at the lower level in.terms of a sequence of single critical numbers
%, %, -++. If a setup cost in transportation were included in the problem,
the optimal policy would no longer be of this simple form. It is known,
however, that if the customary assumptions are met (convexity of L(x,), back-
logging of excess demand), then the optimal policies are of the (S, s) type,
with a pair of numbers, S. and s., relevant for each period {3]. These
numbers are computed by means of a functional equation similar to (1), but
written

(1) fiw) = min {K- By —u) + oy — u) + a’gguy — £, — Eo(E)olEn) dE . dE,
+ agf,-,(u — Be® ds} ,

where

w={] Iy
1 x>0,

Is it possible, in this case, to assign an additional shortage cost to the
entire system, as a function of x, alone? This is the crucial point in the
simplification described above, and we must see if this simplification is still
possible when a setup cost is introduced.

Suppose that x, + w, > s.. In this case no ordering is required, and it
might seem reasonable to charge no additional shortage cost even if S, >
f, =1 +w, >s,. On the other hand, if x, + w, < s., the optimal policy
would seem to be to request a shipment of size S.— (z, + w,) from instal-
lation 2. If z: < S., it is impossible to meet this request, and it would
seem reasonable to charge an additional shortage cost. Hence we are led
to the conclusion that the appropriate shortage cost to be added when x: < S,
seems to depend on whether x, + w;, > 5. OF 1 + W < Sx, and is therefore
not a function of r. alone. This conclusion precludes obtaining a simple
form for the optimal system policy with a setup cost in transportation.

However, we can make use of a substantial amount of the preceding
argument if we turn our attention from optimal policies to approximations.
Instead of attempting to find the correct additional shortage cost 4., we
shall attempt to bound this function of x, and z + w, from above and
below by functions of x alone; i.e., we shall establish lower and upper
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bounds 4. and A., respectively, such that 4. < A. < £.. (We shall oc-

casionally refer to A, as the upper shortage cost, and 4. as the lower
shortage cost.)

The upper bound A.(x;) will be obtained by charging an additional shortage
cost whenever x; < S., regardless of the size of x, + w,; in other words,
by calculating as if x, + w, were less than s., in which case the true mini-
mum cost would be

K+a(Sa—u)+ a’ﬁL(s. — B~ EeE)0(E) dE dE, + agfm(S. — Do dE

with ¥ =z, + w,. We are constrained by having r, < S.; if the stock at
installation 1 and in transit to 1 is brought to x,, the cost will be

K4+cles—u) + azggl-(xz -& - Ez)¢(fl)¢’(gz) dt, d&, + agf:—l(xz — B dE .

We define A.(x;) as the difference between these two costs, charged for all
values of x: < Sa.

4 /-f-a(xz) = ¢y{xy — Si)

+ a’SS[L(xz — B — E) = L(Sa ~ £ — EDloE)e(E:) dE, dE,
+ “S Ures(te = 8) = facd(Su ~ BleE)IE (2 £ Sa)

and A.(xn,) = 0 elsewhere.
The lower shortage cost A.(x;) will be defined as different from zero only
for x, < s.; specifically,

(5> _4_\(5:2) =~K+ Cx(xz - Sx)
+ “ZSSV‘(‘* — = £) ~ L(Sy — & — EloE0w(E:) dE, dE:

- ag[f.-luz — E) = fae(Sa — Blle(®)dE .

The upper and lower shortage costs may be used in two ways. First,
they furnish us with a simple procedure, based on the calculation of
functions of one variable, for estimating the true minimum cost function
Ca(x,,w,, x.). The procedure is to define two sequences of functions, F«(xz)
and g(x;), by means of the functional equations

©  §ax)=min {c(Z) + Ee) + Aulm) + aga.-.u, + 2~ Bol®) de}
z20
and
M gux) =min {a(z) + Ele) + Anle) + agg,.'xxz +2-Pe® ds} ,
- 20

with gz = gulm) = L(z).
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If there were no setup cost at installation 1, these two sequences of funec-
tions would be identical and (3) would apply. In our case, with a positive
setup cost, this is no longer true. However, as we shall demonstrate be-
low, these functions furnish us with simple approximations to the minimum
cost functions, namely

8 Calzi, w) + gu(x) £ Calzy, wy, x2) £ Gy, i) + Gulza) ©

If the functions g and g are close, the bounds will be good, as computation
of several examples has suggested. We shall see, moreover, that there
is a specific policy associated with the computation of the functions .,
and that if this policy is adopted, the cost incurred is always less than
Calxy, wy) + Fa(x:). Therefore, if the two bounds are close, we have not only
a good estimate for the true minimum cost, but also a simple policy whose
cost is very close to the true minimum cost.

2. Verification of the Bounds

We next demonstrate the validity of the bounds given by equation (8).
We shall examine first the upper bound and then the lower bound, which
involves a slightly different argument.

The argument will be an inductive one; we shall assume that

(9) Caoi(zy, Wi, 1) £ Cacilx, W) + Fami(z)

and then verify that the corresponding statement is correct with n—1
replaced by n. We shall require the functional equation satisfied by the
functions Ca(x,, w,, ). Equation (14) of {2] may be modified by the intro-
duction of a setup cost to read

10)  Culz,wi, %)= min {c(z) + K0y — 51— w)

1 +w SySz,
05:

+a(y ~— 2 — w) + Lizm) + L(x)
+ aSC.-x(x; tuw—-Ey—xu~w,Hn+z- E)rp(’g‘)d*g'} .

We shall also assume in thé following arguments that the reader is
familiar with the notion of K-convexity defined in [3]. Specifically, a func-
tion f(x) is said to be K-convex if for all @, 6 = 0 and all x we have

f(x+a)-—f(x)-—a[—jlx—)—:él{:—@l]+f(20,

or, in geometric terms, if whenever the secant line is drawn through two
points of the function and extended to the right, the function never drops
. more than X units below this line. If Cu(x:,w,) is written

Lz) + agux, + 1w, — D@ dE + fulz, + wy)

it 1s demonstrated in [3] that the functions f.(#) are each X-convex, with K
equal to the setup cost at the lower installation. This result is useful in
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demonstrating the optimality of (S, s) policies and will also be of use in our

argument.
Now let us turn to the inductive proof of the upper bound of (8). Since

Cilzy, wy) = L(x) , gi{x2) = Z(xz) ’ Cilx,w,,x) = L(x)) + i(xz) s

the result is correct when the index n is equal to 1. If it is correct for
n— 1, we may use (10) to conclude that

Calxi,wi,x) £ min {G(Z) + Kby =~z —w) + ey — 2 — w)
:x-\'--oxss:ssg

+ L(x) + E(xz) + aSC--l(Ix +w —E,y—x—w)eE) dE

+ et + 2 - Do g}
We next substitute for C.-, its value in terms of f.-, [equations (2) and
an:
AD  Calm,wi,7) Lz + aSL(xl + w, — Do) df + Lz

+ min {c(z)+a§§.~x(xz+2-f)¢(f)df
:l+:§vs=g

+ Kd(y—z,~—wy) + c(y ~ 2, —~ w))
+ a’SgL(y — £ — E)e®elE) dE dE,

+ agf,-xy - De® ds} .

Aside from the constraint y £ x,, the optimal selection of y is to adopt
the optimal (S.,s.) policy; i.e., if x +w, <s., set y=S., and if
X+ W > Sa, Set y=x +w,. If x> S,, this constraint will be inoperative
and the right-hand side of (11) will become

L(z) + aEL(xx — w, — ) dE + frlx + wy)

+ min {C(Z) + Z(xz) + agg--;(xz + 2z~ E)¢(E) dE} = Cﬂ(xl » wl) + 5-(12) s

20

since Au(x:) =0 when z > S..
This demonstrates the result for values of r; > S.. Now let us suppose
that x, < S,. We shall attempt to find the policy that minimizes

K-8y — ) + cly — ) + aﬂf.(y — £ — E)o®pE) dEdE,
+ agf.-x(y — Bol®) dE

subject to the constraint ¥ £ y £ r..
‘We define S.(x;) as the minimizing value of the independent variable in
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(12) Galy) =cy+ a=§§L<y — E— Ee(Be(E) dEdE, + an.-,(y — BB dE,

subject to the condition y £ x, and let s.(x:) be the point at which
Ga(sa(x2)) = K + Gu(Su(zy)); see figure 1. It is easy to verify that the func-
tion G.(y) is itself K-convex. This implies that there is a unique choice of
sa(x2), and that the optimal policy for the above equation, given the restric-
tion y £ 1y, is
_ {S,.(x,) if x4+ w S 8.(1),
r= X+ Wy if x1+w1>sl(x2)-

(The argument is identical with that given in [3].)

\

|
|
|
|
|
|
|
!
!
|
x

Sn

Fie. 1.

Now we shall consider two cases that depend on the relationship between
x; + w, and sa(z2).

Case 1. 1z, + wy > sa(x:). In this case the minimizing choice of y is 1 + w,
and (11) reads

Culz, wy, x2) £ L(x) + aXL(xl + wy, — EeE)dE

+ min {c(z)r’—i- Lix) + aié,-;(xz +2z2— e df}

20

+ Galzy + 10) — ci(x + w) + foulny + w)) = falr +w)) .
The induction will be complete for this case if we can show that
(13) G.(Ig + w,) — oz + wl) -fu(xl +w) £ -’-{-(xz) = Gn(xz) —~ Ga(Sa) .
But ‘

. - K" C[(Xl <+ wl) + G‘(Sl) if K -+ Gn(su) é Gu(xl + wl) ’
Fokri wQ - {"Cx(xx +w) + Gz +w) I K4 Gu8:) Z Galz + wi) .

In the latter case, the left-hand side of (13) is 0 and the right-hand side is



96 ANDREW J. CLARK AND HERBERT SCARF

nonnegative. In the former, (13) is equivalent to
Gulzi +w,) £ Gulm) + K,

which is certainly true if Ga(z, + 1) £ Ga(Sa(z)) + K. This latter inequality
is correct, since we have assumed that x, + 0, > s.(z2).

Case 2. =z, + w, < su{x). In this case the minimizing choice of y is Sa(x3),
and therefore (11) reads

Cultr, w1, 1) < Liz) + aﬁL(xl + 1w, — D@ dt

+ min {c(z) + Liz) + aSﬁ-—x(xz +z— E)(ﬂ(&')df}

220 R
+ K—clx +w) + Gu(sl(xz)) + falz + wy) — falz +w),
and our theorem will be correct if we can show that

(14) K — oz + w) + GuSalxn)) — falzn + w)) £ Galxs) — Ga(Sa) .

A simple argument based on K-convexity shows that s.(r;) £ 5., and since
z + wy < sx(xw), it follows that x, + w, < s.; hence

o+ w) =K — oz + w) + Ga(Sa) ,

and the inequality (14) becomes Ga(Sa(xs)) < Ga(x:), which is correct by defi-
nition. This finishes the proof of the following theorem.

THEOREM 1. C-(xl s Wy xz) é Cl(xl ] wl) + aﬂ(xz) .

The policy described above has some use other than as an intermediary
step in the proof of Theorem 1. As we shall see in the next sectionm, if it
is actually followed, the cost that will be incurred will be between Cilx,, w:, 13)
and C.(xi, w,) + Ja{xs). If this gap is small, the policy will have consider-
able merit. We need only remark at this stage that the computation of
this policy is quite simple, and is based only on the calculation of functions
of a single variable.

Let us now verify the lower bound in (8), again by induction. The first
several steps in the proof will be identical with those in the proof of the
upper bound, except that the inequalities will be reversed and g.-, will be
replaced by g.-,. The same quantities S.(x:) and s.(¥.) will serve in this
proof.

Again if x, > S., the proof is immediate. Let x; £ S., and consider two
cases.

Case 1. x + w; > sa(z:). The analog of (11) is then

Culxr, wi, 1) = Liz) + QSL(xx + w, — D) dE

+ min {c(z) + Lix) + agg._;(xz +z— Do(E) dE}

320

+ Gulxy + wy) — o4z + wo) + fultr + w) — fulxe + w1) ,

and the result will be demonstrated, in this case, if we can show that



SOLUTIONS TO MULTI-ECHELON INVENTORY PROBLEM 97

Gulzy + w) — clxy + w) ~ folx + w))
2 dulz:) = max {0, — K + Ga{z:) — Gu(S)} (r £8.).
Again we use the two possible representations for fn. If x 4+ wy > s., then
Salz +w) = —cfx + w) + Gz + wi),

and our inequality becomes 0 = da(xy). But if x, + w, > 5., it is certainly

true that x; > s., and therefore A.(x;) = 0. On the other hand, if x; + w, < s.,
then

Salxy +w) = K~ oz + w) + Gal(Sa)
and our inequality is
Galx + w) — K — Gu(S.) 2 max {0, —K + G.(x:) — G(Sa)} .

If x, > sa, the right-hand side is zero, but the left-hand side is positive, since
x + W, < s.. On the other hand, if x; < 5., we are required to show that
Galxy + w;y) = Galza). It is, however, a simple consequence of X-convexity
that G.(x) is monotonically decreasing for x < s.. If this were not so, the
situation would result in which the function drops more than X units below
its tangent line at a point to the right, contradicting K-convexity; see figure

2. Since x; + wy £ 1y, it follows that G.(z; + w,) 2 G.{x) for x: < 5., and
this disposes of Case 1.

—— - —— e e

Fie. 2.

Case 2. x, + w, < s(x). As before, the analog of (11) becomes
Culxy, wi, 1) = Lix) + QSL(xl + wy — E)p(§) dE

+ min {c(z) + B+ agg._x(xz +2— 5e® ds}

220

+ K~ +w)+ Gn(sn(xz)) + falzs + wy) "f-(xx + wy),
and the result will be demonstrated if we can show that
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K"‘ C(xl + w;) + Ga(S-(xz)) _’fn(xl + wl) g max {0, _"K +’ Gl(x:) - Gu(sﬂ)} -

Since x, + w, < su{x3) < sk, it follows that fulx + w) = K — ez + w) +
Ga(S.); hence we are required to show that

G,.(S.(x:)) - G:(Ss) g max {O, _"K + Ga(xz) - Gu(sat)} .

Since the left-hand side is always positive, we may restrict our attention
to values of x, that make the right-hand side positive, i.e., to x, < 5., and
we must demonstrate that K + Ga(Su(x:)) = Gu(x2). But since G, is mono-
tonically decreasing in the region x: < s., it follows that Si(x:) = x., so that
the inequality is immediate. This completes the argument and demonstrates
the validity of the lower bound.

THEOREM 2. Calzi, wr, 22) Z Calr, 1)) + galxe) .

3. The Approximate Policy

The calculations of the preceding section suggest a pair of policies that
are capable of being implemented in the simple multi-echelon situation that
we are analyzing. We first compute for each x; the policy parameters S.(x:)
and s.(x). ({If x. = S., these numbers are taken to be S, and s..) The
policy, as far as the lower installation is concerned, is first of all to examine
the entire system stock x.. If x, + wy > s.(x:), no order is to be placed.
If x 4+ w, < s.(x), an order of size Si(x) — x — w, is requested from the
upper installation.

As far as system purchases of stock are concerned, either sequence of
functional equations (those involving g. or 7.) will furnish us with a policy
in the sense that it will contain an explicit purchase rule z as a function
of x,. Either of these policies may be combined with the rule for the lower
installation to provide a system policy, The problem is to evaluate the
merits of either of these policies.

We shall have nothing to say about the merits of the policy associated
with g.(x:). We shall show, however, that if the policy associated with
gx(x:) 1s actually implemented, the expected cost will not be larger than
Calzy, wy) + as(xz). _ ‘

To this end, let us define Ci(x1, w,, x;) as the expected cost (not minimum
expected cost) associated with the use of the latter policy in an z-period
problem, which is-begun in state (z,, wy, %:). The C.'s will satisfy a func-
tional equation similar to (10), but without the minimum operator, since we
are not finding an optimal policy. Let us dencte the system policy based
on the functions §. by 2™; this policy will, of course, be a function ef =x,.
Let us alsc denote the ordering policy at the lower installation by ¥*. This
is the policy defined by the pair of critical numbers Si(x:) and su(x;). With

this notation, it is easy to see that the equation satisfied by C, will be
(15)  Calxi, w, m) = L(x:) + o(2%) + L(z)
+ K-B(y' — % — W)+ CI()"'I — X —w)
-+ aSé.-;(x; + wy — E, y’ - X - Wy, X2 + Zt _ E)(p(adg .
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Our cbjective is to show inductively that
(16) Calz, 1, 22) S Calze, wy) + Gul2r)
If we assume (16) to be correct for » — 1, we obtain from (15)

A7 Culz, wi, 1) € Lizy) + o2 + L(x) + K-8y — 0 — w))
+ CL(J"r - X — W)+ agan-n(ﬂfz + 2" — EpE)dE

+ agcﬂ(xl o — £y = — weE)dE .
Since
Galx) = L(x) + ) + o™ + aga.-xx, + " — EelB)dE

and

Camilz + 0y — E,y' —x—w)=Lix,+w — &
+ aguy* — = BN+ fa(S = B
(17) may be rewritten as

Culzy, e, 22) S Falre) — Auen) + Lix) + aguxl + w, — B(E)dE
Ky = —w) + ey = m—w) + agf.-l(y' — Bolf)dE

+ “’S Kuy* — £ — EYE)E) dE dE,

= Galz) + Calze, w) — fulms + 1) — Au(x2)
+ K~3(y* —x —w) — ol +w) + G-(}") .
Qur theorem will therefore be proved if we can show that
(18) —fulm + ) — Aulm) + K-8(y* — 1 —w) — el +wi) + Gu(y) £ 0.

It is convenient to consider two cases:
Case 1. z + wy < sa(x2). In this case y* = S.(x:), and (18) becomes

—fulz + W) = Aulxa) + K = cu(z + wy) + Ga(Salx)) £ 0.
But if & + w, < sa(xz), then certainly z: + w, < s., and
fu(xl, + w;) = K—' C[(xl + WL) + GI(SI) -

If we also use the fact that A.(x:) = Ga(%:) — Ga(Sa) unless z, > S,, in which
case dgx;) =0, we see that the required inequality is

Gu(su(xz)) < Ga(x) (x2 < Sa),

and is trivially satisfied for z. = S.. This disposes of Case 1.
Case 2. x + w: > sa(z). In this case y* =x + w,, and (18) becomes

—falzxy + wy) — /Zt(xz) —calx +w) + Galm +w) S0,
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If x + w, > 5, then fulx + wi) = ¢i(x, + wy) + Gu(x + w,), and since Au(x:) = 0,
the inequality is correct. On the other hand, if x, + w, < s., it follows that
Salzm + w) = K — et + w) + Gu(Sa), and we need to show that

19) —K ~ GuS) = Ax2) + Gulzy + w) £ 0.

If z;>S., then A.(x)) =0, but then x + w, > s., so that Galx: +wy) <

K + Ga(Sa) and (19) holds. If x £ Sa, then Au(z) = Gu(x:) — G«(S.), and we
need to show that

(20) K + Gu(xz) ;_ G‘(xl + wl) .
Since Ga{%2) 2 Gx(S.(x2), relation (20) will obtain if
(21 K+ Ga(Sulx) Z Galzy + wy) 5

but (21) is an immediate consequence of the X-convexity of G. and of the
relations Ga(s«(:)) = K + Gu(Su(#)) and x + wy > sa(xa),
Thus we have proved the following theorem.

TaeoreM 3. The expected cost of using the policy associated with §,. will
never be larger than

Cl(xl * wl) + au(xz) .

It is possible to obtain a slight improvement over the bounds that we have

given by using a somewhat different definition of A. and 4., while main-
taining Theorems 1,2, and 3. The modified definitions are

N — G‘(Si(xz)) - G.,(S.,) X < Su »
Tz = {0 Bl
and

_ [—K+ Ga(Salz2)) — Gu(Sa) 22 < 54,
Anz) = {0 Bl
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