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THE APPROXIMATION OF FIXED POINTS OF A
CONTINUOUS MAPPING*

HERBERT SCARF7

1. Introduction. Brouwer’s fixed-point theorem states that a continuous
mapping of a simplex into itself has at least one fixed point. This paper
describes a numerical algorithm for approximating, in a sense to be ex-
plained below, a fixed point of such a mapping.

Let S be the simplex {x | 2 1eim: = 1, 7, = 0}. A continuous mapping of
the simplex into itself is given by a collection of n functions fy(x), -- -,
fa(7), continuous for all = € S, and having the properties: D iy fu(w) = 1,
and f,(r) = 0. Brouwer’s theorem states that there exists a # € S such that
f(#) = #.

The theorem may be demonstrated by means of a combinatorial result
known as Sperner’s lemma [1], which it will be useful to review. Let
x, -+, 7 be a sequence of distinct points selected arbitrarily on the sim-
plex S. By connecting ' to each of the n vertices of S we partition S into n
subsimplices (see Fig. 1). We then connect «” to the n vertices of each sub-
simplex to which it belongs, and continue the successive refinement with
x°, --+, «". The result is a particular type of partition of S into a number
of subsimplices, whose maximum diameter can be made arbitrarily small
by a suitable selection of the sequence «, -+ - , «".

We associate with each vertex = an index ¢ such that ». > 0 and
fux) £ w,. There clearly will be at least one such index for each vertex
and if there are several we make an arbitrary choice among them. Sperner’s
lemma then states that at least one subsimplex of the partition has all of its
vertices indexed differently. In other words, a subsimplex may be found so
that at each of the n vertices a different coordinate is not increased by means
of the mapping f.

As vertices are added the partitions become more refined, and the vertices
may be selected in such a way that the maximum diameter of the sub-
simplices appearing in the partitions tends to zero. Each partition contains
a subsimplex all of whose vertices are labeled differently, and a subsequence
may be found whose vertices converge to a single point #. Since the mapping
is continuous, f,(#) = #; for all 4, and therefore # is a fixed point of the
mapping.

We can think of approximating # numerically in two distinet ways. The
first is to attempt to determine a region of small diameter in which # must
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necessarily lie. This approach requires us to anticipate the limit points of a
sequence from a finite amount of data and is nonconstructive for general
mappings.

An alternative approach is to determine, for arbitrary e, a point = whose
image is at a distance less than e from itself. Sperner’s lemma may be used
to approximate a fixed point of f In this sense. Since f is continuous, for a

given ¢ > 0 there is a § such that |f(z") — f(«")| £ e whenever
|7 — «"| < & where the norm |z]| is taken, to be specific, as
max (a1, - -+, | 2. |). If the maximum diameter of the subsimplices in the

partition is 8, then any point # In a subsimplex whose vertices are labeled
differently will satisfy |f(x) — 7| £ (n — 1)(e + 6), and will therefore
serve as an approximate fixed point in this sense.

There is a very serious practical difficulty, however, in this approach.
The number of vertices required to determine a partition of small diameter
is enormous even for moderate values of n. For example, if n is 7 and if the
vertices are selected as the lattice points (ki/D, -- -, k,/D), with k, non-
negative integers satisfying 2 1 k, = D, then some 80 billion vertices are
required for D = 200, and the number of subsimplices in the partition is of
course larger. Moreover, Sperner’s lemma suggests no procedure for the
determination of an approximate fixed point other than an exhaustive search
of all subsimplices until one is found with all vertices labeled differently.
Clearly some substitute for an exhaustive search must be found if the prob-
lem is to be considered tractable, and the current proofs of Sperner’s lemma
offer no suggestion in this direction.

In this paper a new combinatorial theorem will be described which may
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also be used to demonstrate the Brouwer fixed-point theorem. This theorem
involves, as does Sperner’s lemma, the selection of a fine grid of points on
the simplex S, but it differs from Sperner’s lemma in that a systematic
algorithm is used to determine the sequence of points to be examined. The
algorithm has been applied to a number of examples and seems to work
remarkably well. The computational experience, which is discussed in
§§5 and 6, suggests that the algorithm is quite practical for the approxima-
tion of fixed points of certain mappings, when n is less than 15 or 20.

Section 7 discusses the generalization of this algorithm to contmmuous
mappings of a closed, bounded, convex polyhedron into itself. It is somewhat
more complex than the rest of the paper, and can be avoided by the casual
reader.

Though it may not be apparent from the arguments of this paper, the
algorithm is intimately related to the procedure described by Lemke [2]
for the determination of Nash equilibrium points of two-person nonzero-
sum games.

2 A combmatorlal theorem. We consider a finite set P, of vectors
™, -+, @, -+, 7 in n-dimensional space The vectors "™, -+, 7"
are selected arbitrarily on the simplex 8 = {7 |2, x, = 1, =, 2 0}. The
first m vectors, which are not on the simplex, have the following specific
form:

7T1 = (0, M1, ,]‘11),

7rQ (M2:01 ""*71[2);

= (Mn;Mn; "'10):

with the M, satisfying My > M, > -+ > M, > 1.
DeFINITION. A set of n vectors 7, - - -, o™ in P, will be called a primi-

tive set if there are no vectors #’ in P, with

7 : 7
717 > min (71]1, T, "),

7['1;‘7 > min (7r11,]1! Tt 7Tn1n)'

There is a simple geometric interpretation of a primitive set.! Let
7™, -+, #™ be a set of n vectors in P, and consider the subsimplex of S
defined by

7, = min (#,”, -+, 7, for ¢=1,---,n,

1 In [3] the term “ordinal basis’’ was used for a primitive set of vectors, in order
to suggest a connection with the use of “basis’” in linear programming.
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and Y x, = 1. If the subsimplex contains no vectors of Py in its interior,
then the n vectors «’', - -+, #’ form a primitive set. It will be useful to
refer to such a subsimplex as a primitive subsimplex.

In Fig. 2 the vectors =, «° and «° form a primitive set, since no vector
7’ in Py is interior to the small subsimplex in the figure which contains
11'4, 7 and 7.

As Fig. 2 illustrates, #°, =° and =" also form a primitive set, since no vec-
tor in P; is interior to the subsimplex generated by =°, =", and the edge of
S in which the second coordinate is zero.

It will be convenient to make the following assumption which can easily
be brought about by a perturbation of the vectors n P, .

NONDEGENERACY ASSUMPTION. No two vectors in P, have the same ith
coordinate for any .

With this assumption, a primitive subsimplex will have each of its n
bounding faces parallel to one of the coordinate hyperplanes, and each
face will contain precisely one vector in the primitive set, namely, that vee-
tor in which the corresponding coordinate is smallest. If the primitive set
contains =" with ¢ £ n, then the primitive subsimplex contains that face
of S with the 7th coordinate equal to zero.

In our applications each vector in P, will have associated with it an index
selected from the integers between 1 and n. The index associated with a
vector is arbitrary except for the first n vectors in the list. We shall require
that «* have the index 1, «° the index 2, ete. The combinatorial theorem
may now be stated.
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TaeoREM 1. There exists a primitive set, all of whose vectors are indexed
differently.

When Theorem 1 1s applied to Brouwer’s theorem, each vector «’, other
than the first n vectors, is given an index ¢ for which f,(x’) = =.’. A primitive
set of the type referred to in Theorem 1 will contain some vectors from the
first n, say {#’} withj in an index set I, and some from the remaining vectors
in P, . The primitive subsimplex associated with this primitive set will be
bounded by an edge =, = 0 for each ¢ € I, and by an edge passing through
each remaining vector in the primitive set. The latter vectors will have an
index not in I, so that for every 7 there is some vector in this subsimplex for
which f.(7) = =..

An appropriate sequence of vectors may be selected, so that as k tends to
infinity the maximum diameter of a primitive subsimplex tends to zero,
since no vectors in P, are interior to such a subsimplex. Therefore, a
sequence of primitive subsimplices may be found which converge to a single
vector #. Using the continuity of f we see that f.(#) = #, for all 4, so that #
is a fixed point of the mappmg.

3. A preliminary lemma. The following lemma is the main tool in our
algorithm.

LemuMa 1. Let #, -+ -, o™ be a primitive set, and let = be a specific one of
these veclors. Then, aside from one exceptional case, there s a unique vector
' € Py, different from w*¢, and such that (=, - - - , @ o’y @, oo 1™)
form a primatwe set. The exceptional case occurs when the n — 1 vectors =™,
with 1 £ «, are all selected from the first n vectors of Py, and in this case no
replacement s possible.

The lemma states that aside from the exceptional case, if an arbitrary
vector is removed from a primitive set, there is a unique replacement so
that the new set of vectors is a primitive set. The new vector «’ which re-
places =’ may be found by a simple geometric construction. To illustrate
this construction let us assume that »,”* = min («,”*, -+, 7,”") so that
" is on that face of the primitive subsimplex on which the ith coordinate is
constant (see Fig. 3). Assume, moreover, that ' is being removed.

Let =" be that vector in the primitive set with the second smallest value
of its first coordinate. j,» will be greater than n unless the exceptional case
arises. To find the vector to replace ="' we move the face containing "
parallel to itself, lowering the i*th coordinate until we first intersect a
vector =’ in P with

x> wn for i 1,i%
and
‘lrl] > 7Tlh*,

or the face of the simplex S in which 7.» = 0.
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The rule is applicable except when the vectors ™ with ¢ 3 1 are all selected
from the first n vectors of Py, and it clearly produces a new primutive set.

In order to finish the proof of Lemma 1 we must ask whether there is any
vector =' other than =’ which yields a primitive set when it replaces =’

Observation 1. If (', «%, -+, ©’*) forms a primitive set, then for
i 5 1,7%, we must have =** on that bounding face of the new primitive sub-
simplex whose ¢th coordinate is constant.

If this were not the case for some such ¢, then #”* would be on none of the
bounding faces of the new primitive subsimplex and this is impossible.

As a consequence of this observation we see that the new primitive set
satisfies

. 1 . T3
m" = min (v, 7%, -+, 7™) for ¢#1,7.
There are two alternatives to be considered for the remaining two co-
. . 1. . .
ordinates. Either ' is on that face with constant first coordinate and ="
on that with constant 7" th coordinate, or vice versa.

Fic. 3
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Observation 2. If (', #'%, -+, ™) forms a primitive set and «* # =",
then 7' must be on the face of the new primitive subsimplex whose *th co-
ordinate is constant, and =" on that face with constant first coordinate.

If this were not correct, then the new subsimplex would have #” on that
face on which the ith coordinate is constant for ¢ = 2, -- - , n. But then if
m’t < 7rll, the old subsimplex contains 7' in its interior, whereas if " > m'
the new subsimplex contains =™ in its interior. It follows that ' = m'" and
since no two different vectors have the same first coordinate we must have
{ = /1, and we are back where we started.

Observation 3. If (x', 7’2, - -+, #'*) forms a primitive set and ' # =",
then =’ must be that vector =’ deseribed above.

This follows since we have already shown that =™ is on that face of the
new subsimplex with constant ¢th coordinate for ¢ 5 1, i* and that =" on
the face with constant first coordinate.

The reader may easily fimsh the proof of Lemma 1, by demonstrating
that no replacement is possible in the exceptional use.

4, The algorithm for Theorem 1. We recall that each vector in P, has
associated with it an index selected from the first n integers. Intheapplica-
tion of Theorem 1 to Brouwer’s theorem the indices depend on the particu-
lar mapping, but for the present the assignment of integers is arbitrary aside
from the assumption that forj = 1, - - - , n, 7’ is associated with the index j.

Our purpose is to determine a primitive set all of whose members are in-
dexed differently. The algorithm will begin with a primitive set whose
members are indexed differently with the possible exception of one pair of
vectors with the same index. Consider the set of vectors («°, -+, ", =)
with =" selected from those vectors beyond the first n so as to maximize the
first coordinate. Clearly,

min (m]*, 7rz2, e, )

is given by =,”* for i = 1, and zero for ¢ > 1, and this set of vectors is primi-
tive since no vector In P; can have all of its coordinates strictly larger than
those of (", 0, -+, 0).

If the vector =~ were associated with the index 1, then the problem
would be over since all members of this primitive set would have a different
index. Generally this will not be the case and =’~ will share an index with one
of the vectors ©°, - - - , =". Our algorithm will always be involved with prim-
itive sets of this type. In other words at each step of the algorithm we will
have a primitive set whose indices have the following properties:

(i) The index 1 will not be associated with any vector.

(ii) All vectors in the primitive set will be indexed differently, except for

one pair of vectors with the same index.
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The algorithm proceeds by taking one of the two vectors with the same
index and removing it from the primitive set, either obtaining another
primitive set with the same properties or else terminating with a solution.
If we are not at the mitial primitive set one of the two vectors with a com-
mon ndex will have just been introduced in order to arrive at the current
position. The algorithm proceeds by eliminating the other member of the
pair.

In other words, at each stage of the algorithm after the first, there are
two possible removals that will take us to a prinutive set with the same
properties. One of these steps has been taken to get to the current position.
We therefore take the other step. There is only one vector which can be re-
moved from the inifzal primitive set, namely, that vector =’ (with 2 £ j <n)
with the same index as «’". The other possibility, that of removing =", is
the exceptional case referred to in Lemma 1.

The algorithm ean only terminate when a primitive set is found, all of
whose vectors are indexed differently. It should be clear that the algorithm
can never return to a previous primitive set, for if the first return is made to
a primitive set other than the nitial one, then there would be three, rather
than two, ways to emerge from that particular primitive set. On the other
hand, if the first return is to the initial primitive set, there would be two ways
of emerging from the initial set.

Since there are a finite number of primitive sets, the algorithm must
terminate in a finite number of steps with all vectors indexed differently.
This demonstrates Theorem 1.

6. Some computational techniques. The algorithm has been programmed
on an IBM 7094, and several examples have been tried. Before describing
the results of the computations, it might be useful to indicate a few of the
special techniques that have been incorporated into the program.

The first problem encountered in programming the algorithm is that of
selecting an appropriate set of vectors P; . Each state of the algorithm in-
volves a primitive set of n of these vectors. A specific one of these vectors is
eliminated from the primitive set and its replacement found by calculating
a vector @ and a specific coordinate i*, examining all vectors in P, with
x> a, for i # 2~ and selecting that vector with the largest value of ri .

It is clearly quite useful to construct Py so that the selection of the new
vector can be done without an exhaustive search of all of the vectors in Py .
For example, if P, consists (aside from its first » members) of all vectors
(ky/D, - -+, ko/D) with k, positive integers satisfying ky + --- + k. = D,
then each a, will be an integer divided by D, and the new vector #’ will either
begivenby r, = a, + (1/D) fori = ¢ andwis = 1 — D20 (@, + (1/D)),
or else be one of the first n members of Py .
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If P;, has this special structure, the selection of the new vector may there-
fore be done by a simple computation, rather than a search over an enor-
mous number of vectors. On the other hand, this choice of P, does not
satisfy the assumption made in §3 that no two vectors in P, have the same
ith coordinate for any 7, an assumption which is indispensable for the appli-
cation of the rule given in Lemma 1. In order to avoid this difficulty some
systematic procedure for resolving ties between two vectors must be used.
The particular procedure used by this author is to construct at each step in
the algorithm a matrix

1 [4
0 -+ M, w7 -oom
M,

1 i
M1 0 7l'nn+ Tn

consisting of the first n vectors of P, and all other members of P which have
previously been introduced into a primitive set, in the order in which they
have been introduced. Then, if two columns in this matrix have identical
elements in the ith row, the first is assumed to be larger, and if a vector in
the matrix has an identical entry in the 7th row with some vector not in the
matrix, the former is assumed to be larger. 1t may be demonstrated that this
procedure for resolving ties also leads to a finite algorithm.

In the determination of #’ a search is then made only over those vectors
which have been used in some previous step; the remaining vectors in P, are
examined by a single algebraic calculation. The number of vectors to be
examined explicitly can be no larger than the number of iterations plus n,
and if the number of iterations is relatively small this search is quite manage-
able. There are, of course, other ways to resolve ties which surely involve
even less computation, and which will be introduced in subsequent versions
of the program.

The algorithm terminates with a primitive set all of whose vectors are
differently indexed and any point in the geometric subsimplex of S cor-
responding to this primitive set will serve as an approximate fixed point. In
order to select a unique point, it is assumed that the functions f,(«) are
linear in a region around this subsimplex, and a point is selected which
minimizes the maximum of (fi(w) — 71, -+, fa(7) — m), or some other
measure of closeness. On the basis of computational experience, this seems to
be a very useful way of terminating the algorithm.

6. An example from economics. The particular examples of Brouwer’s
theorem that will be described arise from an important problem in mathe-
matical economics, that of determining equilibrium prices in a general
economic model of exchange. Fixed-point theorems have been invoked by
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many authors to demonstrate the existence of equilibrium prices but have
never been used for the purpose of explicit caleulation.

Let n be the number of commodities in the economy and m the total
number of economic agents. The Ith agent is assumed to respond to a vector
of nonnegative prices 7 = (m, - -+, 7.) by a vector of excess demands

gi'(m), -+, ga'(x) forthe n commodities.

More explicitly, the function g.'() represents the net increase in commodity
1 desired by the Ith agent at prices . If g,l(qr) < 0, the Ith agent wishes to
decrease his holdings of commodity 2 and to use the proceeds for the
purchase of those commodities with positive excess demand. The following
assumptions are customarily made about excess demand functions:

1. Each ¢.'(7) is homogeneous of degree 0, an assumption implying that
demands are determined by relative rather than absolute levels of prices.
This permits us to restrict our attention to prices on the simplex
S = {W]Zm= 1, =, = 0}.

2. For each individual I we have mg:'(w) + -+ + magn(r) = 0, or, in
other words, purchases of commodities with positive excess demands are
financed exclusively by the sale of commodities with negative excess de-
mands.

3. Each excess demand function is continuous on the simplex S.

For each commodity ¢ we define

gi(m) = 12: g. ()

to be the market excess demand for that commodity.

A vector of prices is in equilibrium if at these prices the market excess
demand for each commodity is less than or equal to zero, and actually equal
to zero if the price associated with that commodity is strictly positive. It is a
simple matter to demonstrate, by means of Brouwer’s theorem, thatan
economic model satisfying the above assumptions does have at least one
equilibrium price vector.

The mapping used in Brouwer’s theorem is defined, for prices on the
simplex S, by

7, + A max (0, g.(z))
) = T3 max (0, gu(m)

with N a small positive constant. The mapping is clearly continuous and
takes the simplex into itself, so that Brouwer’s theorem is applicable. Let
# be a fixed point. Suppose, first of all, that > rmax (0, gx(#)) > 0. Then
#, + Amax (0, g.(#)) = C#, with C > 1, and it follows that g.(#) > 0 for
every i with #, > 0. Since this violates the assumption that
tigi(#) + -+ 4 #uga(#) = 0, we may conclude that > max (0, go(#)) = 0
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and therefore g,(#) =< 0 for each ¢. Again appealing to #g1(#) + --+ = 0,
we conclude that g,(#) = 0 if #, > 0, so that a fixed point of this mapping
does indeed yield an equilibrium price vector.

In the application of our algorithm a vector = will be labeled with an
index ¢ for which f,(7) = =, or

xmﬂmmu»grghmﬂmwu»

It will clearly be sufficient to select an index ¢ which maximizes ¢.(7)/x, .

In order to proceed with the algorithm we need to specify the individual
excess demand functions ¢,/(r). The following will be selected from the
many that have been described in the economic literature. Let W = (wy)
and A = (agx) be two strictly positive matrices with m rows (one for each
agent) and n eolumns (one for each commodity). Also let by, « -+, bw be a
strictly positive vector. We define gi(m) as

(2213 Z Wik T
k
b 1-b
L l Z Qi T !
k

Aside from a possible discontinuity on the boundary of the simplex, the
assumptions previously made are satisfied for these excess demand functions,
and the algorithm may be applied. For those readers who are curious about
economics, these excess demands arise from a model of exchange in which the
Ith individual initially owns wy units of the kth eommodity, and has a
utility funetion given by

ul(x) — (L:: (alk)l—alxkal)llal

withb; = 1/{1 — a;). Other readers may find it sufficient that we are study-
ing a class of continuous mappings which are highly nonlinear, and to which
simple gradient methods do not apply [4]. Let us consider the following
examples.

Example 1. In this example the number of commodities is five and the
number of economic agents is three. The parameters of the excess demand
funetions are given by

— Wi, .

1. 3. 10. 1. 2.
W=| 1 2 2. 5 6 |
15 5 15 5 108
; 1. 8 15 1. 9
A =] 3 S 12 16 18|, b=1 13
L 9 8 2 1. 18 8
The set P aside from its first five members consists of all vectors
(k1/160, - - - , ks/160) with &, positive integers summing to 160. There are

some .26 X 10° such vectors. The algorithm terminated after only 158
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iterations, with the following primitive set:

7 ? ? ’ 7
T w? e =~

13 12 13 13 12

6 6 6 6 6 |,
26 25 25 24 25 J
15 15 14 15 14

where the components of each veetor add to 160 rather than 1.

When these five vectors are averaged according to a linear programming
problem which treats the excess demands as locally linear, the following
price vector is obtained:

101 102 103 102 103]

# = (1049, 123, 52, 23.6, 14.1),
and the market excess demands are given by

(g(#)) = (02, —.02, —.27, —.01, —.00).
The image of # under the mapping is given by

, #. + A max (0, ¢.(%))
T =1F ;max (0, gx(7))’

after the prices have been divided by 160. The degree of approximation of
the mapping depends on the choice of N, but the excess demands are a very
small fraction of total supply (the eolumn sums of W), and this is the rele-
vant consideration.

Ezample 2.
3. 1. 1 d 5 1 1 6
10 1 1 & 1 1 1
W = 9 10. 1 4
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Here there are eight commodities, and the vectors were selected as
(k1/200, - -, ks/200), with 2 k, = 200. There are some .22 X 10" such
vectors and the algorithm terminated in 640 iterations with a primitive set
given by

581 53 B3 52 53 52 53 53
7T 6 7 7 v 7 7 7
14 13 13 14 14 14 14 13
20 20 20 19 20 20 19 20
15 15 14 15 14 15 15 15
58 58 58 58 58 57 58 58
23 23 23 23 22 23 22 23
1212 12 12 12 12 12 11 ]

After averaging, the following price vector and excess demands were
obtained:

#= (564, 6.3, 127, 185, 136, 60.0, 215 1L11),
(g#)) = (—.1, —2, .05 .05 .03, .07, .05 —.04).

The answer here seems not to be as close a fit as the answer to the first
problem, but the impression of the author is that this can be remedied by
either an extension of the terminal linear programming problem, or the
imposition of a finer grid for the first two commodities.

Ezxample 3. This final problem terminates quite rapidly with a remarkably
good fit, even though it is a larger problem than the previous ones, involving
10 commodities. We have

[ 6 2 2 20. 1 2 9. 5 5 15

2 11. 120 13. 14 15 16, 5 5. 9.
W=, 4 9. 8. 7. 6. 5. 4. 5 7. 12 4,

1. 5. 5. 5 5. 5. 5 8 3. 17.J

| 8. 1. 22. 10. 3 9 51 .1 62 11

[ 1. 1. 3. .1 1 12 2. 1. 1 7

1. 1. . 1. 1. 1. 1. 1. 1. 1
A=1099 1 5 2 6 2 8 1. 1 21,

1. 2. 3. 4 5 6. 7. 8 9. 10 J

1. 13 1. 9. 4 9 8 1. 2. 10.
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The prices were selected by i’ k, = 250. There are some .87 X 10
such vectors and the algorithm terminated with 468 iterations. After averag-
ing the ten vectors in the primitive set, the following prices and excess
demands were obtained:

# = (47.0 285 240 100 267 19.3 294 25.7 248 12.6),
(g.(£) = (=07 .04 03 00 .02 00 .02 .02 .02 —.07).

The excess demands for this last example are very close to zero, when
compared with the total supply. What is even more surprising is that the
total time on the 7094 required to do all three problems was 1 minute 36
seconds. This suggests that with improvements in the algorithm and its
programming, the approximation of fixed points of mappings involving 15
to 20 dimensions might very well be feasible.

7. Some extensions of Theorem 1. The argument that has been given
for Brouwer’s theorem may be extended to a more general problem. As be-
fore, let =*', - .-, z* be a sequence of vectors on the simplex S, and let
7, -+, =" have the special form previously described. Consider also the

system of equations

with 4 an n X k matrix of the form

I- 1 - 0 aionn - @ _I
A=t i :
L 0 1 Quin+t =t Ok J

and b a strictly positive vector. A feasible basis for this system of equations
(in the sense used in linear programming) is a collection of n columns
Ji,***,Jjn, which are linearly independent and such that the equations

Z G5y, = b,
[:3

have a nonnegative solution.

As shown 1n [3] the arguments of this paper may be extended to demon-
strate the following theorem.

TuroreM 2. If the set of nonnegative solutions of Ax = b form a bounded
set, then there exists a primitive set = | -+ | ©™ such that (ji, -+, Ju) 1s
a feasible basis.

In [3], Theorem 2 was used to provide general sufficient eonditions for the
core of an n-person game to be nonempty. It may also be used to demon-
strate Brouwer’s theorem for a mapping of a bounded polyhedral convex
set, other than the simplex, into itself. To do this, we proceed by means of an
intermediary theorem which has some interest in itself.
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TuroreM 3. Let Cy, - - -, C, be closed sets on the simplex S, whose union ts
the entire simplex. Assume that C, D {r € S|n, = 0} for ¢ = 1,--+ , n.
Then, if the set of nonnegative solutions to Ax = b form a bounded set, there is a
Jeasible basts (g1, - - - , Jn) such that the intersection Ny— C,, is not empty.

To prove this theorem we take a finite set of vectors 7", - - - | ' on the
simplex, which, as [ tends to infinity, will become everywhere dense on S.
The vectors 7, - -- , =* are constructed as before. We define an n X [
matrix A to which Theorem 2 will be applied, as follows. The first n columns
of A form a unit matrix. To determine the entries in column r, with » > n,
we select one of the sets C, which contains =, and enter

ai,y

Qnj

in the rth column of A. As we see, A is composed of some of the columns of
A suitably repeated.

The hypotheses of Theorem 2 are clearly satisfied by A, and we may
therefore find a primitive set of #’s which correspond to a feasible basis for
the equations Ax = b. But since the columns of a basis are necessarily
linearly independent, no two such eolumns can be identical, and a basis for
Az = b will also be a basis for Az = b. If the columns of the basis are de-

noted by j1, ++ , J» , the primitive set described in Theorem 2 will consist
of a single vector from each of the sets C,, , -+ -, Cj, .
If we let I tend to infinity in such a way that the veetors =%, - - - | =’ be-

come everywhere dense on the simplex, we may select a subsequence of I’s
so that the bases for Az = b do not change and such that the vectors forming
the primitive set converge. But these vectors must all converge to the same
point «. If some of the first #n vectors are used in forming the primitive set,
then the corresponding coordinates of r are equal to zero. 7 is therefore con-
tained in N, C,, and Theorem 3 is demonstrated. It should be realized that
the vector = may be approximated by an algorithm quite similar to that
used in approximating a fixed point of a continuous mapping.

Now let C be a convex polyhedral subset of the simplex S defined by
C = {x|7€8, Dom@y, = 0 forj =n 4+ 1,--+, k}, and f(r)
= (fi(w), -+, fu(7)) acontinuous mapping of C into itself. We assume, as
before, that the set of nonnegative solutions to Az = 1 is bounded, where

[1 <o 0 arnn v G

A= : : ]
LO 1 appnr - Gn.kJ
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Tt will also be useful to assume that the equations Y as,x;, = 1 have a
strictly positive solution if jy, ---, j. is a feasible basis. This is a non-
degeneracy assumption quite familiar in linear programming.

Define the sets Ci, - -+, Cy as follows. C; contains all vectors in S with
> ra@,; < 0. Moreover, if = € C, then = € C; if S ma £ 2 flm)a, .
Clearly, UC; = 8.

If Theorem 3 is applied, we obtain a feasible basisjy , - - - , j» for the equa-
tions Az = 1, and a vector = € N, C,, . The author claims that = € C,
for if it is not, then Y, m@.,, < 0 for all a. But if x;, is the positive solution
to the equations D @i, = 1, we obtain

0z Z Z Tillijo Ly = Z m = 1.
a 2

Since 7 € C, we have D, mi,, < 2 fi m)a.j, for all @ But then

1= Zﬂ% = L:: Zfzatjaxia = ; ;ft(r)aiiaxiu = th(ﬂ') =1,

and since x,, > 0 we see that > (wi — fulw))as, = 0 for all . But the
columns of a basis are linearly independent, and therefore, m; = fi(7). We
therefore have a proof of Brouwer’s theorem for continuous mappings of C
into itself, and an algorithm for the approximation of a fixed point.
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