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CHAPTER 8

On the Computation
of Equilibrium Prices

HERBERT SCARF*

1. Introduction

In Mathemarical Investigations in the Theory of Value and Prices,
published in 1892, Irving Fisher described a mechanical and hydraulic
analogue device intended to calculate equilibrium prices for a
general competitive model. This chapter takes up the same problem
and discusses an algorithm for a digital computer which approximates
equilibrium prices to an arbitrary degree of accuracy.

At least two versions of Fisher’s device were actually constructed
and apparently performed successfully. The devices themselves
have unfortunately been lost, but there are several photographs, which
may be seen in the edition of Fisher’s volume reprinted in 1961 by
Yale University Press.

The equipment seems remarkably quaint and old-fashioned in
this era of high-speed digital computers. Immersed in a large tub
filled with water are a number of canisters whose irregular profiles
are related to the consumers’ marginal utilities for the various
commodities. Each canister is constructed partly of flexible leather,
looking somewhat like a bellows that expands and contracts in
response to changes in prices. The canisters are connected by an
elaborate system of rods, hinges, and tubes filled with water.

In order to specify the consumers’ initial dollar incomes, a row
of plungers is adjusted to specific heights, and in the pure exchange
model, a similar series of adjustments is made to provide information
about the initial stocks of commodities before trade takes place. The
competitive price levels and allocations are then determined when
the system reaches a physical state of equilibrium.

* The research described in this paper was carried out under a grant from the
National Science Foundation.
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To avoid elaborate engineering problems, Fisher found it necessary
to assume that the utility functions could be written in a separable
form so that the marginal utility of any commodity was independent
of the level of consumption of the remaining commodities. In the
model to which the algorithm of this paper is applied, there is no
need for an assumption of separable utility. Each consumer will have
a set of demand functions, which are continuous and homogeneous
of degree zero in all prices, and, in addition, a given vector of
commodities which are owned prior to production and trade. Fisher
assumes that a specific dollar income appears on the right-hand side
of each individual’s budget constraint; recent authors have preferred
to work with a more general model in which income is derived from
the sale of factors whose prices are to be determined at equilibrium.

Assuming, in addition, that no income is generated by profits
arising from production, the market demand functions satisfy
Walras’s law, to the effect that the market value of demand at any
set of prices is equal to the value of the stock of initially owned
commodities.

Let the market demand functions be denoted by

El("l’ LRI "n)

E(my, o ymy)
with (my, . . . , m,) the vector of prices. Since the demand functions are
naturally homogeneous of degree zero, it is sufficient to assume that
they are defined only for prices which are nonnegative and sumto 1,
and continuous on this set of prices. If the total stock of commodities
prior to production and trade is given by the nonnegative vector
(Wy, ..., w,), then the Walras law states that ‘
méi(m) + 0+ m () = mwy + < W,

identically for all prices.

Whereas the consumption side of the economy is treated by Fisher
in an essentially modern fashion, the model of production seems
quite inadequate. There is no production function or transformation
set, but instead Fisher uses a notion of the “‘marginal disutility of
production,” which is to be equated to the negative of the marginal
utility of consumption for each consumer and commodity. Moreover,
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factors do not seem to be used up in production nor is income
generated by the sale of productive factors.

The algorithm of this chapter permits production to be described
by an arbitrary activity analysis model with a finite list of activities.
Each column of the matrix

—1 0 0 Gt A

0 —1 . .
A=

Y o - 1 A, n+1 An,m,

will refer to a specific productive process with inputs indicated by
negative numbers and outputs by positive numbers.

The economy is assumed to be completely described by the market
demand functions {£,(w)}, the technology matrix 4, and the stock
of factors (wy, ..., w,) prior to production. With this notation a
competitive equilibrium is defined by a vector of prices my, . .., m,,
and a collection of nonnegative activity levels, =y, ..., %, such
that the following two sets of conditions are met:

1. Supply equals demand in each market, or, mathematically,
f,(w)—}v:na,,x,=w, for i=1,...,n
2. Profit is maxin];zled at the prices w, or
flﬂ,a,,go forall j=1,...,m

with equality if z, > 0.

The existence of equilibrium prices for models of this type has
been investigated with great thoroughness by a number of writers
(for example, [1] or [3]), and we now know that if certain relatively
mild conditions are placed upon the specification of the model, there
will indeed be an equilibrium. In our model the conditions are quite
simple. In addition to the assumptions already made, we require that
the set of activity levels which gives rise to a nonnegative net supply
of all commodities forms a bounded set. In symbols, the set of non-
negative (z,, . . . , ,,) for which

Yax;+w, >0 foralli
9=1
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will be a bounded set. The assumption w, > 0 for all i will also be
used occasionally even though it can be replaced by more realistic
requirements.

To demonstrate the existence of equilibrium prices in a model of
this generality, it has been customary to make use of what are known
as “fixed point” theorems, which describe conditions under which a
continuous mapping leaves at least one point unchanged. The
arguments leading from a fixed point theorem to the existence of
equilibrium prices are often quite direct and economically suggestive;
they have, however, a major drawback of offering no reasonable
suggestion for the computation of such prices.

It may seem somewhat surprising, in view of the substantial body
of work in mathematical programming, that no techniques have been
proposed for what is one of the central problems in economic theory:
the computation of equilibrium prices. This is undoubtedly due to the
preoccupation with models which are exclusively on the production
side of the economy and make no reference to the role played by
consumers in the determination of equilibrium prices.*

There is a sense, well-known to economists, in which the model
of competitive behavior does give rise to a nonlinear maximization
problem similar to those encountered in the theory of production.
If each consumer has a concave utility function, then the maximiza-
tion of a weighted sum of utilities subject to the constraints of the
technology and the existing stock of commodities does produce a set
of prices which have many of the properties of equilibrium prices.
Producers are maximizing profit at these prices, and no consumer can
receive a higher utility at lower cost. There is, however, one serious
drawback: unless the utility weights are selected in precisely the
right way, the consumption of each consumer is in no way related
to the income generated by the sale of his productive factors. Unless
we are willing to neglect this vital link in the economic system com-
pletely, the problem has merely been shifted from the determination of
equilibrium prices to the determination of the appropriate utility
weights, and the latter problem is no simpler than the former.

* In his thesis, Rolf Mantel [4], gives a proof of the existence of equilibrium
prices which is similar in many respects to the arguments of this chapter. I have
also received an unpublished manuscript by H. Houthakker describing an
algorithm which should be very effective under certain severe assumptions about
the demand functions and the technology.
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Nor is any general computational approach to be found in the
literature about the stability of equilibrium, in which the process of
adjusting prices to excess demands may be viewed as a gradient
method for the computation of equilibrium prices. Even though
gradient methods are successful on the production side of the econ-
omy, they need not be stable in a model involving consumers unless
some relatively stringent assumptions, such as “gross substituta-
bility,” are placed on the market demand functions.

The basis for an effective algorithm for the computation of
equilibrium prices has come from a rather unexpected source. Until
recently, the existence of Nash or Cournot equilibrium points in a
finite, two-person, nonzero sum game has been treated by the same
nonconstructive topological methods as those used in equilibrium
analysis. But Lemke, working with a student, Howson, has devised
a most ingenious algorithm, based on pivot steps as used in linear
programming, for calculating a Nash equilibrium point for a two
person game [2]. Even though these problems have only a mathe-
matical connection, Lemke’s basic idea may be combined with a
different notion of pivoting to give a constructive algorithm for
approximating fixed points of a continuous mapping, for finding a
point in the core of an economy, and for the algorithm used here
[5,6].

The next three sections describe the details of our algorithm.
The reader whose interest is less in technical matters than in applica-
tions may prefer to jump to Section 5, in which some examples are
given.

2. Setting the Stage for the Algorithm

As we have seen, it is sufficient to consider only those price
vectors 7 = (my, ..., m,) which lie on the simplex =, > 0, and

n
> 7, = 1. Rather than examine all vectors on this simplex, we shall
=1

assume that a large but finite list of vectors 7=+, ..., #* has been
selected and restrict our attention to these vectors as potential
equilibrium prices. (The reason for beginning the list with »"+1
rather than 7' should become clear later.) Since the actual equilibrium
vector need not be found in this list, the algorithm will provide only
an approximation, but one whose accuracy can be increased by
enlarging the list of vectors.
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Figure 1

The algorithm has been applied to a number of specific examples,
some of which involved a set of vectors containing as many as 10
members. Of course, if all of the vectors in such a list were to be
examined in order to determine an approximate equilibrium price
vector, we would substantially exceed the capabilities of even the
fastest electronic computers; the algorithm, howevet, has rarely
required an examination of more than 1500 such vectors and has
generally terminated with a far smaller number.

After the vectors #"t1, ..., n* have been selected, the next step
is to construct a particular matrix B with n rows and k columns.
The first n columns of B will consist of a unit matrix. Column j, with
n + 1 £ j < k, will be related to the vector =7, in the list of vectors,
according to the following specific rules:

1. Let

be an activity in the technology matrix A which yields a maximum
profit at the prices =, If there are several activities which give the
same maximum profit, then an arbitrary selection of one of these is
made.
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2. If the largest profit obtainable at the prices #* is positive, then
the jth column of B is defined to be

—dy

—n

3. If the largest profit at the prices #” is less than or equal to zero,
then the jth column of B is defined to be

&(7)

&.(7)

The general appearance of the matrix B is as follows (the vector
' is written above column j to indicate the connection between the
two.):

e e
1o -+ 0 —ay ()
01 --- 0 . .
B =
00 -1 —ay, ()

Aside from the first » columns, which will play the role of slack-
variables, the columns of B will be composed either of the market
demands at a given set of prices or the negative of that activity vector
which maximizes profit for the price vector appearing above the
column. Of course some of the activity vectors will be repeated a
substantial number of times.

The number of columns of B is apt to be very large, and we are
fortunate that the algorithm never requires an explicit representation
of this matrix in the memory units of the computer.

We shall be concerned with nonnegative solutions of the equations
Bx = w, where

w=W,...,w,)
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the vector of factors available prior to production. When these
equations are written out explicitly they become

- ; au%; + ; 5-("'1)% =W

where in the first set of terms, the subscript / depends on j and refers
to that activity which maximizes profit at the prices 77, should that
profit be positive. In the second set of terms the z,’s have been
replaced by y;’s to emphasize the distinction between the two types
of columns.

From the way in which the matrix B is constructed the following
conditions are satisfied:

1. If y; > 0, then i mja, <0  foreveryl
=1
2. If any activity /, other than a disposal activity, has a positive

n
weight x;, then Y =ja,; > 0.
=1

The basic idea of our algorithm is to approximate an equilibrium
price vector by determining a nonnegative solution to the equations
Bx = w with the property that all of the prices #’ corresponding to
positive x; or y; are close to each other, and that the ith coordinate
of all of these prices is close to zero if the ith slack variable is positive.

In order to see that such a solution would indeed represent an
approximation to a competitive equilibrium, let us imagine that the
prices ## corresponding to positive x, and y; are so close to each other
that they can be replaced by a common price = in the preceding
equations, and in conditions 1 and 2.* In addition, =, will be zero
if the ith slack is positive. Since all of the £(=’) with positive weights
y; are replaced by &(w), the equations become

- 2au%, + (; y,) &(m) = w,

which would describe the equality of supply and demand in all
markets if it could be demonstrated that £ y; = 1.

* A more precise mathematical treatment would involve taking successively
more refined grids on the simplex and letting # be a limit point of those =
corresponding to positive z; or .
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Moreover, condition 1 becomes 1’, as follows:
1. Ify, >0, then X 74, <0

for all /, so that the fact that no activity makes a positive profit at
prices = follows from the positivity of at least one y;.

Condition 2 in conjunction with the fact that 7, = 0 if the ith
slack variable is positive may be restated as 2":

2'. If any activity /, including disposal activities, has a positive
weight z;, then X 7,a,, > 0.

In order to show that we do indeed have an equilibrium price,
we first show that at least one y, is strictly positive, for then conditions
1" and 2’ imply that no activity makes a positive profit, and that those
activities which are operated at a positive level have a zero profit.
Moreover, if the preceding equations are multiplied through by 7,
and added we would then see that

(Bo)[3 ] =3

and it follows from the Walras law and the positivity of = 7w, that
Zy =1

The only missing link in our argument is therefore the demonstra-
tion that at least one y, is strictly positive. But if all y, are zero,
it follows that

- Ea”l', =Ww
and

z T4y 2 0

for all / with a positive x,. But then

0> > ma,z;,=—3 mw,
which contradicts the positivity of Z m,w,. (The assumption w, > 0
for all i is used here and in the previous paragraph.) This concludes
our argument that 7 represents an equilibrium price.

Of course the fact that the vectors =’ corresponding to positive
z, and y, are close to each other does not permit a literal replacement
by a common vector =, but it should be clear from the continuity
of the demand functions that an average of = will serve as an
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approximate equilibrium price vector, since supply will be approxi-
mately equal to demand in all markets, profits if positive will be
small, and the profits of those activities used at a positive level will be
close to zero.

3. The Main Theorem

In Section 2 we constructed a matrix

Al *
1 0 v« 0 by " by
. .
00 --- 1 bn,‘n-&-l - b,

whose jth column was either the market demand at prices #/ or the
negative of the profit maximizing activity at these prices, with =’

a specific price on the simplex {71' |7.20,2m = 1}. We then showed

2

how an approximate equilibrium price vector could be determined
by finding a nonnegative solution to the equations Br = w such
that all of the vectors =7 with positive ; are close to each other, and
with the ith coordinate of each of these vectors close to zero, if
the ith slack is positive. To be specific about this statement, we must
formulate a precise definition of the concept of closeness.

It will be useful to begin by making the following assumption which
can easily be brought about by a perturbation of the vectors
Al L ak,

Nondegeneracy Assumption. No two vectors in the set 7"+, ..., 7*
have the same ith coordinate for any /, and no vector has a zero
coordinate.

Consider n vectors 71, . . . , 7' selected from the list of vectors.
These vectors may be used to generate a subsimplex in the following
way: Begin by finding that one of the » vectors which has the smallest
first coordinate. This will yield a unique vector because of the non-
degeneracy assumption. Pass a hyperplane with constant first co-
ordinate through that vector. Then find that one of the n vectors
with smallest second coordinate and pass a hyperplane with constant
second coordinate through that vector. If we continue in this fashion



Computation of Equilibrium Prices 217

with each coordinate, the subsimplex which is then generated con-
sists of all points # = (my, ..., w,) with

my 2> min (w1, ..., m ")

T, 2 min (71, ..., "nj”)
and
mA o tm, =1

In Figure 2 the list of vectors is given by =4, ..., #*, and two
subsimplices have been drawn, one generated by =#, =%, and =%,
and the other by =7, #8, and #®°. The first triple of vectors are fairly
far apart, whereas the three vectors in the second triple are all quite
close, which is indicated by the fact that there are several vectors in
the list 74, ..., #* interior to the first subsimplex but none interior
to the second. In general, if there are no vectorsin thelist w1, . . . , #*
interior to the subsimplex generated by 1, ..., #’, then these n
vectors must be close to each other. This is the concept of closeness
we shall adopt.

Before giving a formal definition, let us make one extension to
accommodate the possibility of forming subsimplices some of whose

3

Figure 2
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edges are given by the coordinate hyperplanes 7, = 0. This can be
accomplished by the device of defining n new vectors
m=0,M,,..., M)
w2 = (M,,0,...,M,)

= (M,, M,,...,0)
with M, different from each other and greater than one. The vectors,
which are not on the simplex, are associated with the n slack variables
in the matrix B. If we now consider n vectors 7’1, . .. , #’* from the
extended list 7%, ..., #*, and define the associated subsimplex as
before to be the set of # = (my, ..., m,) with

m > min (m’, ..., m)

@, > min (7, ... 7"

mt T, =1
then this subsimplex will be bounded by an edge =, = 0 if #* is one
of the first n vectors, but otherwise the definition of the subsimplex
will be as before.
In the following figure the subsimplex is generated by #%, =*, and
5, and since there are no vectors in the list interior to this subsimplex

3

and

/X

Figure 3
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we are justified in saying that the vectors #* and = are close to each
other and have a second coordinate close to zero.

The following formal definition makes use of a term “primitive
set,” which I have used elsewhere, to describe the concept of close-
ness under discussion.

Definition. A setof nvectors =, ..., w'= from thelist#?, . . . , =t

will be said to form a primitive set if no vectors in the list are interior
to the subsimplex

m > min (m’s, . .., 7)

m, > min (m,1, ..., 7"
o, =1

The main theorem of this paper, which will be demonstrated by
means of a constructive algorithm, follows.

Theorem. There exists a primitive set 7’1, . . . , ', such that the
equations
Br =w

have a nonnegative solution with z, =0 if j is different from
s - -+ »Ju)

The algorithm behind this theorem will provide us with precisely
the right type of solution to the problem discussed in Section 2.
It will yield a nonnegative solution to B = w, with all of the =/
corresponding to positive x, or y; close to each other, and with the
ith coordinate of each of these prices close to zero if the ith slack
is positive.

4. The Algorithm

The reason for introducing the notion of a primitive set of vectors
is not only to define specifically when n vectors are to be considered
close—many other constructions would serve just as well for this—
but also because a type of operation, similar to a pivot step in linear
programming, can be performed on a primitive set of vectors, and
this operation is crucial for the development of our algorithm.

The operation consists of removing a specific vector from a primi-
tive set of vectors and attempting to replace it by some other vector
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so that the new set of vectors is also a primitive set. As the following
lemma indicates, this operation can, with one exception, always be
performed and the replacement is uniquely determined.

Lemma. Let ™, ..., be a primitive set and 77+ a specific one
of these vectors. Then, aside from one exceptional case, there is a
unique vector = in the list %, . . . , 7%, so that if =’ replaces =%, the
resulting collection of vectors forms a primitive set. The exceptional
case arises when all of the vectors #** with i % « are from the first n
vectors in the list, and in this case no replacement is possible.

The vector #’ that replaces #’= may be found by a simple geo-
metrical construction. To illustrate this construction let us assume
that

w, = min (7%, ..., 72

so that #/* is on that face of the subsimplex on which the ith co-
ordinate is constant. Assume moreover that 7t is being removed.
Let 7"+ be that vector in the primitive set with the second smallest
value of its first coordinate. To find the vector to replace »: we move
the face containing #”* parallel to itself, lowering the i*th coordinate

i
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until we first intersect a vector =’ in the list with

wl >k for i##1,i*
and
my’ > '”'lj"

or the face of the simplex § in which ;.. = 0.

The rule is applicable except when the vectors #”* with i % 1 are
all selected from the first # vectors of Py, and it clearly produces a
new primitive set. The details of the proof that #/ is the only possible
replacement, and that no replacement is possible in the exceptional
case, may be found in [6].

To see the analogy between this type of replacement and a pivot
step in linear programming, consider a system of linear equations in
nonnegative variables, Bx = w, where

O U

0o --- 1 bn,n+1 Tt bn,

A feasible basis for this system of equations is a collection of n
linearly independent columns jy, ... ,j, from the matrix B, such
that the equations Bz = w have a nonnegative solution with z; = 0
if j is different from j;, . . . , j,.

In a pivot step, one takes a specific column outside of the basis
and attempts to introduce it into the basis, while removing some
column, so that the resulting collection of n columns is again a
feasible basis. In linear programming one attempts to bring into
the basis a specific column from outside, whereas with a primitive set
one attempts to remove a column in the primitive set. If the set of
nonnegative solutions to the equations Bx = w forms a bounded set,
then a pivot step can always be carried out, and if the problem is
nondegenerate, in the sense used in linear programming, there is a
unique column to be eliminated from the basis for the resulting collec-
tion of columns to form a feasible basis.

Our assumptions on the technology guarantee that the non-
negative solutions to Bz = w form a bounded set when the matrix B
is constructed as in Section 2. And nondegeneracy can be brought
about by a small perturbation of w, or by using a lexicographic
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1 Figure 5

ordering, so that in our case a pivot step on the matrix B is always
possible and unique.

The main theorem of the previous section can now be restated in a
more specific and useful form.

Theorem (Restatement). There exists a primitive set =71, . . . , ',
so that the columns /i, . . . , j, form a feasible basis for Bz = w.

Let us now turn to a proof of this theorem. Consider the set of
vectors (n2%,...,n", n’") with «'* selected from those vectors
beyond the first 7 50 as to maximize its first coordinate. This collection
forms a primitive set, as the above figure clearly indicates.

Moreover, the columns 1, 2, ..., n form a feasible basis for the
matrix B since w > 0. Let us perform a pivot step on B by introduc-
ing column j*. If column 1 is removed from the basis the problem
is over since (2,...,n,j*) would be both a primitive set and a
feasible basis for Bx = w. Generally, this will not be the case and
some column other than the first will be removed when j* is intro-
duced. The next step in the algorithm is to remove from the primitive
set that price which corresponds to the column just removed from
the feasible basis for Br = w.

The algorithm alternates between pivot steps on the B matrix and
the analogous operation on the primitive sets. We take into the
feasible basis for B the column corresponding to that price just taken
into the primitive set, followed by removing that price from the
primitive set which corresponds to the column just removed from the
basis for B.

Tt is easy to see that in any intermediary step in the computation,
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we shall be in a situation in which the feasible basis for B consists
of column 1 and n — 1 other columns j,...,j,, whereas the
primitive set consists of vectors =1, =’s,...,w™ with j, # L.
The algorithm retains this relationship in which n — 1 of the indices
are identical by performing either of two possible operations. If we
are pivoting on the matrix B, then column j, must be introduced,
and if we are replacing an clement in the primitive set, then =t
must be removed. Except for the initial position where the primitive
set is composed of the vectors (n%,...,n", »’") and the feasible
basis consists of the first n columns, both of these operations can be
performed; in the initial position only one operation can be taken
since removing 7" is the exceptional case referred to in the lemma.

In general, some step has been taken to arrive at the present state.
The algorithm then takes that other continuation open to it. The
algorithm cannot cycle, since if the first state that it returns to is not
the initial position, there would have to be three ways to exit from
this position rather than two, and if the first position which is repeated
is the initial position, there would be two ways to exit from this
position rather than one.

Since the algorithm does not cycle and there are a finite number of
possible positions, the algorithm must terminate, and this can
only happen when the prices corresponding to a feasible basis for
Bz = w also form a primitive set. This concludes the proof of the
main theorem.

5. Some Examples

The algorithm has been programmed for an IBM 7094, and a
number of examples have been tried. Before describing the results of
a sample computation, it might be useful to indicate two of the special
techniques that have been incorporated into the program.

In order to use the algorithm, some specific set of vectors
#*+ ..., 7" must be selected. I have found it convenient to form

this list by taking all vectors on the simplex {n’ lm, >0, 3o, = 1}
1

whose coordinates are positive fractions with a given denominator.
In other words, a denominator D is selected and we consider all

vectors
(kl k“)
==, ..,
D D

with k, positive integers such that k; + - - - + k, = D.
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If the list of vectors has this special structure, the operation of
replacing a vector in a primitive set can be carried out by a simple
algebraic computation and does not involve a lengthy search through
all of the vectors in the list. Of course, the set 7+, ..., #* will not
satisfy the nondegeneracy assumption made in Section 3, since many
vectors in the list have a common coordinate. There are a variety of
techniques, however, for resolving degeneracy and insuring that the
algorithm does not cycle.

The algorithm terminates with a primitive set #1, ..., n’» such
that the columns ji, ... ,j, are a feasible basis for the equations
Bx = w, and, as we have seen, an average of the vectors in the primi-
tive set will serve as an approximation to an equilibrium price vector.
To determine the specific weights to be used in forming an average,
I have assumed that the demand functions are locally linear in the
neighborhood of the primitive set and selected that vector which
minimizes the maximum deviation between demand and supply.
The efficiency of the algorithm is substantially increased by a device
of this sort.

Let us consider, as a numerical example, with no pretense towards
realism, an economy involving the following six commodities:

. Capital available at the end of the current period.

. Capital available at the beginning of the current period.
. Skilled labor.

. Unskilled labor.

. Nondurable consumer goods.

. Durable consumer goods.

AN bW

During the particular time period, production may be carried out in
each of three sectors: the construction of durable consumer goods,
the production of nondurable consumer goods, and a sector for the
construction of new capital available at the end of the period.

The durable consumer goods sector is assumed to be described
by the two activities

4 4
—53 -5
-2 -1
-1 —6

0 0

4 3.5
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with the commodities in the order given. The first of these two
activities represents a process which produces four units of durable
consumer goods and uses five and three-tenths units of capital, two
units of skilled labor, and one unit of unskilled labor. In addition,
the five and three-tenths units of capital are partially depreciated
during use and become four units of capital available at the end of the
period. The second activity in this sector permits the substitution
of unskilled labor for skilled labor.
There are three possible activities in the nondurable sector:

1.6 1.6 1.6
-2 -2 -2
-2 —4 -1
-3 -1 ~8

6 8 7

0 0 0

with varying degrees of substitution between skilled and unskilled
labor.

Finally, the capital good sector involves the following three
activities:

0.9 7 8
-1 —4 -5
0 -3 -2
0 —1 -8
0 0 0
0 0 0

the first of which represents the rate of capital depreciation if no
investment is undertaken.

In addition to this activity analysis model of production, our
hypothetical economy will involve five consumers, each of whom has
a distinct set of demand functions and vector of initial assets. The
following matrix describes the initial assets of each consumer:

C.End C.Beg. Skil. L. Unskil. L. Nondur. Dur.

Consumer 1 0 3 5 0.1 0 1
Consumer 2 0 0.1 0.1 7 0 2
Consumer 3 0 2 6 0.1 0 1.5
Consumer 4 0 1 0.1 8 0 1
Consumer 5 0 6 0.1 0.5 0 2
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As we see, no consumer owns, prior to production, either non-
durable goods or capital available at the end of the period. Consumer
5 is the largest owner of capital at the beginning of the period, and
there are varying degrees of ownership of the two varieties of labor
and of consumer durables.

I have assumed that each consumer has a set of demand functions
derivable from a utility function with constant elasticity of substitu-
tion. This implies that at the prices 7y, . . . , me, the ith consumer will
make the demands

£(m) = .4 'f;(”l’hi -+ M)
i *
where b, is the elasticity of substitution for consumer i, a,; measures
the intensity of the ith consumer’s demand for commodity j, and
fi(my, ..., mg) is a complex function of the price vector 7 selected so
that the budget constraint is satisfied for each individual. The specific
values of a,, are given by the following matrix:

C.End C.Beg. Skil. L. Unskil. L. Nondur. Dur.

Consumer 1 4 0 0.2 0 2 32
Consumer 2 0.4 0 0 0.6 4 1
Consumer 3 2 0 0.5 0 2 1.5
Consumer 4 5 0 0 0.2 5 4.5
Consumer 5 3 0 0 0.2 4 2

As we see, no consumer has a demand for capital at the beginning
of the period, but there may be a substantial demand, depending of
course on the prices, for capital at the end of the period. Since there
is no explicit description of production after the end of the time
period, this demand is to be interpreted as a demand for savings. The
entries under the skilled and unskilled labor columns refer to a
demand for leisure. Finally, the elasticities of substitution b, are
given by

Consumer b,

WV AW
(=3
o0
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In the numerical solution of this example, the set #*+1, ..., #*
was assumed to consist of all vectors of the form

ke ke ke
100° 10077777 100

with k, positive integers summing to 100. There is an exceptionally
large number of these vectors. The algorithm terminated after exam-
ining only 913 of them in a little over a minute of 7094 computing
time, with the following primitive set:

P! w2 s PN s e
22 22 22 22 22 23
22 21 22 22 24 22
20 19 19 19 19 20
7 7 7 6 6 7
12 12 12 12 11 12
19 19 18 19 18 16

These six vectors are related, one by one, to six columns in the
matrix B, which form a feasible basis for the equations Bz = w.
The first four of these vectors are associated with the 9th, 7th, 10th,
and 11th activities, in the order in which they have been described.
The vector @’ gives rise to a negative profit for all possible activities,
and therefore corresponds, in the matrix B, to a column of demands.
«® is associated with the thirteenth activity.

These six vectors were averaged by a set of weights obtained as
the solution of a specific linear program, and the following price
vector and activity levels were obtained:

m = (21.8, 21.8, 19.4, 7.4, 12.2, 17.4)

Activity Level Profit

7 0.86 —0.05
8 0.0 -0.25
9 0.10 0.03
10 1.41 0.04
11 1.31 -0.02
12 0.0 -0.02
13 0.47 0.00

14 0.0 -0.33
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The profits in the final column are based on the price vector =
normalized so that its sum is one.

As a final summary, let us compare the market demand at this
set of prices with the net supply obtained by using these activity levels
in conjunction with the initial stocks of commodities.

C.End C.Beg. Skil. Lab. Unsk. Lab. Nondur. Dur.
Demand 11.27 0.00 1.02 217 21.08 10.98

Supply 11.27 —0.01 1.01 2.14 21.06 10.96

The price vector 7 and the activity levels given seem to be a fine
approximation to an equilibrium for the equality of supply and
demand in each market. The profits, which should be zero for those
activities in use and less than or equal to zero for the remaining
activities, seem a bit less satisfactory. This is undoubtedly due to the
preoccupation of the final linear programming problem with
minimizing the maximum deviation between supply and demand, a
goal which is not directly responsive to considerations of profit.
Many other averaging processes can be used, and they deserve to be
explored before substantially larger problems are tried. It should be
pointed out that the final linear programming problem which takes
no more than one or two seconds of computing time, is a very minor
part of the algorithm. The important work in the algorithm is done
in determining the primitive set whose associated columns form a
feasible basis for Bx = w. It is this calculation that indicates the
neighborhood in which approximate equilibrium prices are to be
found.

In examining the preceding example, one sees that the price of
capital available today is identical with the price to be paid today for
capital delivered tomorrow, so that the real rate of interest should
naturally be taken as zero. This is reflected in the fact that the
initial stock of capital falls during the period from 12.1 units to 11.3
units, even though activity 13, a capital producing activity, is used
at the level of 0.47.

Let us compare this model with one which differs from it by the
introduction of one new productive activity in the capital goods
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sector. The activity
6.4
-3.5
-1
-5
0
0

has a profit of 0.13 at the previous equilibrium prices, normalized so
that their sum is one, so that if this activity is available it will surely
be used. It would also seem reasonable to suspect that the use of
this activity would have a tendency to increase the interest rate from
its previous level of zero.

If we adopt the same grid of prices on the simplex, the calculations
for this model terminate after the examination of 1185 price vectors
in about one minute and twenty seconds of 7094 computing time.

After averaging, the following price vectors and activity levels
are obtained:

= = (18.8, 22.0, 19.6, 7.1, 13.4, 19.1)

Activity Level Profit
7 0.69 —0.11

8 0.0 ~0.30

9 0.0 0.06

10 1.79 0.08

11 0.76 0.04

12 0.0 ~0.05

13 0.0 -0.22

14 0.0 ~0.56
15 0.95 —0.12

The relation between demand and net supply is given by the table
C.End C.Beg. Skil.L.  Unsk.L. Nondur. Dur.
Demand 12.98 0.00 1.03 2.41 19.73 10.29

Supply 1293 -0.01 1.02 2.40 19.68 10.28



230 HERBERT SCARF

The new activity is used at the expense of activity 11, in which a
substantial quantity of unskilled labor was required to produce
nondurable goods. As might be imagined, the price of nondurable
goods rises and its consumption falls. The expected rise in the interest
rate takes place, along with an increase in savings.

These examples give an indication of the speed and accuracy
with which the algorithm can solve a moderately difficult problem.
I feel quite sure that the performance of the algorithm can be
substantially improved in both of these dimensions by more subtle
programming techniques, and that eventually problems involving
as many as twenty commodities will be feasible without an excessive
use of computing time.
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