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§1. INTRODUCTION

In thls paper we shall discuss a particular class of games with
partial information. The characteristic feature of the information pattern
in these games 1s that each player is informed of his opponent's moves a
fixed amount of time after they are made. More specifically, the players
each wake a sequence of choices, a,s &2' reeand b], b2, +vvy Pespec-
tively, from fixed finite sets Ay Aa’ +e. and B], Be’ s+esy in the
order &y b1, 8y, b2, +»+ + The condition on the information pattern ia
that Player 1 (2} in selecting aAﬁbn) iz informed of his opponent's moves
up to and including bn—Q(an—zJ’ as well as his own previous moves. It ls
necessary that k be positive and ¢ nonnegative. The payoeff ia defined
to be some functlon of the two sequences of choices. A general theorem ls
proved in [9] which implies that for games of this type continulty of the
payoff 1s a sufficient condition for the existence of & value and optimal
strategles for both players.

The number » =k + £ - 1 1is defined to be the time lag of the
game. The case of perfect Information is glven by A = 0. This case has
received a considerable amount of attention [2, 4], and the purpose of our
paper is to generalize some of the properties of games with perfect inform-
atlion to games with positive time lags. In order to 11lustrate the prop-
erties that we wish to generalize, let us assume for the moment that the
payoff function 1s continuous. Let us defilne V+(a1, R bn) to be the
value of the perfect-Information game in which the first n moves of both
players have been fixed to be a,, b], ceay bn’ the payoff belung the same
a3 the payoff in the original case. The subgame property of games with
perfect information ls expressed by the fact that the game which terminates
after bn’ and whose payoff function is given by V+(a1, ey bn), haa
the same value as the originsl game, and that the optimal strategies in
the termlnated game way be directly related to the optimal strategies of
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s

the original game [2].

The point about optimal strategles may perhaps be seen more clear-
ly if we briefly describe the functional equations associated with these
subgames. These egquatlons will be treated in more detall in the body of
the paper. An example of the functlonal equatlons for perfect information

games 1is

+ _ . +
v (a1, ceey bn) = Max Min V'(a,, --+s by 8045 bn+1) ’

an+1 bl’l+ 1

and their relationship to optimal stretegies is expressed by the fact that
if Player 1, when informed of the specific cholces of a,; .-, bn’ plays
the cholce of a4 which maximizes

a b )

+
Min V (31’ ers B n+1’ ~n+1

nl
e

then this strategy constltutes an optimal strategy. The optimal strategien

for Player 2 are derived from a corresponding set of functional equationo

which have the form

v (al’ rey blf'l" an_*_}) = bMil’l rlM&X Y (?':1.], ey b11+1: an+2)
N+l Tne+2
The case k = 1, £ =1, and A =1 1s a so-called "aimul taneous
game.“ In thls case the subgsme property may be expressed by the function-

al equations

V(a,, -ves by) = Max Min E: p(an+1)q(bn+1)V(a1, sy Do)
pla,, ) aley ) 4
N+t
bn+1
= Min Max ... ’
where the p's and qg's are probability distributions, and V(a1, ey bn)

is defined to be the value of the subgame in which the first n wmoves of
both players have been fixed, and the game'proceeds a3 a simultansous game
toward the same payoff. If Player 1, when informed of the specific cholces
of Ay, ++es by plays a,,, vwitha probability distributlon p(an+1)

which maximizes

Min Z pla,,, V(a,, -« b))

n+1 an+1
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then this collection of distributions, called a behavicr strategy, constl-
tutes an optimal strategy. A similar remark is valid for Player 2.

As soon as we begln to discuss the case in which the time lag is
greater than one, the subgame properties no longer exist. The basic reason
for this fallure 1z that 1f we fix the initial moves of both players and
only Inform the players of the moves of their opponents which they are en-
titled to know, then the information avallahle to each player will be differ-
ent at all times from that avallable to his opponent. We will never arrive
at a situation which loocks like the beginning of a new game, and subgames
will therefore not exlst.

In order to clarify this remark, let us intrcduce a set of dia-
grams describing the different types of Information patterns. The meaning
of the dlagrams will be clear from the examples. The dilagram for the case
of perfect informatlon will be

3.1 ae
b, b,

whereas the disgram for the game k = 1, £ = 1, amnd x = 1 1is

The subgames in the flrst dlagram occur after any initial sequence of moves;
in the second disgram they occur after any inltial sequence which terminates
with a move of Player 2. Tt is eacsy to sce that these repreosent places 1in
wnich both players have a common fund of informatlon, and the last diagram
points out the fact that 1n the game with time lag 2, there ils no place in

wnich both playera have the same fund of Information.
As we shall see, it 1a possible to introduce a collection of games

assoclated with a game whose time lag is greater than one, whlch play some-
what the same role as the subgames described for the cases x» = 0, 1, and
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which give rlse to more complex functional eguations than the ones mentilon-
ed above. It will also be true that every tims-lag game will have assocl-
ated with 1t two functional equations from which the coptimal strategles of
elther player may be deduced. We should point out that these functional
equations have been discussed by Issacs (5, 6], Karlin [5, 7], and Dubins
{3] for a particular game, with time lag 2.

§2. THE GENERALIZED SUBGAMES (k = 1, £ = A > 0)

We shall fix a specific value of A > 0, and conslder the case
k=1, £ =2x. It 1s clear that any other informatlon pattern with the same
time lag can bhe transformed Iinto the above case by a renumbering of the
moves of one of the players, and the addltion of several vacuous moves at
the beglnning of the game. We shall find it convenient, however, to dis-
cuss different combinations of (k, £) with the same time lag separately
(Section &), and to introduce a particular set of functional relations for
each combination. What this means, of course, 1s that any particular game
will have several types of subgames and several sets of functlonal relationa.
In particular, the subgames and functional equations that we discuss in
this section {k = 1, £ = &} will apply with the appropriate renumbering
to an arbltrary game with time lag .

The dlagram for this case 1s given by

i T qn-ae2 A1

- 7\7\\/

n—k+1

The generalized subgame that we are going to introduce will be described by
a collection of parameters, which will summarlze the information avallable
to both players at the beginning of the subgame. This Information conslats
of two parta:

1. The complete set of information that would be avallable to
Player 2 after he makes his n-th move in the original game. This collec-
tion of information which we denote by I, consists of a specification of
the first n wmoves of Player 2 and the first n - A + 1 moves of Player
1. As the above diagram shows, thls information would also be available to
Flayer 1 at thls time.

2. A joint probablility distribution on the moves B _yapt tecr By
which we represent by pn(-).

The diagram for this subgame 1s as follows:
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moves for Player 1

pL(+) ! in subgame
—t— PN
| ]
g‘n-JL-H Bh-ae2 an_\ | 8n41 N+ A+ 1
LB N | ‘.—*‘ " e L]
b ERd b

neA+1 n | Bhi n+ A

[ S v —

| moves for Player 2

in subgame

The notation Bn’ etc., is used to indicate that these are fixed choices
and are involved 1n the specifications of the subgame. The subgame pro-
ceeds as follows: The moves 8 _a+g? *-': 8, are randomized from pn(-),
and told to Player 1, but not to Player 2. Player 1 then makes a choice
of 8,12 followed by a chojce of bn+1 by Player 2. The choige of

&,_5+o Y¥hich occurred as a result of the randomization is announced to
Player 2. The choice of b, 18 told to both players after it is made;
but, according to the information requirements, the choice of a1 is kept
secret from Player 2 until he is ready to make move bn+x+1' We then have
a cholce of 8n,, and bn+2’ respectively, and 8y 243 is then announced
to Player 2. This sequence of moves proceeds until all of the chance moves
have been announced, and then continues using the information pattern of
the original game. The payoff is defined to be the same payoff as for the
original geme. When we have occasion to refer to this subgame, it will be

denoted by G, = G (I ; p,(+)). Clearly G, 1s the original game.

The technlques of [2] may be used to show that the game G, will
have a value and optimal strategles if the payoff function is continuous,
and in this case 1t 1s easy to see that the value will be continuously de-
pendent on the joint probability distributlon specifying the game. The next
gsection of this paper will be devoted to a derivation of the functional equa-
tions assoclated with these subgames, and we shall assume in this derivation
that the payoff functlon 1s continucus. Later on we shall discuss the rele-
vance of the functionsl equation in other cases.

§3. THE FUNCTIONAL RELATIONS (k = 1, ¢ = &)

Let the value of G, be denoted by V(In; pn(-)). Let us define
a specific strategy for Player t in this game in the following way. Let him
make hils first move 8t according to the probability dlstribution
x{ay, 18, 1407 +++s 8,)- (We indicate the dependence of these moves upon
the result of the randomization in the obvious way.) After Player 2 makes

the move b and 1f the randomized value of a  , . is denoted by

n+t?
én—x+2’ then Player 1 has complete knowledge of I ., = (&, ..., &, .,
bl, ceey bn+1)’ plus, of course, the other randomized values of a. Let
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him then continue his sirategy by playing an optimal strategy in the ganme
~ " ry

Gn+1(1n+1; pn+1('|an-x+2))’ whers pn+1('ian—x+2) is meant to be the

joint distribution on 8y 2437 ne1 Which 1s formed by combining

p,(+) with x(an+1|an_l+2, +++; @,) and conditioning this joint distribu-

tion by a__, . = an_l+2. Let us see what Player 1 can obtain by using a

Strategy of this form, 1if he tells Player 2, at the beglnning of Gn, that

this 18 the strategy he will he using. TIn this case the cowmmon fund of in-

formation after beth players have made their inltial moves in Gn, and

after a,_, . 13 told to Player 2, is preciselyA I, and pn+1(.|an_l+2),

and this is the common fund with probability p(an_k+2) derived from pn(-).

Player 1, of course, also knows the other results of the randomization. The

way that we have chosen Player 1's strategy shows that he will get at least

Y

V(I (-2 ¥y o

n+1é Preq n-A+2

Player 1 cannot determine the result of the randomization for 8 _s4pr 90
that at the beginning of G, he can guarantes himself only an expected

value of

A A
Zp(an—?w? )V(IDH; pn+1 (- Ian—l+2)) "

Again, Player 1 cannot dictate the cholcs of b 80 that he can only be

n+1’
sure of

~ Lad
~Min 2:":“O(ﬂ'n—)w:!)v(‘lv'nﬂ; pn+l(.1an—h+2)) i
n+1

and finally 1f he plcks x(a veuy an) judiclously, we can con-

a
n+1! n-i+2?

clude that
V(T; p(+))
z x(a__la Hax ces,a ) BMin sz(e“rl-)k+2)v\'r(]:r1+1; Prpi (logyip))e -
M+ n-a+2? T e

The next step 13 to replace this inequality by an equality, and
this is accomplished by the followlng reasoning. Let x*(an+1|an_k+?, coey b))
be the initlal cowmponent of an optimal behavior strategy for Player 1 in
Gn- 3ince the strategy is optimal, it can be told to Play?r 2 without de-
grading Player 1's expected return. Let Player 2 choose bn+l 80 a8 to
minimize

~ . * . A
2 Py a2V Tny s Py (a0
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where p;+1(-i§n+l_2) 1s compounded from p (-) and x*(a,
in the obvlous way. Then with probability p(&n_l+2) the comnon fund of
information available to both players 1s In+1' Now 1f Player 2 contilnues
hls strategy by playing an optimal strategy in Gyt (Tuys p;+1(-]£n-k+2)),
it 1s clear that he will prevent Player 1 from getting an expectation great-
er than

+1'an—x+2’ ©res ap)

- A * a
E:p(an—x+2)V(In+15 Prar(tlap 5000

which from the way that bn+1 was chosen 1s equal to

" * ~
~Min §:p(an_h+2)v(1n+1; pn+1('fan-l+2)) :
I+

Slnce Player 1 was assumed to be playing optimally, this last quantity must
be no less than V(In; pn(-J), and we obtain

Vs pp(0)) < x(a MTX o) %Min z:p(an-x+2)vfln+t; Prot (tlap 0000
n+1 7 R’ Yne

Combining this with the previous inequality, we obtain the desired function-
al relationship.

THEOREM 1. Let GO be a game with time lag
(writte: in the form X = T, £ = &), which has o con-
tinmious payoff. Let V(In; pn(-}) be the value of
the subgame in which both players' 1nformatioi: about
tne past 1s I - (8,5 v, an—h+1; by vevy b)) and

in which Player 1's previous i - 1 moves are governed
by the joint probability distribution pn(-) =
p(an_k+2, cre, an)- Then

V(I; py(-))

L.} ~
) Hax ) pn Z"I:J(a'l’l--i’wz)V(Inﬂ; PnoClagae))
X(an+1|an-l+2""’&n n+1
where
-~ A )
plag y.p) = > P8, sipr vvs By

VRV TRRE- W
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and

Fal ~
Play yypr - eragIxlay, 8y p0---0ap)

) =

(+]a

pn+1 n=-A+2

”»
P8 ez

§4. OPTIMAL STRATEGIES FOR PLAYER 1

In this sectlion, we shall show that a class of optimal strategies
for Player 1 in the game with time lag A can be derlved from the function-
al equatlons that we have established in the preceding sectlon. As before,
we assume that the game 1s represented in the form k = 1, £ = A > 0.
Optimal strategies for the case A = 0 are obtained by the process out-
lined in the Introduction.

The first of the functlonal equatlons relates the value of G,
(the actual value of the game 1tself)} to the value of G1(I1; p1(-)). For
A > 2 the first equation is

it

v Max Min V(I‘; p,(-})

x(a,) b,

with I, = B‘ and p,{-) = x{a;}. Let us define the components of a be-
havior strategy for Player 1 in the followlng recursive fashion. Let
x(a1) be chosen so as to maximize

Yin V(I;; p,(+)) -
5

Call such & maximizing distribution x*(é1). In general, if x*(a1),
x*(&2|31; b1), cees x*(an§a1, RPR- N bl’ ey bn-1) are known, then

~

for each I =-(&,, «.v, & _,.,» B, «uv, b)) we form the jolnt probability
distribution p;(-) given by the following product of A - 1 factors:

-~ A

A ~
x*(anlat, serr Bp g e Bpogd Bpsoeee bn—1)

~

P T

~
e X*(a |a1, vee, & b

N-A+2 n-r+1% 092

” .y ~ Y .
Then x*{a 1@, «evy 8 5 00 coes 855 Dy eesy b,)} 1is chosen equal to
any x(a‘n+1 |a'n_;~+2’ R ] a-n) that maxlimizes

-~ * A
AMin Zp*(&n_k+2 )V(Iﬂ*"; pn+1('ian—k+2)) *
n+1

As In takes on all concelvable values, we obtain the complete behavior
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|a1, vers @3 by, e, bn) .

n

strategy component x*{(a__,

We want to show that this method for selecting the components of
a behavior strategy for Player 1 leads to an optimal strategy. Suppose that
such a sequence has been chosen. Let us define the sequence of functions

V(I ) to be equal to V(L ; pﬁ('))- They have the property that

I. Min ) xx(a,_, olay, .., Snaetd Pys wees Dy VR L) = VR(T)
n+1
Ii. Min V*(I,) =V ,
b]
and
IIT. lim  V*(I ) = M(a, b)

N ———-x

uniformly, where M 1is the payoff function.

Property I is a direct consequence of the definitions. Property
IT follows from the application of the initlal functional equation. Prop-
erty III is a direct consequence of the continuity of the payoff function,
which implies that the values of the subgames approach the payoff function
for large fixed initial segments.

Now let us suppose that the strategy (x*) 1is played agalnst an
arbltrary mixed strategy for Player 2, which 1s represented in behavior
strategy form by the sequence of conditional distributions y(bn+]}a], ey
Bl ard Bys o eres bn). These two strategles give rise to a measure on the
space of all seguences of a's and b's with the property that

prob (&,, ..., a cevs B ) = x*(3,)

o

R ~ ~ ~ A
.o x*(an|a1, ) 12 ey bn_,)y(b1)

n-1?

A ~ " - n
... y(bnla-,! rery an~l; b1’ tery bn_]) )

and the functions V(In) become a2 sequence of random variables. Then

E(V* (1, 011,) = BV (I, ey, o Bn-ne1? Ppr cres Bp)

-~ ~ * byl
pI‘Ob(a1, . -,&n_'_],b.l » -c-,bn+] )

V(1 )

.3

Sn-age, ...
bn+ 1

» ~ ~ - ~ n+1
,one1 Problas eeay o aby,eenby)
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which in turn is equal to

~ ~

~ ~ b
* LR ] . LIE BN 3
N 2: X (an—k+2|a1’ v Bplagnd b1’ ’ bn—x+l)

Bp_a+e
A

bn+ 1

~

~ ~ ~ ~
y(bn+1§a1, cees 8 505 B,y eees bn)V*(I ),

n+1

~

because In+1 does not depend on Bh_ap3? U7 Bt

that this last expression is nct less than V*(In), and we obtain

Property I tells us

E(V*(In+1)|1n) > V*(In)

If we integrate out the conditloning variables and apply Property 1I, we
obtaln

E(V+(I _.,)) >V ;

n+1

and applying Property III yields
E(M) >V,

which tells us that our strategy is optimel.

There may be some questlon at this polnt as to which optimal
strategies of Player 1 are cbtained from the functional equation by the pro-
cedure outlined mbove. It 1s quite easy to glve eramples In which not all
of Player 1's optimal strategies are obtained in this way. It 1g true, but
we shall not prove it at this point, that the class of strategies obtained
from the functional equation will include the class of "best” strategies
for Player 1 (8, p. 841 (if we disregard those portlons of a strategy that
refer to situations of measure zero).

THEOREM 2. If the components of a behavior strategy
for Player 1 are chosen recursively in the way out-
1lined above, this strategy is optimal.

§5. OPTIMAL STRATHGIES FOR PLAYER 2

To obtain optimal strategles for Player 2, the game must be repre-
sented in the form kK = » + 1, £ = 0. The dlagram for the n-th subgawe in
thls case 1s
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movea for Player 1 in this subgame
™,

|
A A , L3 ™
Fn-a net | Snep
\ .
|
b -A+1 bn | bn+'|
— - II . ~— J
q, () | moves for Player 2 in this subgame
|
The game is specified by I = (&, ..., §n+i’ LI N

and g {+) = prob (b, ysps +++» Py). We notice that the first move in this
subgame 1s made by Player 2. If we denote its value by V(I q,(+)), the
functional equation is

V(I (+))

n’ 9n

A~

netd Lo C Iy

- Min Max E:q(g Wiz )y,

n-i+2

CACHIRT L SPUPTRTTYL-N0 i ¥ow
and by using the same techniques as in Section &, it is possible to compute
an optimal strategy for Plaeyer 2 in a recursive fashion from this functlon-
al equation.

§6. THE GENERALIZED SUBGAMES (OTHER VALUES OF k AND £)

In this section we conslder the representation of our game with
time lag i for general values of k and £(k > 1, £ >0, A = K + £ - 1).
For each walue of (%, £) thers will be two clagses of subgames, depending
on which player moves first. These will be generalilzatlons of elther the
games discussed in Section 3 or those discussed 1n Section 5. In what
follows we shall restrict our attention to the former.

Tne diagram for the n-th subgame 1s glven by

moves for Player 1 in the subgame
A

|
|
i
" — | N
i

by
v A
moves for Player 2 in the subgame

I
|
ap () !

This subgame 1s described, first of all, by the fund of informa-
tion known to both players after Player 2 has made his n-th move. In this
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case 1t will be a specification of Player 1's firat n - 2 + 1 moves, and
Player 2's first n - k¥ + 1 moves, say (31, ey €n~£+], 81’ ooy En—k+1) =
We also have glven an arbitrary pair of joint probability distributions

p,(*) = provla,_, ., -+, &) and g (+) = prob(b, 4 .o, +-+, b ). The game
will be denoted by Gn(In; pn('), qn(-)), and it proceeds as follows: The
mOVES 8, 4.y +e+s 8, are randomized from p (-) and told to Player 1

but not to Player 2. Simultaneocusly, the moves bn—k+2’ ceny bn are random-
1zed from q,(-) and told to Player 2 but not to Player 1. They then pro-
ceed a3 they would in the original game, with the same payoff M(a, b). We
still assume that this payoff is continuous, so that the general theorem of
{¢] applies and the game has a value, which we denote by V(In; pal ), a,(-)).
As before, there exlsts a sequence of functional relations. They take the
Form

V(L py(ds qn())

= Max Min
xay ey, nreemsay) ylb by pissee,by)

E:p(an_£+2)q(bn_k+2)V(In+1; pn+1('1a‘n—£+2)’ qn+1('|bn-k+2)}

= Min Max ... .

The 'proof’ 1s qulte simllar to the proof given in Section 3 and we shall not
repeat it here.

We would like to indicate the major difference between the func-
tional equations in this case and the functional equations that were dis-
cugsed’ 1n Sections 3 and 4. In those sections we showed how an optimal
strategy for Player 1 could be computed recursively from the functional
equation. The corresponding procedure for the present case would be the
following: Suppose that x*(a]} e x*(aqla], R N ?1, ey Pn—k)
have been computed. Then for any I, = (a,, «.., an—£+1’ biy e b )
we would consider a game Gn(ln; pn(°), qn(-}) with pn(-) defined by

~

~ "~
pn(.) = x*(an_£+2|a1, crr Bpigarr Bysoeens n-hrl)

“ee x*(an{a], ee, B by oees, bn-k) ’

n-17

and for some qn(-) which for the moment we leave undefined. Then

x(a ceuy an) would be chosen so as to maximlze

n+1|an-£+2’



GAMES WITH PARTIAL INFORMATION 225

Min > plé Ja(b )
n=-£+2 n-k+2
y(bn+11bn_k+2,...,bn)

V(I ('la ); (."6

.

n+13 Prsi n-£+2°? Gn4 n—k+2))
It 1s clear that thils choice would depend on qn(-), and we wéuld there-
fore only be able to show that the strategy we have chosen is optimal agalnst

a particular cholce of Player 2's strategy.

This means that in order to obtaln an optimal strategy for Player
1 in an arbitrary (k, £) representation (A > 0), we must transform this
representation into k = 1, £ = A by renumbering the moves of one of the
players and the addition of geveral wvacuous moves at the beginning of the
game, and then apply the method of Thecorem 2. To obtain optimal strategies
for Player 2, we must transform into k = x» + 1, & = 0,

§7. REMARKS

In our discussion we have consistently assumed that the payoff
function 1s continuous. This has permitted us to say that each subgame
under discussion has both a value and optimal strategy for either player,
and there is at least one point in the proof that we have given for the
validity of the functlonal equation in which the existence of optimal strate-
gles was specifically used. There are other condltions under which our sub-
gawes may be shown to have a value. For example, as 1s shown in (9], if
the payoff function is upper (lower) seml-continuous, then each subgame has
a value and optimal strategies exist for Player 1 (2). The question arises
as to whether the functional equations relating the values of these subgames
are still valid. It can be shown that a modification of the argument of
Section 3 yields this same functlonal equatilon, with Max Min replaced by
Max Inf (Sup Min). It is also true that optimal strategles for the player
who has them 1n the seml-continuous case can also be generated by means of
the functional equations. On the other hand, very little can be said about
the other player's strategies from the functional equation. To illustrate
thls point, let us assume that the payoff is lower semi-continucus, so that
the maximizing player does not necessariily have an optimal strategy. Let
us recurslvely plck strategles for Player 1, by choosing an X(an+1|an—x+e’
ceuy an) which is e¢/2M-effective in

JMin Do VI, b, 1A )Y
n+1

*

and as before, define V*(In) = V(In; pn(-))- Then it wlll be true that
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against any strategy for Player 2 we have E(V*(In+,)[In) > V*(In) - /o,
and therefore E(V*(In)) >V - €. But lover semi-continuity weakens Prop-
erty IIT of Section ¥ to:

. T, M(s, B) > TI  ve(I)> 1im VH(I ) > M3, B) .
8;b — a,b n—-w n—w

As a result, we can conclude that

E( lim , , M(a, B)) >V - ¢ ,
a,b -——a,b

but not that E(M(a, b)) >V - .

Even without the conditions of seml-continulty on the payoff func-
tion, 1t is still meaningful to talk about the functional equations. With-
out any condltlons on the payoff function, if we can find a solution of the
functional equations

V(I; p, ()

~

) x{a_ . |a Hax a ) BMin Z‘p(an—Me)V(Inﬂ5 Pn+;('|&n_k+2)) )
N+l Tn-at2? T

n n+1

with the property that V(In; p,(+)) — Mg, b) (say boundedly ), then
the strategy for Player 1, which 1as generated recuralvely from these equa-
tions, will guarantee Player 1 at least V(IO) agalnst any strategy of
Player 2.

§6. AN EXAMPLE

It may be 1nstructlve to show how the above techniques can be
applied to the celebrated "bomber-battleship" game to yleld functlonal equa-
tions. (References [3], [5], (6], [7].) We shall do this In two ways,
according to the two arrangements

Case I Case Iﬁ
: i
I
8n-1 8y !an+1 Bn  Bner ) 8o
M Mi/
| .
bn—1 bn bn+ 1 bn- 1 bn {bn+ 1
1
I
k=1, £=2 k=3, £=0
(a, and a, vacuous)

1 2
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The by will each be 0 or 1; the a; will each be 0, 1, 2, or @
{pass). The first 8 # @ 1is interpreted as a prediction that

bn + bn+l = ay or bn-2 + bn_1 = a,

{in Casze I). (in Case II)

The payoff Is 1 to the a-player for a correct prediction, ¢ for an in-

correct prediction or no prediction. This payoff 1s lower seml-continuous,
so optimal strategles are assured only for the b-player. (This formulation
follows Blackwell [11.)

In Case I we cbserve that the generalized subgame Gn(In; pn(-))
is trivial if any a; §@® 1in I, On the other hand, G (I ; pn(-)) and
Gm(Ié; Pu(+)) are completely isomorphic provided that p = p,, b, = b&,
and all ay, ai are @ (i.e., the earlier by, bi do not matter). Hence

we may write

v (I

n(Ins Pyl = £(xg, X5 X,) I no>

where v = bn and Xy = pn(a). Moreover, symmetry tells us that
fo(xo, P xa) = f](xa, S xo). Hence the functional equations of Theorem
1, n>1, reduce to the single equation:

tfo(u, V, W} + X

(1) £ (x, ¥, z) = Max Min
u,v,w
tfo(wj Vs u) + ¥

where t =1 -x -y -5 and u, v, w are restricted to be nonnegative
with sum < 1. The first equation (n = ¢) becomes

£ (x, ¥, 2)

V= VO = Max Min
X, ¥ 7
£f,(z, ¥, x)

for the value of the game. Eguation (1) 1s the same as equation (34) 1n
Isaacs! paper {6] and forms the basis of his anslysis of e-optimal strate-
gies for the a-player. The unique "ideal" (locally optimal) strategy is
given by x, = X, = X; = 0 — i.e., never predict — and is clearly not
optimal.

In Case IT, G.(I; q,(*)) is again trivial if any a; # @ In

I while the other games are entirely independent of all bi in In'

n’
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Thus, we have -

V(I a,(+)) =glx) If n>1 ,
where X = qn(o), 0<x < 1. Symetry gives us g(x) = g{y - x). Hence,
the functional equations of 3ectlon 5 reduce to

K1 (0}

x(1 =u)+ (1 - x)v (1)

{2) gix) = 02321 Max (1 - x)(1 - v) (2}
O<v<l

xg{u) + (v - x)glv) (@;

wlth
V=V, = Mn g(x)
b's
No Max appears because 8 1s an automatic pass In this case. This func-

tional equation has been studlied exhaustively. It develops that a mini-
mizing x* cen be chosen for (3) with the property that, if we set x = x»

in (2), the minimum 13 achieved at u = x*, v = 1 - x*. This mekes an opti-
mal strategy for the b-player extremely easy Lo descrlbe: always choose
b1 = bIl with probablllty x*, b, ., = 1 - bn with probability - - x*.

There 1s reason to believe that this phenomencn will not occcur in other re-
lated cases, such as the A = 3 version of the present example, but the
theory remains obscure on this polnt.
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