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In this note we shall obtain a proof of the fundamental theorem of
algebra, using the fact that a group invariant integral may be constructed
on a compact group. The essential lemma embodying this fact will be
the following impoertant preposition.

LeMMA. If @ group of linear transformations y; = Y, aiy(t)x; has the

I
property that [af,(t)| < M, then there exists a positive definite guadratic
form Y gixax; which is left invariant by all of the transformations of the
7

group.

In order to prove the fundamental theorem we shall assume, to the
contrary, that there exists a polynomial p(x) of degree » > 2, with real
coefficients, leading coefficient 1, which is irreducible over the reals, and
will deduce a contradiction. Then the ring Re[x]/p{x}, of polynomials
with real coefficients, taken modulo p(x) is actually a field, which shall
be denoted by F. This field may be considered as a vector space of dimen-
sion # over the real numbers, and after choosing a fixed basis, which we
assume done, may be represented by the points in #-space. If ¢ is any
non-zero element of F, then v = fx is a non-singular linear transformation,
where the multiplication used is that of the field. After deletion of 0,
the remaining points of #-space operate on themselves, and therefore
constitute a group space. However, it is still too early to use the lemma
mentioned above, since the coefficients of the transfortnation, which are
linear forms in the components of ¢, are not yet bounded, In order to
obtain a bounded subgroup, we consider the set 7 of elements of F which
have the property that N(x) = 1, where N{x) is the norm of an element
in #. The norm is a homogeneous polynomial of degree » in the # com-
ponents of x. As was mentioned before, if we write the transformation
¥ = fx in the customary matrix form, then the elements of the matrix
a(t) are linear forms in the components of t. Therefore to show that
ay(t) are bounded, it is sufficient to show that the components of ¢ are
bounded for all ¢ in . Assume that this is not so; then there is, in G,
a sequence of elements (;) whose maximum component in absolute value,
which we shall write as m(f;) tends to «. Then #,/m(¢,) has all components
€1, and at least one component equal to 1, in absolute value, but
Nit/m)} = NG/ [m@)]" = 1/[m(t)"] = 0. The sequence £/m(t;) has
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a limit point ¢ in F, which is not 0, but N(f) = 0. This is a contradiction,
and thus the lemma is applicable to &.

Let g(x} be that positive definite quadratic form, normahzed so that
¢(1) = 1, which has the property that g(tx) = g(x) for all # and x in G.
Putting x = 1, we see that for all tin G, g(t) = 1 = N({). Now if x is
any non-zero element of F, N{x/N(x)""} = 1, so that g{x/N(x) )Wt =1,
and g(x)® = N(x)?, since g(x) is homogeneous of degree 2. In particular,
we shall put x = » — r, where p(r) = 0, and # is a real indeterminate.
Then N{x) = N(u — r) = p{u} and g(x) becomes an irreducible quad-
ratic polynomial, say f(z). We obtain the relation f(u)* = $(u)®. There-
fore p(u) is divisible by f{#) and has a quadratic factor. If # > 2, this

contradicts the irreducibility of p(x).
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