Herbert E. Scarf

During the first decade of this cen-
tury, the eminent Dutch mathema-
tician L. E. ]. Brouwer (1912} dem-
onstrated a basic mathematical the-
orem that has found an extraordinary
variety of important uses in both
pure and applied mathematics.
Brouwer’s fixed-point theorem, as it
has come to be known, is a general-
ization to higher dimensions of the
elementary theorem of the calculus
that a continuous function of a single
variable that is positive at one end of
an interval and negative at the other
end must vanish at some point in
between.

Brouwer, one of the founders of
modern topology, discovered his
theorem while investigating the ge-
ometry of sets of points in n-dimen-
sional space. As he demonstrated, the
behavior of continuous mappings of
one set into another (or of a set into
itself) reveals important topological
properties of the underlying sets.
Most of the subsequent applications,
however, are only incidentally geo-
metric. Brouwer’s theorem and other
fixed-point theorems are used, most
frequently, as a tool for demonstrat-
ing that a system of highly nonlinear
equations has a common zero.
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Fixed-Point Theorems and Economic

Analysis

Mathematical theorems can be used to predict the
probable effects of changes in economic policy

So far as I am aware, the first use
of a fixed-point theorem in economic
theory appeared in John von Neu-
mann’s model of an expanding
economy published in 1937. Al-
though von Neumann was not him-
self a professional economist, his
Ppaper was extremely influential, and,
by the early 1950s, fixed-point theo-
rems were familiar to virtually all
mathematical economists. These
novel mathematical techniques be-
came available for the solution of a
problem of the greatest economic
significance: the demonstration of
the existence of prices that satisfy the
simultaneous equations and ine-
qualities of the general equilibrium
model of an economy.

By the late 1960s a variety of
numerical algorithms (e.g., Scarf
1967, 1973; Hansen 1968 diss.; Kuhn
1968) had been developed for calcu-
lating—rather than merely asserting
the existence of—the fixed points
implied by Brouwer’s theorem.
When applied to the general equi-
librium model, these computational
methods provide an extremely
powerful tool for analyzing the
probable economic consequences of
changes in a variety of policies. In

this article, I shall provide an intro-

duction to these basic computational
techniques and some indication of
the ways in which they are used.
The general equilibrium model
is the basic economic paradigm that
describes the functioning of a purely
competitive market economy. The
product of nearly two centuries of
conceptual innovation and contin-
ued intellectual refinement, it has its
beginnings in Adam Smith’s analysis
of the way in which capitalists re-
spond to profit-making opportuni-
ties, and it attains its mature form in
the general mathematical model
presented by Leon Walras in 1874, In

Walras's formulation, the agents in
the economy are divided into two
broad classes: producers, engaged in
the transformation of factors of pro-
duction into desired commodities,
are distinguished from consumers,
whose goals are the consumption of
goods and services. The stocks of
commodities in the economy, which
may be consumed directly or used as
inputs into production, are assumed
to be entirely owned by consumers
either in their tangible form—such
as land, labor, or durable goods—or
by means of a variety of financial
instruments including corporate
stocks and government bonds. In
other words, producers transform
what the consumers own into other
goods that the consumers desire.

If the prices of all the goods and
services in the economy are known,
each consumer’s income {or wealth)
is determined by the market value of
his assets. Income and a knowledge
of relative prices permit the con-
sumer to express his demands for
consumer goods—as well as his of-
ferings of labor, land, raw materials,
and other stocks of commodities,
which then become available to the
producers. In a formal mathematical
treatment, market demands, which
are obtained by adding up the de-
mands of the individual consumers
in the economy, will be specific
functions of the relative prices of all
goods and services. The market de-
mand for coffee, for example, will
depend not only on the price of cof-
fee, but also on the price of other
drinks such as tea, which are substi-
tutes for coffee.

The demand for coffee will also
depend on the wage rate and the
price of capital (as well as the prices
of other assets owned by consumers),
since these prices affect the con-
sumers’ disposable income. The de-
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mand may depend, as well, on the
price of a variety of other goods not
immediately perceived as substitutes
for coffee: for example, a high price
for clothing may decrease the income
available for the purchase of bever-
ages.

On the production side of the
economy, each producer is assumed
to have complete knowledge of the
different ways in which specific in-
puts can be transformed into specific
outputs. Relative prices are taken to
be independent of each producer’s
scale and composition of productive
activity; when these prices are
known, each producer selects—from
among the alternatives that are
technically possible for him—the
production plan that maximizes his
profit. Aggregation of these indi-
vidual decisions results in the econ-
omy-wide supply functions that de-
scribe the levels of outputs and use of
materials as mathematical functions
of all relative prices.

If the general equilibrium model
is constructed in a mathematical
form—as it was by Walras—we are
led to two explicit sets of functions of
all relative prices: the market-de-
mand functions and the market-
supply functions. For arbitrary prices
the values of these functions need
not be consistent with each other.
Producers cover the costs of produc-
tion by the revenue obtained from
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sales. If the price of a specific com-
modity is too low, consumers may
demand larger quantities than pro-
ducers are willing to supply. Only
very special prices—the equilibrium
prices—will equate demand and
supply in all markets simulta-
neously.

Fixed-point theorems can be
used to demonstrate the existence of
solutions to complex systems of
equations. But are they necessary in
order to demonstrate that there will
be a set of equilibrium prices? Walras

Figure 1. The general equilibrium model of
the economy states that there are prices
that equate supply and demand for al}
goods; these prices are fixed points of a
particular mapping. In the sample
mapping shown here, x is mapped to f(x).
However, y is mapped to Hself and is
therefore a fixed point.

was, of course, unaware of Brouwer’s
theorem and the two elementary
arguments for the existence of equi-
librium prices that he presented
seemed quite adequate to him (Wal-
ras 1874). One of the arguments was
based on the assertion that a system
of equalions with the same number
of equations as unknowns would al-
ways have a solution. But the most
elementary examples (for instance, x2
= —1) show that this need not be the
case, and the argument is not con-
clusive unless there is something
quite special about the equations
arising from the general equilibrium
model.

The everyday observation that
the price of a commodity will rise if
its demand exceeds its supply and
will otherwise fall was translated
mathematically by Walras into a
system of differential equations
stating that the rate of change of the
price of each commodity is propor-
tional to the difference between its
demand and supply. His second
argument for the existence of equi-
librium prices is that the system of
differential equations can indeed be
solved, at least conceptually, and if
the solution path converges it will
certainly converge to an equilibrium
position. But again, differential
equations need not have stable solu-
tions, and it is quite easy to construct
a system arising from a general
equilibrium model whose solution
wanders forever without converg-
ing. The equations for adjusting
prices, therefore, represent neither
an argument for the existence of
equilibrium prices nor an effective
computational procedure for their
determination,

Equilibrium prices were finally
proved to exist during a remarkable
burst of intellectual activity in
mathematical economics that took
place in the early 1950s. Based on the
work of Arrow, Debreu, Gale, Kuhn,
McKenzie, Nikaido, and others (e.g.,
Arrow and Debreu 1954), the general
equilibrium model was formulated
with great generality, and fixed-
point theorems were used to dem-
onstrate the existence of prices that
simultaneously equate demand and
supply in all markets. A fundamental
question in economic theory—the
consistency of the general equilibri-
um model—was given a definitive
answer.

Remarkable as this achievement
certainly was, it seemed to be defi-
cient in at least one major respect.



S
o
BRI

otusale:

2o -

s

Figure 2. One way to demonstrate the
existence of fixed points is to use the
nonretraction theorem. The set of points
represented by the colored dots is being
mapped continuously into itself, with each
point not on the boundary going to the
boundary, and each boundary peint
remaining fixed. This mapping, called a
retraction, cannot exist, however, because
it tears the set apart and thus becomes
discontinuous. Figure 3 shows why this
theorem proves that fixed points must
exist.

T'he original proof of Brouwer’s the-
orem was nonconstructive, in the
sense that while it asserted the exis-
tence of a solution to a system of
equations, it gave no indication of an
effective numerical procedure for
calculating the solution,

The general equilibrium model,
as is widely realized, is far from a
perfect representation of the way in
which the economy functions. It re-
lies more heavily than is warranted
on the assumption of purely com-
petitive markets, not only for current
transactions, but also for those ex-
pected to arise in the future. Not only
are apples and oranges exchanged
today, but the model assumes the
existence of markets that permit the
exchange of apples today for oranges
to be delivered five years in the fu-
ture. Moreover, the model does not
allow for the possibility of economies
of scale in production, and the re-
sulting tendency to monopolistic
behavior. A good deal of modern
economic theorizing may, in fact, be
seen as an attempt to replace the ab-
stract simplifications of the general
equilibrium model with more real-
istic alternatives.

In spite of its deficiencies,
however, the general equilibrium
model, as illustrated in the gray box
on the facing page, provides an ex-
tremely useful technique for ana-
lyzing the way in which the econo-
my might respond to modifications
in economic policy or to changes in
the economic environment, For ex-
ample, the consequences of a sub-
stantial increase in the price of im-
ported oil may be examined by con-
structing a general equilibrium
model of the domestic economy
whaose solution, prior to the price

increase, is consistent with prices,
levels of output, and the distribution
of income previously observed. After
modifying the parameter of the
model that represents the price of oil,
a new equilibrium is calculated in
order to assess the consequences of
the price increase for whatever vari-
ables are considered to be of signifi-
cance. In a similar fashion, the con-
sequences of a tariff on particular
imports, or of a change in the per-
sonal or corporate income tax
schedules, may be examined by the
numerical solution of a general
equilibrium model before and after
the change is imposed.

Exercises like these comprise
what is known in economic theoriz-
ing as “comparative statics.” Tradi-
tionally, such exercises have been
carried out in analytic form when the
changes in question are extremely
small, or by means of elementary
geometric diagrams when the num-
ber of variables is quite limited. But
if either of these conditions is not
satisfied, the analysis can be done
only by the explicit numerical solu-

Figure 3, If there are no fixed points, then
each x must move to an f(x} that is
different from x (top). This means that a
second continuous mapping can exist that
moves the point to g{x) on the boundary
(bottom). If x is on the boundary, g(x) will
be the same point as x. But this second
mapping is a retraction, which cannot
exist, and our original premise must be
false — thus, fixed points do exist,

tion of the equilibrium model. Given
the generality of the supply and de-
mand equations underlying the
model, this requires the development
of numerical algorithms for com-
puting the fixed points implied by
Brouwer’s theorem, rather than the
mere assertion of their existence.

Brouwer’s theorem

In order to set the stage for Brouwer's
theorem in a form that leads to an
effective computational procedure,
let us consider the particular n-di-
mensional set called the simplex,
whose points are given by x = (x4, xa,

.+ Xy41), with coordinates = 0 and
that sum to unity. By a mapping of
this set into itself we simply mean a
function f(x) that associates with each
such x another point in the set, as
shown in Figure 1.

The mapping is called continu-
ous if each coordinate of the point to
which x is mapped—the image of
x—varies continuously with x: in-
formally, small changes in x yield
small changes in each coordinate of
the image of x. By a fixed point of the
mapping we mean a particular point
x’ that is mapped into itself—ie, a
point for which f{x) = x’. Brouwer's
theorem asserts the existence of at
least one such fixed point.

Before discussing a proof of
Brouwer’s theorem that is oriented
toward calculating fixed points, let us
make a brief digression and exhibit
a preliminary argument based on
what is known as the nonretraction
theorem. A retraction is a continuous
mapping of the simplex into itself
with the following two additional
properties: every point in the sim-
plex is mapped onto the boundary of
the simplex, and every boundary
point of the simplex is mapped to it-
self.

Figure 2 will help the reader
imagine a retraction. Any continuous
mapping of the simplex into itself
can be thought of as the end result of
a continuous deformation that starts
with the original simplex and con-
tinuously transforms it until each
point reaches its image. But if the
mapping is a retraction—carrying
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Figure 4. The mapping of the set of those
points x between 0 and 1 into itself is
represented by y = f(x). The x axis
represents the set before mapping; this
mapping moves each point on the x axis up
until it hits ¥ = f(x) and then over to the y
axis, which represents the set after
mapping. In this mapping there are three
points (the colored dots) that are mapped
to themselves. Dividing the set of points
into subintervals with labeled ends
provides a way of locating the fixed points:
if the label is 1 when f(x) = x and 2 when
f(x} < x, each subinterval whose ends have
different labels will contain a fixed point,

every point in the simplex to the
boundary, and leaving the boundary
unchanged—such a process would
have to tear the simplex apart at some
point, and the mapping would thus
be discontinuous. This intuitive
argument is the basic idea behind the
nonretraction theorem, which states
that there can be no retraction of the
simplex.

To see that Brouwer’s theorem
follows from the nonretraction the-
orem, let us reason by contradiction:

(0.0.1)

{0.1.0)

{1,0,0)

Figure 5. The location of fixed points in a
simplex — or the particular set of points
with coordinates = 0 and that sum to
unity — can be determined by subdividing
the simplex. This two-dimensional simplex
is represented here in three-dimensional
space.
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Assume that there is a continuous
mapping x — f(x) of the simplex into
itself with no fixed peints. Then for
every x, the two points x and f(x) are
distinct from each other. This as-
sumption will permit us to construct
a new mapping, g, which will be a
continuous retraction. We begin by
drawing the line segment shown in
Figure 3, which starts at f(x), passes
through x, and terminates at a
boundary point of the simplex that
we will call g(x). This new mapping
x — g(x) is obviously a retraction,

~and, assuming the nonretraction

theorem to be true, we have arrived
at a contradiction.

We shall see the relevance of
this digression in a bit, but our goal
now is to find an argument for
Brouwer’s theorem that stands by it-
self rather than depending on an al-
ternative theorem, such as the non-
retraction theorem, whose proof is
also by no means obvious. Let us turn
to a different source of possible ideas
by examining the elementary proof
of Brouwer’s theorem when n = 1.In
this case the simplex is one-dimen-
sional, and can be identified with the
interval consisting of those points x
with 0 < x £ 1. A continuous map-
ping of the interval into itself is de-
scribed by a continuous function y =
f(x), such that for all x in the interval,
f(x) is also between 0 and 1. A fixed
point of such a mapping is given by
the intersection of this curve and the
45° line representing y = x: in Figure
4 there are three such fixed points.

Let us be very precise about an
argument for the obviously true
statement that a continuous curve
defined for all x between O and 1 and
contained in the square must inter-
sect the 45° line at least once. Begin
by dividing the interval into a large
number of nonoverlapping subin-
tervals. As in Figure 4, let us associate
with each end point of a subinterval
x a label that takes on the value of 1
or 2 according to the following rule:
The label associated with x is 1 if f(x)
2 x and is 2 if f(x) < x. Notice that the
label associated with the lower end
point of the interval is certainly 1
and, unless the mapping has a fixed
point at the upper end of the interval,
the label associated with the upper
end is 2. The labels for the end points
of the subintervals depend on the
particular mapping, but regardless of
their values there must be at least one
subinterval whose two end points are
differently labeled. If the subinter-

0,0,1)
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Figure 6. To find the fixed points in the
simplex, we follow the same procedure
used with the interval in Figure 4. The first
step is to divide the set of points into
subsimplices.

vals are sufficiently small, then any
point x in a subinterval whose end
points are differently labeled will
serve as an approximate fixed point
of the mapping, in the sense that |f(x)
— x| will be small.

Demonstrating the existence of
a point for which f(x) is actually
equal to x requires us to take a se-
quence of finer and finer divisions,
and to find an approximate fixed
point for each such division. We then
select a convergent subsequence of
approximate fixed points, which,
because of the continuity of the
mapping, tend to a true fixed point.
In practice, however, such a con-
struction is never required, and it is
sufficient to find a point x that is
close to its own image, or f(x).

The basic ideas involved in
generalizing this argument to higher
values of n can be illustrated most
clearly when » = 2 and the simplex

Figure 7. The vertices of the subsimplices
are labeled arbitrarily, except that the
labels of the vertices on the boundary of
the simplex depend on the vertices’
coordinates, as explained in the text. The
colored subsimplices are those with
different labels for each vertex, which
means that if the labels are based on the
mapping they will contain good
approximations of fixed points.



consists of those points x = (xy, x5, x3)
in three-dimensional space with x; +
X2+ x5 =1, and xy, x2, x3 = 0. As
shown in Figure 5, the simplex has
three vertices with coordinates
(1,0,0), (0,1,0), and (0,0,1), and three
boundary faces, each of which is op-
posite one of the vertices. Qur first
step is to divide the simplex into a
large number of small subsimplices,
as illustrated in Figure 6.

Now let us imagine that each
vertex of each subsimplex has asso-
ciated with it a label that is either 1,
2, or 3. When we apply this approach
to a proof of Brouwer’s theorem, the
labels associated with the vertices
will depend on the particular map-
ping of the simplex into itself under
consideration. For the moment,
however, the labels will be quite ar-
bitrary except that: A vertex on the
boundary of the simplex will receive
a label i only if the ith coordinate of
the vertex is positive.

According to this rule, the ver-
tices (1,0,0), (0,1,0), and (0,0,1) must
receive the labels 1, 2, and 3 respec-
tively. Any vertex on the face on
which x; = 0 must receive a label that
is either 2 or 3, a vertex on the ad-
joining face on which xz = 0 must be
labeled either 1 or 3, and similarly for
the remaining face. Figure 7 illus-
trates an assignment of labels that is
consistent with this requirement.

Sperner’s lemma

The remarkable combinatorial theo-
rem first enunciated by Emanuel
Sperner in his doctoral thesis written
in 1928 states that at least one
subsimplex must have three distinct
labels associated with its three ver-
tices. In Figure 7 there are three such
“completely labeled” triangles. (The
force of Sperner’s lemma can best be
understood by experimenting with
different assignments of labels in an
attempt to avoid a completely labeled
triangle.}

Assuming for the moment that
Sperner’s lemma is correct, let us
now consider an arbitrary continu-
ous mapping (xj, xa, x3) — [fi(x),
f2(x), fa(x)] of the simplex into itself,
and see how to apply the lemma in
order to demonstrate the existence of
a fixed point. Since the mapping
carries the simplex into itself, any x
on the simplex that is not a fixed
point must have at least one of its
coordinates decreasing under the
mapping. For any x that is a vertex of

2

Figure 8. Completely labeled subsimplices, or those with a different label for each vertex,
can be found by embedding the divided simplex of Figure 7 in a larger simplex. We start
with the lightest colored triangle, which has two rather than three different labels. The
path through adjoining triangles that also have the labels 2 and 3 must end at a
completely labeled triangle for reasons explained in the gray box on this page.

a subsimplex and is not a fixed point,
let the label associated with x be a
subscript i for which fi(x) < x;—i.e.,
a coordinate that is decreasing under
the mapping.

This labeling is certainly con-
sistent with the requirement of
Sperner’s lemma that each vertex on
the boundary receives a label i only
if the i*h coordinate of the vertex is
positive. Sperner’s lemma can
therefore be applied, and we con-
clude that there is at least one
subsimplex all of whose vertices have
different labels.

If the subsimplices are very

small, the three vertices of such a
completely labeled triangle will be
very close to each other. At each
vertex a different coordinate will be
decreasing under the mapping. It is
quite elementary to argue, using the
continuity of the mapping, that any
point x in such a completely labeled
triangle will be an approximate fixed
pointin the sense that x will be close
to its image, f(x). As before, a non-
constructive limiting argument is
required to verify the existence of an
actual fixed point rather than an ap-
proximate one, but this is never re-
quired in practice.
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Figure 9. Qur arbitrary assignment of labels can be used to construct a mapping that
would contradict the nonretraction theorem if there were no completely labeled triangles.

Computing fixed points

Sperner’s lemma is valid in higher
dimensions as well, and can be used
to provide a general proof for Brou-
wer’'s theorem. Sperner’s original
argument asserting the existence of
a completely labeled subsimplex was
an inductive demonstration based on
the dimension of the simplex, and
was not oriented toward finding a
completely labeled subsimplex by an
explicit computational procedure.
But by the 1960s various aspects of
economic theory had become
strongly influenced by the develop-
ment of linear programming, input-
output analysis, and related topics in
which the ability to solve concrete
problems in an explicit numerical
fashion was of considerable signifi-
cance. Sperner’s lemma was reex-
amined, and algorithms—of which
the following was the first exam-
ple—were provided that converted
these nonconstructive arguments
into computational techniques of
practical significance (Scarf 1967).
We begin by embedding the
simplex, and its subsimplices, in a
larger simplex as shown in Figure 8.
The larger simplex is divided by
joining its three new vertices to the
vertices lying on the boundary of the
original simplex, and each of the new
vertices is given a specific label 1, 2,
or 3. Because of the labeling re-
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quirement on the boundary of the
simplex assumed in Sperner’s lemma,
these new labels can be selected so as
to create no additional completely
labeled simplices.

The new construction shown in
Figure 8 makes it very easy to find a
triangle whose three vertices bear
two of the three desired labels—for
example, the rightmost triangle in
the figure. Beginning with this
triangle, we construct a path of adja-
cent triangles, each of which has
vertices labeled 2 and 3. The path is
uniquely determined by the initial
triangle. When we enter a new
triangle on the path, itis through an
edge whose two vertices bear the la-
bels 2 and 3; if the triangle is not
completely labeled, there will be a
unique other edge in the triangle
whose vertices are also labeled 2 and
3, and we use this edge in order to
exit into a new triangle,

The remarkable aspect of this
algorithm, first pointed out by
Lemke (1965) in a different context,
is that it never returns to a triangle it
has previously encountered, as ex-
plained in the gray box on page
293. The algorithm can, therefore,
never be forced to exit from the large
simplex, since this would require a
return to the initial triangle. But
more important, the algorithm must
terminate—since there are a finite
number of triangles—and termina-

tion can occur only when we reach a
triangle whose three vertices bear the
labels 1, 2, and 3. This argument
demonstrates Sperner’s lemma, and,
subject to our ability to move through
the sequence of triangles efficiently,
the algorithm provides a numerical
procedure for approximating fixed
points of a continuous mapping.

This elementary algorithm has
been tried on a large number of spe-
cific examples since its introduction
some 15 years ago, and it performs
rather well on problems of moderate
size (say, up to 20 variables) in spite
of some of its obvious drawbacks.
One clear deficiency is that it is nec-
essary to specify the particular divi-
sion of the simplex before deter-
mining an approximate fixed point of
the mapping. If the accuracy is poor
because the subsimplices are not
sufficiently small, the only available
recourse is to refine the division and
carry out the algorithm again—
starting at the boundary and dis-
carding the previous estimate, As we
shall see, recent modifications of the
basic ideas permit us to initiate the
algorithm at any convenient estimate
of the fixed point.

A second flaw in this first ver-
sion of the algorithm is that the only
information used when the mapping
is evaluated at a particular point x is
which coordinate is decreasing.
Newer variants incorporate infor-
mation about the magnitude of the
changes as well as their signs, with a
considerable improvement in per-
formance {e.g., Scarf 1967; Merrill
1971; Eaves 1972).

In order to see the form these
modifications of the algorithm might
take, let us try to put Sperner’s lemma
in a more general setting by showing
its relation to the nonretraction the-
orem. Our previous argument began
with a mapping of the simplex into
itself and then assigned to each ver-
tex of the divided simplex a label that
depended on the particular mapping.
Let us now turn the argument com-
pletely on its head by beginning
with an arbitrary assignment of la-
bels to the vertices—consistent with
the requirement of Sperner’s
lemma—and using these labels to
construct a continuous mapping of
the simplex into itself. As we shall
see, this new mapping turns out to be
a retraction of the simplex into itself
if there are no completely labeled
triangles. Sperner’s lemma, then, is
an elementary consequence of the
nonretraction theorem.



More efficient algorithms

What is of greater consequence for us
is the fact that the solution of a cer-
tain system of equations based on the
new mapping will lead to a path of
points on the simplex traversing
precisely those triangles appearing in
our algorithm for Sperner’s lemma.
When this observation is general-
ized, it will lead directly to a class of
fixed-point algorithms that are vastly
more efficient than the one previ-
ously described.

Consider the division of the
triangle shown in Figure 9, which is
special in the sense that the only
vertices on the boundary are the
three vertices of the triangle them-
selves, which are given the labels 1,
2, and 3. Our purpose is to construct
a mapping x — hi(x) of this simplex
into itself, based on the labels that are
associated with the vertices of the
subdivision. We begin by mapping
each vertex of the subdivision into
that one of the three boundary ver-
tices that has the same label. In Fig-
ure 9, x and y are mapped to the
boundary vertex labeled 2, and z to
the boundary vertex labeled 3. We
then complete the mapping by
making it linear in each simplex: for
example, the point halfway between
v and z, the point halfway between
x and z, and all the points between
these two points are mapped to the
same boundary point c.

This new mapping x — h(x) ob-
viously has the property that every
boundary point of the large triangle
is mapped into itself. Moreover, a
point contained in a subsimplex
whose vertices are missing at least
one labe] will certainly be mapped to
the boundary of the simplex. If there
are no completely labeled simplices,
then every point is mapped to the
boundary and h{x) is a retraction. The
validity of Sperner’s lemma is
therefore an immediate consequence
of the nonretraction theorem.

This mapping can be put to an-
other use. Let us return to the par-
ticular labeling in our previous ex-
ample of Sperner’s lemma (see Fig. 8)
and examine the set of all points in
the larger simplex that are mapped
into the particular point ¢. As Figure
10 indicates, the set of points for
which h(x} = ¢ includes those points
on a path traversing precisely the
same subsimplices as does our algo-
rithm and terminating with a
subsimplex all of whose labels are
distinct.

I
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Figure 11. If all points on the top of the
wedge are mapped into x’ and the set of
peints on the bottom is mapped into itself,

. the whole wedge can be mapped into a

two-dimensional simplex by interpolating
between the first two mappings. A fixed
peint of the mapping on the bottom can be
found by tracing a path of fixed points of
the interpolation. However, if we started
our algorithm in the middle of the wedge,
we might encounter an area that seemed to
have fixed points, represented by the
closed loop, and be temporarily side-
tracked.

But the inverse image of ¢ has
other parts as well. There is a path for
which k(x) = ¢ joining the two other
completely labeled subsimplices, and
a loop of almost completely labeled
simplices sitting off by itself. These
observations can be put in a general
context that is extremely useful in the
construction of more effective algo-
rithms than those based on Sperner’s
lemma. Consider the two-dimen-
sional set obtained by eliminating
the three completely labeled trian-
gles. The mapping h takes this entire

two-dimensional set into a one-
dimensional set: the boundary of the
simplex, It follows that the collection
of points mapping into a particular
boundary point should be one-di-
mensional. In general, this is correct
and the inverse image of a single
boundary point (with a few excep-
tional boundary points) can be
shown to consist of a finite number
of paths and loops (e.g., Eaves and
Scarf 1976; Milnor 1965).

To see how this observation can
be used, consider the wedge of points
in Figure 11. Let us be given a con-
tinuous mapping x — f(x) on the set
t = 0, whose fixed points we are in-
terested in approximating. Select the
point x” to be an arbitrary estimate of
a fixed point f(x), and define a new
mapping, g(x), that takes every point
on the top of the wedge t = 1 into the
same point x’. Then complete the
mapping of the entire three-dimen-
sional wedge into a two-dimensional
simplex by interpolating linearly
between these two mappings—i.e,,
by defining F(f,x) = tg(x) + (1 —
t)f(x), for t between 0 and 1.

By analogy with our previous
argument, we would expect the col-
lection of fixed points (i.e., points for
which F(t,x} = x) to be a finite set of
paths and loops. From the nature of
our construction the set of fixed
points can touch the boundary of the
wedge only at the top or bottom face.

Figure 10. The points mapped into ¢, using the divided simplex in Figure 8, include those
points en the path from the starting triangle to the completely labeled subsimplex. Also
included are a path between the other two completely labeled subsimplices, and a path
contained within a group of subsimplices that have only the labels 2 and 3.
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Only the path starting at x’ can in-
tersect the top face, and if this par-
ticular path is followed to the bottom
it must terminate in a fixed point of
the mapping under consideration.

There are several numerical
methods that allow us to follow such
a path. The wedge can be divided
into subsimplices (tetrahedra in this
example), and the mapping (t,.x) —
F(t,x) replaced by a continuous ap-
proximation that is linear in each
subsimplex. Calculating which
subsimplices are on the path from ¢ =
1 to t = 0 depends on the particular
way in which the wedge is divided
(see Merrill 1971, Eaves 1972, and van
der Laan and Talman 1979 for ex-
tremely useful suggestions about
appropriate divisions), but the
mathematical operations are essen-
tially those we have become familiar
with in linear programming. And the
resulting algorithms, which have
been tried on thousands of examples
ranging up to 60 variables, work ex-
tremely well in practice; in addition
to being global in character, they are
competitive in time of execution with
Newton’s method —the classical local
method for solving systems of equa-
tions.

A second path-following meth-
od requires the underlying mapping
on ¢ = 0 to be differentiable. The path
from t = 1 to t = 0 may then be
shown, in general, to be a curve sat-
isfying a differential equation vir-
tually identical to that arising in a
continuous variant of Newton’s
method. The differentiable approach,
introduced by Kellogg, Li, and Yorke
(1976) and by Smale (1976), leads to
a global Newton’s method with no
requirement that the algorithm be
initiated in the vicinity of the an-
swer.

The availability of these nu-
merical techniques has led, during
the last decade, to the construction
and solution of general equilibrium
models designed to illustrate a vari-
ety of economic issues. Several au-
thors have been concerned with the
impact on the economies of the
United States and other countries of
changes in domestic taxes (e.g., Sho-
ven and Whalley 1972), international
negotiations to reduce tariffs and
other barriers (e.g., Brown and
Whalley 1980), and the ways in
which individual taxes and subsidies
compound and affect each other (e.g.,
Piggott and Whalley, in prep.). The
- gains to Britain in joining the Com-
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mon Market have been examined
(Miller and Spencer 1977), as well as
the consequences for the United
States of a variety of policies in re-
sponse to increased energy prices
(Hudson and Jorgenson 1974).
Problems of international trade have
been studied by means of general
equilibrium models, one of which
involved over 200 commodities
(Ginsburg and Waelbroeck 1981).

Fixed-point methods of the sort
we have discussed are guaranteed to
provide the solution in these and
other examples of applied general-
equilibrium analysis. It is true that
simpler methods may be successful,
either by accident or by the intelli-
gent use of some particular feature of
the problem. But the existence of
global methods that work in all cases
has transformed the general equi-
librium model from an abstract
argument for the consistency of
economic reasoning to an effective
tool for the analysis of economic
policy.
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