The Origins of Fixed Point Methods

Herbert E. Scarf

In reflecting on my own involvement in the development of algorithms for
approximating fixed points of a continuous mapping, I am struck by two
recurring themes. The first of these is that chance meetings are terribly
important; where I was at various times, and who my colleagues were, made
a great deal of difference to me. T was very fortunate to find myself among
extremely stimulating associates at the beginning of my professional career,
people whose casual observations could shift my understandin gofa problem
in what were significant and even crucial ways. The second theme, which
will be discerned very clearly in the following account, has to do with the
indirect and circuitous nature of my own research and the vital importance,
for me, of genuine perplexity.

"The basic ideas of a numerical algorithm for approximating fixed points of
a continuous mapping were assembled in the spring of 1965. This was the
second year of my appointment as a Professor of Economics and as a
member of the research staff of the Cowles Foundation for Research in
Economics at Yale University. But my intellectual motivation for the project
arose from a set of earlier concerns about economic theory which can best be
described in a brief summary of my professional career up to that point.

I received my PhD in mathematics from Princeton University in 1954; my
thesis was supervised by Salomon Bochner and was on the subject of
diffusion processes on differentiable manifolds. During my years as a gradu-
ate student, there was a substantial amount of activity at Princeton in game
theory, but I remained totally innocent of this topic, of linear programming
and of the elements of mathematical economics. Raiph Gomory, Lloyd
Shapley and Martin Shubik were fellow graduate students; we spent a good
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deal of time talking to each other, but not on those subjects which were to
become our eventual professional concerns. I must admit that T found com-
binatorial topology very difficult to assimilate and probably would have
been unable, at that time, to give a statement of Brouwer’s fixed point
theorem, let alone a proof.

In 1954 T took a position in the Department of Mathematics at the Rand
Corporation in Santa Monica, California. At Rand, I learned the elements of
game theory from Shapley, and we collaborated on a paper on dynamic
games with incomplete information. George Dantzig had recently arrived at
Rand, and the basic themes of lincar programming were being developed
and applied to a striking variety of problems. John von Neumann, Jimmie
Savage and David Blackwell were frequent consultants to the organization,
Richard Bellman was certain that every problem involving the allocation of
scarce resources could be formulated as a dynamic programming problem,
and Lester Ford and Ray Fulkerson were just beginning their influential
work on optimal flows in networks. It was a marvelous location for a freshly
minted, twenty-four year old PhD.

‘Two occasional visitors to Rand played an extremely important role in my
subsequent career. Kenneth Arrow and Samuel Karlin were working on
inventory problems and I myself had become interested in the same topic.
Arrow and Karlin were kind enough to invite me to collaborate with themn at
Stanford University in 1956 and 1957 — a collaboration which resulted in
several volumes of collected papers. I stayed on as a member of the Depart-
ment of Statistics and the Institute for Applied Mathematics in the
Behavioral Sciences at Stanford — with a break in 1959-60 as a visiting
research scholar at the Cowles Foundation — until 1963 when I moved per-
manently to Yale.

The atmosphere at Stanford was genuinely exciting. There was a sense of
the great potential utility of mathematical reasoning in a variety of novel
areas: in mathematical biology, statistical decision theory, game theory and
in mathematical economics. Arrow had completed his work on social choice,
and had collaborated with Gerard Debreu on demonstrating the existence
and welfare properties of a competitive equilibrium, with a generality and
elegance made available by the theory of convex sets. Arrow was now work-
ing on the stability of equilibrium, which he was investigating jointly with
Hirofumi Uzawa and Leo Hurwicz. It was this subject which I turned to as
my first research topic in economic theory.

In order to describe the basic issue with which we were concerned, it may
be useful to review the elements of the general equilibrium model — restrict-
ing my attention to the important special case of an exchange economy. Let
there be n goods, so that a typical commodity bundle is represented by a vec-
tor x =(xy,...,x,) in R", and m consumers. The ith consumer is assumed to
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have a utility function «;(x), which specifies his preferences for the consump-
tion of commodities, and, moreover, to have an initial supply of goods given
by the vector w’. Since there is no production in the model, the total supply
of goods available for distribution among the consumers is . = Zw ",

A pricesystem p=(p, ..., p,) s given by a nonnegative vector in R”, nor-
malized so that Zp; = 1. If such a vector is announced, the tth consumer has
an income given by p-w’, and his demands for potential commodities are
assumed to be obtained by the maximization of his utility function #;(x), sub-
ject to the budget constraint p-x<{p-w'. Under plausible conditions, this
results in a demand function x;(#) which is continuous and which satisfies the
dentity px;(p)=pw’. The market demand functions x () are obtained by
adding up the individual demand functions over all consumers; they are also
continuous and satisfy p'x(#) =p-w. And, finally, the market excess demand
functions f{#) = x(p) — w satisfy the identity p- f(p)=0, for all prices, which is
known as the Walras law.

A competitive equilibrium is a price vector p* for which f(p*)<0, ie., a
price vector for which the demand for each good in the economy is less than
or equal to its supply (from the Walras law, fi(p*)=0 if p;*>>0). The
existence of such an equilibrium price vector had already been established
by an appeal to Brouwer’s fixed point theorem. But it was entirely conceiv-
able, based on what was known in the 1950’s, that the market excess demand
functions satisfied a variety of properties other than continuity and the Wal-
ras law, which might allow for an existence proof more appealing economi-
cally and less mathematically demanding than one based on Brouwer’s
theorem.

If p is not an equilibrium price vector, then some of the goods will have a
demand greater than their supply and the others an excess supply. Our
intuitive notion of the response of prices to a discrepancy between demand
and supply is that the price of a good 1n excess demand will rise, and the
price of a good in excess supply will fall. The scheme can be formalized by a
system of differential equations: dp,/dt = f(p), and the major question is
whether the solution, starting at an arbitrary disequilibrium price, will con-
verge to equilibrium.

We are all familiar with methods of this sort in mathematical program-
ming. The interpretation of dual variables as prices permits the simplex
method to be viewed as a type of price adjustment mechanism. Moreover,
the price adjustment mechanism will always converge for strictly convex
programuming problems: maximize { fo(x}| fi(x)<4,}, in the following sense.
Let p be a price vector for the constraints and let x(p) maximize
Jol(x)—Zpfi(x), without regard to the constraints. Then a solution to the
differential equation dp/dt= f(x(p))—¥b, with some adjustments for the
boundary of the nonnegative orthant, will tend to the true vector of Kuhn-
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Tucker prices for the nonlinear programming problem. The basic issue
explored by stability analysis of the general equilibrium model is whether the
introduction of consumers, with preferences and initial holdings, requires the
use of mathematical techniques more sophisticated than those customarily
used in mathematical programming.

An affirmative answer to the general question of stability would yield an
alternative proof, independent of fixed point theorems, for the existence of a
competitive equilibrium. But, even more significantly, I was intrigued by the
possibility that, if the general equilibrium mode! were always globally stable,
then the price adjustment mechanism would provide a numerical algorithm,
of a familiar sort, for calculating an equilibrium price vector. The answer to
the basic question is, however, negative; in 1959, I constructed a very simple
set of examples for which the price adjustment mechanism was globally
unstable. If the initial price was different from the unique equilibrium price,
the solution of the differential equation would cycle forever, without con-
verging. At the present time, this result is no longer surprising, since we now
know that market excess demand functions are essentially arbitrary aside
from continuity and the Walras law. We can, therefore, construct general
equilibrium models in which the price adjustment mechanism follows virtu-
ally any prescribed path.

During my visit to the Cowles Foundation in 1959-60, I renewed my ear-
lier friendships with Gerard Debreu and Martin Shubik. Shubik was in the
audience when I gave a lecture at Columbia University on the example of
mstability, and we took a long walk to his apartment in the East 50’s of New
York City. During the walk, Martin described a problem that he had been
concerned with, relating the core of an exchange economy to the set of its
competitive equilibria. Using our earlier notation, the core of an cconomy is
a distribution of society’s assets o = Zw', with the property that no coalition
can find a position of higher utility for all of its members by a redistribution
of the assets which they had originally owned themselves. Martin posed two
questions, the first of which was whether each competitive equilibrium for
the model of exchange gave rise to a distribution which was in the core, and,
secondly, whether the core would converge to the set of competitive equili-
bria as the number of consumers tended to infinity. The first of these ques-
tions was answered immediately. Lloyd Shapley was spending the evening in
Martin’s apartment, and provided a positive proof within seconds of hearing
the conjecture. The second question was a good deal more subtle and I took
it back with me when I returned to Stanford in the summer of 1960.

There was an immediate conceptual difficulty: how to model an ever
larger number of consumers without allowing for extremely diverse prefer-
ences? I took a clue from Shubik — and from Edgeworth, who had provided
an analysis for the case of two goods in 1881 — and assumed a fixed number
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of types of consumers, each of whom was replicated precisely the same
number of times in the passage to infinity. I was, after considerable difficulty,
able to produce a proof of convergence to the set of competitive equilibria,
under the rather restrictive assumption that the distributions being con-
sidered gave the same commodity bundle to all consumers of the same type.

I lectured on the result at a conference at Princeton University in 1962,
where I first met Robert Aumann, who subsequently made a dramatic
extension by formulating a model in which the number of consumers was of
the power of the continuum, thereby avoiding my previous difficulty with
types of consumers. Another dramatic simplification was unexpectedly
announced to me by Gerard Debreu during a ride from the San Francisco
airport to Stanford in the spring of 1962. Debreu presented an extremely
simple argument showing that under mild assumptions on preferences, an
allocation in the core would assign precisely the same commodity bundle to
each consumer of the same type. He then provided an elegant and geometri-
cally appealing proof for the main theorem to replace my earlier, convoluted
reasoning.

A reader might very well ask what all of this has to do with the computa-
tion of fixed points, After returning to Yale in 1963, and spending the first
year adjusting to a new subject — economics — in which I had no formal
training, it occurred to me that, if I could establish the non-emptiness of the
core, under classical assumptions, then the convergence proof would provide
an alternative argument for the existence of a competitive equilibrium. I
had, moreover, worked out a constructive algorithm for finding a point in
the core of an economy with three consumers whose preferences satisfied the
customary convexity assumptions. With perhaps more optimism than was
warranted, I attempted to extend this constructive argument to the general
case of n consumers, with the ultimate goal of obtaining an algorithm for the
computation of equilibrium prices.

The project was far more difficult than I had expected. T did formulate a
general theorem stating that a balanced n-person game, without transferable
utility, had a non-empty core, but the proof of the theorem appealed to pre-
cisely those fixed point theorems whose use I was trying to avoid. I was aware
of another line of attack, based on a combinatorial lemma involving
mathematical objects which I had termed primutive sets, but I could find no
algorithmic argument for the lemma, even in the special case of four consu-
mers.

I was, however, extremely fortunate. Bob Aumann was visiting at Yale
during the academic year 1964-65, and one day when I complained to him
about my frustrations, he suggested that I might wish to take a look at a
recent paper by Lemke and Howson, which provided an algorithm for com-
puting Nash equilibrium points for a general two-person non-zero sum
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game. Prior to Lemke’s work, the existence of a Nash equilibrium for an #-
person game had been demonstrated by an appeal to Kakutani’s fixed point
theorem, and, as such, there was no effective algorithm for its calculation.
Kuhn had shown that a vector representing a Nash equilibrium ~ for a
two-person non-zero sum game — would lie on a vertex of a certain convex
polyhedron, but his argument required the examination of all vertices, and
Kakutani’s theorem was still necessary to demonstrate existence. Lemke’s
ingenious path following argument not only demonstrated existence of Nash
equilibria for two-person games, but also provided an effective algorithm
which typically traversed a small subset of all possible vertices. The algo-
rithm is also available for the more general linear complementarity problem,
and was fundamental in initiating this vital field.

The essence of Lemke’s algorithm can be found in the following charming
little tale. Imagine a house with many rooms, each of which has precisely two
doors. The number of rooms is finite and one of the rooms has a door opening
to the outside of the house. Then there must be at least one other door lead-
ing out of the house, which can be found by the following algorithm. Enter
the house through the known door to the outside, and then move from room
to room, always exiting through the door not used to enter the room. It is
easy to argue that the algorithm never revisits a room previously encoun-
tered; since the number of rooms is finite, the algorithm must terminate, and
termination is only possible by encountering a second door to the outside.

One look at the Lemke-Howson paper was enough to convince me that the
path following argument could be translated directly to the combinatorial
setting I had been struggling with for so long. T showed Aumann the algo-
rithm that same evening, spent the next several weeks learning how to write
Fortran programs, and calculated my first example of a point in the core of a
four-person exchange economy.

I'was still quite far from a general algorithm for computing fixed points of
an arbitrary continuous mapping. My computational procedure did permit
me to approximate a competitive equilibrium in the sense that I could obtain
an approximate point in the core of an exchange economy, and, if the
number of consumers was sufficiently large, this would approximate a com-
petitive equilibrium. The required double limit was extremely unsatisfac-
tory, however, and it was not until the fall of 1966 that I realized that my
combinatorial lemma, and its related algorithm for finding a completely
labeled primitive set, could be used to prove Brouwer’s theorem directly and
to calculate an approximate fixed point of a general continuous mapping.
The paper, “The Approximation of Fixed Points of a Continuous Mapping’,
was written in early 1967. T am astonished, as I reread the paper, that I was
still totally unaware of the relationship between my combinatorial lemma
and Sperner’s lemma — the classical combinatorial approach to Brouwer’s
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theorem. The two mathematical results are virtually identical, but, for some
unknown reason, I could not rid myself of the prejudice that there simply was
no constructive algorithm to find the completely labeled simplex whose
existence is asserted by Sperner’s lemma.

The computational procedure worked pretty well in practice, and I had
solved quite a few numerical examples by the time I left for Israel, on a pro-
fessional visit, in the spring of 1967. Just before leaving, Terje Hansen, who
was at that time a graduate student in my class in mathematical economics
at Yale, told me that he had discovered a great improvement in the algo-
rithm, and asked me to provide him with some computer time to test his
method. When I returned, some six weeks later, Hansen had programmed
his algorithm and was solving fixed point problems whose dimensions were
considerably larger than those I had previously dealt with.

In order to describe Hansen’s improvement, it is useful to be explicit about
the concept of primitive sets. Let x(n +1),...,x(/N) be a large set of vectors
on the simplex S={x=(x,...,x,): x,20, Zx; =1}, more or less uniformly
distributed throughout the simplex. Make the non-degeneracy assumption
that no two vectors x () and x (k) have the same ith coordinate for any 1.
Then {x(;'),...,x(;")} form a primitive set if no vector x (k) is strictly
larger, in all coordinates, than min{x(;'),...,x(j"}}. We also define n spe-
cial vectors x (1), ... ,x(n) — which are not themselves on the simplex — by
letting x (i) be negative in its ith coordinate and greater than 1 in its remain-
ing coordinates, and extend the definition of primitive sets to include some of
these special vectors — called slack vectors — in addition to those lying on the
simplex.

If the set of points {x(7)} is fairly dense, then the vectors forming a primi-
tive set will be close to each other, and close to the ith face of the simplex if
the sth slack vector is contained in the primitive set. Moreover, if
{x(1),...,x(")} is a primitive set, then any particular one of its members
can be removed, and there will be a unique replacement which forms a new
primitive set — except for one special case: the primitive set consists of n — 1
slack vectors and one vector from the original list, which we are attempting
to remove. It is this replacement property which permits us to wander
throughout the simplex — using Lemke as a guide — in search of a specific
primitive set with desirable properties. For example, if each of the vectors
x(7) is assigned an integer label from the set {1,...,n}, which is arbitrary
aside from the stipulation that x (:)=: for =1, ...,n, a variant of Lemke’s
argument will yield a path of primitive sets starting at a vertex of the simplex
and terminating with a completely labeled primitive set.

Now let x-»g (x) be a continuous mapping of the simplex into itself. If we
label a vector £E€{x(n +1),...,x(N)} with the first subscript 1 for which
g:(£)=¢&;, it is easy to see that any non-slack vector in a completely labeled
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primitive set will yield an approximation to a fixed point of the mapping.
This does yield a workable algorithm for approximating fixed points, but its
applicability is compromised by the fact that the replacement step requires a
search throughout the entire list of vectors {x(;)}. It was this crucial prob-
lem that Hansen solved by providing an alternative to my concept of primi-
tive sets.

Let ¢’ be the n-vector (0,...,0,1,—1,...,0) with +1 in the ith position
and —1 in position ¢ +1 (if { =n, the first coordinate is — 1 and the last coor-
dinate 1). Hansen considered n Xn integral matrices [x',...,x"], with the
property that x/ 1 =x/+¢% with ¢(;) a permutation of the integers
1,...,n (ify=n, j + lisunderstood to be 1). Itis easy to verify that there is a
unique, easily computed replacement for any column in such a matrix,
yielding another matrix of precisely the same form. If the columns are non-
negative and D is the common column sum, then the vectors x//D lie on the
unit simplex. When the labels associated with the vectors x/ are appropri-
ately assigned, the columns of a Hansen matrix with distinct labels can be
used to approximate fixed points as before, but the replacement operation is
now trivial to carry out for problems of substantial size.

Let the columns of such a matrix, each divided by D, be the vertices of a
subsimpiex in the unit simplex .S. Then the collection of subsimplices arising
from the set of all Hansen matrices form a classical simplicial subdivision of
the simplex known as the Freudenthal subdivision. But we did not know this
elementary geometrical fact in 1967; to the best of my recollection neither
Hansen nor I ever made a drawing which would have immediately revealed
that we were working with a simplicial subdivision and that our combina-
torial lemma was virtually identical with Sperner’s lemma.

Our innocence was not to last much longer. In January of 1968, T received
a letter from Bob Aumann alerting me to a paper by D. I. A. Cohen entitled
‘On the Sperner Lemma’, which had been published in the Journal of Com-
binatorial Theory in June of 1967. In the paper, Cohen uses an argument simi-
lar to that of Lemke to establish the existence of an odd number of com-
pletely labeled simplices, under the usual assumptions of Sperner’s lemma.
Cohen does not appear to have thought about converting his proof into an
algorithm for calculating a completely labeled simplex; this would have
required some reworking since his argument uses induction on the dimension
of the simplex. The same issue of the journal also contains a paper by Ky
Fan, which generalizes Cohen’s approach from the simplex to an orientable
pseudomanifold, and which presents the tale of the house each of whose
rooms has precisely two doors. And, finally, in April of that same vyear,
Harold Kuhn sent me a draft of an article, eventually published in the
Proceedings of the National Academy of Sciences, in which he directly used the
Lemke argument to find a completely labeled simplex implied by Sperner’s
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lemma. During our discussions of the next several months, Harold and I
became aware of the geometrical interpretation of Hansen’s construction
and of the basic identity of the two algorithms.

By the middle of 1967 we were in possession of an effective algorithm for
the approximation of fixed points of a continuous mapping. It is not possible,
in this essay, to summarize the many improvements in the basic algorithm
realized during the next two decades, and the great variety of applications
that have been made in economics and other fields. But I will mention one
particular set of refinements which has greatly enhanced the performance of
fixed point methods. The earliest algorithms had the drawback that the com-
putation was initiated at a vertex of the unit simplex. If the accuracy
obtained at the final completely labeled subsimplex was not sufficient for the
problem at hand, we could either avail ourselves of some numerical tech-
nique like Newton’s method — not guaranteed to converge ~— or take a finer
subdivision, and reinitiate the algorithm at a vertex. If the latter approach
was selected, the information obtained from previous calculations was dis-
carded totally. :

Kuhn’s paper contains a nibble at this problem, in the sense that his algo-
rithm can be started anywhere on the boundary of the simplex, rather than
at one of the r vertices. But the decisive improvements were made by Eaves,
Merrill, and Van der Laan and Talman, whose algorithms permit the com-
putation to be initiated at an arbitrary point on the simplex and allow a con-
tinual refinement of the simplicial subdivision in the course of the procedure.
These algorithms, which are essentially piece-wise linear homotopy
methods, are used in virtually all applications. They are intimately related
to the continuous path following algorithms of Kellogg, Li and Yorke, and
Smale.

I finally met Professor Sperner at a conference on fixed point methods at the
University of Southampton in July of 1979. The two of us alighted from the
same train, and after a few moments of hesitation, we introduced ourselves.
We talked about the consequences of the theorem he had demonstrated some
fifty years earlier, and he seemed very pleased. Afterwards, reflecting on our
talk, I thought about that mysterious feature of mathematics, always per-
plexing and enchanting to me: the way in which an act of pure imagination
can lead to unexpected practical applications in areas that are totally
removed from the originator’s wholly abstract concerns.



