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An Example of an Algorithm for Calculating
General Equilibrium Prices

By HERBERT Scars*

During the past several years a number of
writers have been involved in the develop-
ment of an algorithm applicable to a class of
problems in mathematical economics, not
previously treated from a computational
point of view. Perhaps the most interesting
and potentially useful of these applications
is to the calculation of equilibrium prices for
a general Walrasian model of a competitive
economy.

The version of the algorithm described in
the present paper is a specialization due to T.
Hansen (1], [2] of the more general but com-
putationally less useful approach introduced
in [4] and [5]. Hansen’s algorithm was inde-
pendently discovered by H. W. Kuhn [3],
who also provided a illuminating geometri-
cal interpretation, previously not noticed by
either Hansen or myself.

The algorithm itself is not particularly
subtle, and for the most part involves opera-
tions to which we have become accustomed
in the solution of linear programming prob-
lems by means of the simplex method. There
are, however, some novel features which may
be obscured in a mathematical treatment,
and which the general reader may most
easily comprehend by means of a simple nu—
merical example.

The present paper will describe in detail
an application of the algorithm to an exam-
ple with only three sectors. This small prob-
lem has been selected for illustrative pur-
poses only; any practical application of these
techniques will necessarily involve a sub-
stantially larger number of commodities.

A considerable body of computational
experience with larger models has already
been gathered. Over one hundred examples
have been tested, ranging from three to
twenty sectors. The computation time,
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which is dependant on the number of sectors,
has never exceeded five minutes on an IBM
7094, and in most cases is substantially
smaller. Given the increase in speed of the
newer computers, and the reduction in com-
putation time achievable by adroit modifica-
tions of the basic algorithm, it seems clear
that problems involving as many as 30 or 40
sectors will eventually be feasible, should
they be justified on intellectual grounds.

I. The Example

A general equilibrium model requires for
its specification, a description of the pro-
ductive technology available to the economy,
demand functions of the consuming units,
and the distribution of ownership of the real
resources in the economy among these units.
In our example the technology will be de-
scribed by the following activity analysis

matrix:
Consumer Goods
4] Labor

l: Capital

in which inputs are represented by negative
entries and outputs by positive entries. The
first three activities permit the free disposal
of consumer goods, labor and capital, respec-
tively, and are incorporated in the model to
allow for the possibility of a zero price at
equilibrium. Activities 4, 5 and 6 represent
three distinct techniques which utilize labor
and capital to produce consumer goods. In
each of these activities the third entry must
be interpreted as the decrease in capital stock
caused by depreciation and wear, if the activ-
ity is run at a unit level. The seventh activ-
ity describes a net increase in capital stock
as a consequence of investment. The seven
activities can be used simultaneously, at ar-
bitrary nonnegative levels.

My own preference, even in a single period
model, would be to consider the capital stock

-1 6 0 4 4 4 0
0—-1 0-8—6—4-—2.
0 0-1-1-2-3 1

4
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at the beginning of the period as a com-
modity distinct from that available at the
end of the period. Each activity would then
reduce the capital stock at the beginning of
the period and produce, as a joint output, a
depreciated stock of capital at the end of the
the period. Aside from recognizing explicitly
that production takes time, this approach
leads naturally to a fully dynamic model in
which the own rate of interest on capital
would be determined by the equilibrium
price calculation.

In our example we shall assume that there
are two types of consumers, appearing in
equal numbers in the economy, and differ-
entiated by their ownership of resources and
demand functions. The following table des-
cribes the patterns of ownership of each type.

TABLE 1—OWNERSHIP OF RESOURCES

Consumer
Goods Labor Capital
Type 1 0 10 8
Type 2 0 10 1

Each of the consumers has 10 units of
potential labor, some of which will be en-
gaged in production, and the remainder con-
sumed as leisure. If the relative prices in the
three sectors are given by =, m and s, for
consumer goods, labor and capital respec-
tively, the potential wealth of the first con-
sumer is 1072+ 8m, and that of the second
consumer 10wy 3.

The algorithm places no restriction on the
individual demand functions other than the
customary assumptions of homogeneity of
degree zero in all relative prices, continuity,
and satisfaction of the budget constraint.
In the interest of simplicity of exposition, I
shall assume that both individuals spend a
constant proportion of their potential wealth
on each commodity, independently of the rel-
ative prices, with the proportion given by:

TABLE 2—PERCENTAGES OF WEALTH
SpENT 1IN EacH CATEGORY

Consumer
Goods Leisure Capital
Type 1 25 10 65 l
Type 2 60 20 20

These demand functions, which are deriv-
able from utility functions having a Cobb-
Douglas form, can be generalized to include
income effects and more elaborate sensi-
tivities to prices.

It should be understood that capital
appears in the consumer demand functions as
a proxy for savings. This assumes that in-
vestment activity is motivated entirely by
private saving decisions, and does not reflect
the eventual profitability of newly produced
capital. A substantial improvement would
be obtained by extending the example over
several periods, and including markets for
intermediary goods.

II. Equilibrium Prices and Activily Levels

Before discussing the algorithm in detal
we shall describe the answer to our specific
example. The equilibrium prices are given
by

= = (13/30, 5/30, 12/30),

normalized arbitrarily so that their sum is
unity. Of the seven activities, all are run at
a zero level with the exception of activity
number four, which operates at a level of
1.42, and activity number seven, at a level
of 1.36. In the following table the above
prices are used to compute the profitability
of each of the available techniques:

Activity Level Profit
4 1.42 0
5 0 —.067
6 0 —.133
7 1.36 0

As we see, all activities make a nonpositive
profit at the equilibrium prices, and those
in use make a profit equal to zero. The total
supply is given by the stock of initially
owned commodities, minus the factors used
up in production, and augmented by the out-
puts of production,

0 4 0
20 | 4 1.42| —8 |+ 1.36 —2.4_l
9 -1 t ]
5.67
= 5.40
8.94
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At the above prices the consumers’ de-
mands may be shown to be

Consumer
Goods Leisure Capital
Type 1 2.808 2.920 7.908
Type 2 2.862 2.480 1.033
Market Demand 5.670 5.400 8.941

so that for each market, demand is equal to
supply, and the suggested price and activity
levels are indeed in equilibrium.

TII. How Not To Solve the Problem

Our example is somewhat deceptive in
that the equilibrium prices and activity
levels can be determined by a very simple
procedure and the reader may erroneously
suspect that this technique is capable of
being generalized. The procedure is based on
the observation that the equilibrium price
vector is determined up to a scale factor
(aside from exceptional cases) when it is
known which two activities are to be oper-
ated at a positive level.

If activities 4 and 7 appear in equilibrium,
the competitive assumption that each of
these activities earn a profit of zero, yields
the pair of equations

47y — 8wy — w3 =0
—2.477‘2 + Ty = 0,

which have as a unique solution, (13/30,
5/30, 12/30), normalized to sum to unity.
The market demand functions can be evalu-
ated at this price vector, and the appropriate
levels of activities 4 and 7 then determined
so as to equate supply and demand.

If the wrong pair of activities is selected,
this procedure may not work for one of
several reasons: the price vector determined
by the zero profit conditions may have
several negative components; some of the
remaining activities may make a positive
profit; and finally it may be impossible to
equate supply and demand by using this
pair of activities alone. This does however
suggest that we may base an algorithm upon
the systematic examination of all pairs of
activities (and in the general case with »
sectors, all subsets of -1 activities), until

one is found satisfying all three of the above
conditions.

It is easy to see however that this ap-
proach, reminiscent of the simplex method
for linear programming, cannot be successful
in general. If, in our example, the seventh
activity is replaced by one in which a large
quantity of labor is needed to produce a
single unit of new capital, then the competi-
tive equilibrium will require only one activ-
ity, the fourth, to be operated at a positive
level, It will therefore be impossible to deter-
mine relative prices by the zero profitability
conditions alone. This phenomenon is quite
general and indicates that a completely
different type of algorithm is required for
the solution of this problem.

The conventional price adjustment mech-
anism, in which prices are modified in pro-
portion to the excess demand for the corre-
sponding commodity, may also be conceived
of as an algorithm for the computation of
equilibrium prices. Aside from the relatively
minor problem of a non-unique supply re-
sponse to a given price vector, the gradient
method has the serious drawback that very
stringent conditions on the demand functions
such as “‘gross substitutability,” are required
for its convergence. While the demand func-
tions of our particular example do exhibit
gross substitutability, this occurs rarely and
the gradient method is not of wide applica-
bility,

Virtually any algorithm which can be
shown to be successful in the general Wal-
rasian model will, at the same time, be
capable of providing a proof that equilib-
rium prices do exist. The existence problem
has been recognized during the last two
decades as one of the most difficult areas of
mathematical economics, and requires the
use of techniques known as “fixed point
theorems.” An effective algorithm must,
therefore, be intimately related to this
branch of mathematics, and involve consid-
erations whose economic interpretation is
not immediate.

IV. Introducing the Algorithm

Since the equilibrium prices are deter-
mined up to a scale factor it is sufficient to
restrict our attention to those price vectors
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w={a, m, m) which are nonnegative and
sum to unity. We begin by selecting a posi-
tive integer D, and consider only those
price vectors on the unit simplex, whose
components are rational numbers with de-
nominators equal to D. In any particular
example, the accuracy of the computation
will be improved by increasing the value of
D, but at the same time the number of basic
iterations and therefore the total computa-
tion time will be increased, roughly propor-
tionately to D. A typical example with ten
sectors might require a D of 150 or more, in
order to obtain sufficient accuracy. The num-
ber of price vectors potentially under exami-
nation would then be exceptionally high,
but the algorithm will typically terminate
with fewer than two or three thousand itera-
tions.

Let us begin our example by selecting D
to be equal to 10, a number which is too
small for serious computation, but which is
sufficient to illustrate the algorithm.

0,01

>
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Fieure 1

The vectors on the simplex with denomina-
tors equal to 10, are used to partition the
simplex into the small triangles shown in the
figure.

Each such price vector (m1, m, 73) will be
associated with a specific commodity vector,
which is either the vector of market de-
mands at the set of prices (m, m, m3) or the
negative of a particular activity, according
to the following rules:

1. I theprice vector has a zero component,

it will be associated with a “slack” vector
containing a 1 in the place of the first zero
price and 0’s elsewhere. If all of the com-
ponents are positive, rules 2, 3, and 4 are
followed.

2. Examine all of the available activities
to determine which yields the maximum pro-
fit at the price vector (my, w2, 7).

3. If this profit is greater than or equal to
zero, then (r, m, w3) is associated with a
vector whose components are the negafives
of the profit maximizing activity.

4, Tf the maximum profit at these prices
is negative, then (my, ms, m3) is associated with
the vector whose components are the market
demands at these prices.

These rules, which may seem quite arbi-
trary to the reader, are of crucial importance
to the algorithm. A few examples may be in
order. At the prices (.8, .1, .1), the profits
associated with activities 4 through 7 are
given by

4(.8) — 8(.1) — 1(.1) = 2.3

4(.8) — 6(.1) — 2(.1) = 2.4

4(8) — 4(.1) — 3(.1) = 2.5
—24(1) + 1(1) = — .14,

and since the maximum profit is positive
(.8, .1, .1) is associated with (—~4, 4, 3). On
the other hand, the price vector (.4, .3, .3)
vields as profits

4(4) — 8(.3) — 1(.3) = — 1.1

4(4) — 6(.3) — 2(.3) = — .8

4(4) —4(3) = 3(3) =~ 5
—24(3) + 1(3) = — .42,

and since all of these profits are negative the
vector (.4, .3, .3) is associated with (8.325,
4.0, 13.9), which as the reader may verify,
are the market demands at these prices.

In general, the algorithm will be con-
fronted, at each iteration, not with a single
price vector, but with three such vectors
which form the vertices of one of the small
triangles in the above figure. Consider, as
an example, the lower of the two shaded tri-
angles whose vertices are given by the three
vectors
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et 4 5
34, A, 3.
3

According to our rules, these vectors will be
associated with

8.325 9.8 f~4
4.0 | 3.5 |, 4
13.9 22.4 L 3

respectively. The first two price vectors cor-
respond to columns of market demands, and
the third to the negative of activity number
6.

At each iteration the algorithm will ask
whether there is a nonnegative linear com-
bination of the three assoclated columns
equal to the vector of initially owned fac-
tors, prior to production. In the present tri-
angle the question is whether the equations

8.325 9.8 -4
| 4.0 + yof 3.5+ v| 4
13.9 22.4 3
I'O
=1 20
9

have a solution with 3, 7., ¥3>0, which is
not possible for this triangle since the unique
solution is given by (4.81, —2.96, 2.77).

In order to provide a triangle for which
the answer to this question is affirmative,
and to show the relationship between this
question and the determination of equilib-
rium prices, consider the sub-simplex whose
vertices are

.3
2,
5

(94

the upper shaded triangle in the above figure.
The vectors associated with these three
vertices are given by

.0 —4 6.85
2.4 8 5.0 |,
-1.0 1 9.65
and the equations
.0 —4 6.85
2.4 {v + 81lyva+135.0 |y
—1.0 1 9.65
0-
=120
9

have as a solution (1.24, 1.54, .90). which is
nonnegative.

The sole purpose of the algorithm is to
produce a triangle with this particular
property, which can immediately be used to
provide an approximate equilibrium price
vector. To see this, let us rewrite the above
equations as

6.85 0 4
9150 | =720 4 1.54] —8
9.65 9 -1

0
+1.24) —2.4|.

1

The right hand side of this equality is the
net supply if the 4th activity is operated at
a level of 1.54, and the 7th activity at a level
of 1.24. Aside from the factor of .9, the left
hand side represents the market demand at
the price vector (4, .2, 4), so that these
equations describe a situation of approxi-
mate equality between supply and demand
in all markets. As the grid size D is increased,
the factor of .9 will become closer to 1.0 and
the approximation will become increasingly
accurate. (In the general case in which more
than one vertex of the subsimplex corre-
sponds to a column of demands, it is the sum
of the weights associated with these columns
which tends to unity with increasing D.)
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But we can say even more. The three
price vectors, being the vertices of a small
triangle are quite close to each other, and
will be even closer as D is increased. Accord-
ing to the rules used to associate columns
with vertices, one of these price vectors yields
a profit less than zero for all activities, and
the others provide a nonnegative profit for
activities 4 and 7 respectively. Any price vec-
tor in the neighborhood of these three can
therefore serve as an approximate equilib-
rium price vector, since in addition to per-
mitting the approximate equality of supply
and demand, it will yield profits approxi-
mately zero for the activities in use, and
profits which are either negative or quite
small for all of the activities. As the figure in-
dicates, the true equilibrium prices are quite
close to this triangle.

Before proceeding to a discussion of the
algorithm which produces such a subsimplex
whose associated columns can be combined,
with nonnegative weights, so as to equal the
vector of initial holdings, let us see how the
approximation can be improved by increas-
ing D from 10 to 100.

With this fine a grid the division of the
simplex is awkward to reproduce in a figure,
but the algorithm of the next section termi-
nates with a sub-simplex whose vertices are

.427 ™. 437 .43
AT, .16 |, A7,
41 [ .41 ] | .40
and which are associated with the columns
0 7] M —47 5.779
2.4, 81, 5.353 |.
—1.0] | 1 | 9.013
Solving the resulting equations, we obtain
5.779 0 4
.9915.353 | =120 |+ 1.43( —8
9.013 9 -1
0
+1.35| —2.4|,

1

a very close approzimation to the actual
equilibrium price and activity levels.

In a problem involving a larger number of
commodities, this degree of accuracy is
usually obtained by treating the demand
functions as locally linear in the neighbor-
hood of the final subsimplex, and then solv-
ing a linear programming problem whose
objective is to minimize some measure of the
distance between supply and demand. A
terminal linear programming step is much
less expensive in terms of computer time,
than increasing the grid size to obtain addi-
tional accuracy.

V. The Algorithm for Determining the
Appropriate Sub-Simplex

As the following figure indicates, the
algorithm begins at a triangle located at a
vertex of the large simplex, say the vertex
(1, 0, 0), and at each iteration moves to an
adjacent triangle obtained by eliminating
one of the three vertices. The specific se-
quence of triangles is completely determined
by the decisions as to which of the three
(and in the general case, ) vertices is to be
eliminated at each iteration.

At each stage of the algorithm a record is
kept of the specific vector which has just
been introduced. For example, in the 10th
triangle whose vertices are given by

5 5 4
1 2 2,
4 3 4

the vector (.4, .2, .4)’ has just been intro-
duced as a new vertex.

The algorithm is attempting to determine
a triangle whose three associated columns
give rise to a system of linear equations with
a unique nonnegative solution. While it is
difficult to find such a triangle directly, it is
quite easy to locate a triangle in which these
conditions are almost fulfilled, in the sense
that the equations based on fwo of the asso-
ciated columns and the first slack vector
have a unique nonnegative solution. For
example, triangle 2 has this property since
the columns
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.9 .8

0 1

are associated by virtue of Rule 1 with

0 0 —4
4
0 1 3

and the equations

1 0 0 0
O+t 10y =120,
0 0 1 9

have a trivial nonnegative solution. It is for
this reason that the algorithm begins at a
vertex of the Jarge simplex.

Only those triangles possessing this quite
specific property will ever appear in an in-
termediary stage of the algorithm. The two
vertices of the triangle, neither of which have
just been introduced, will have two columns,
either market demands or the negative of
an activity level, associated with them. For
the triangle to appear, it is necessary that
there be one, and only one, nonnegative
linear combination of these fwo associated
columns, and of the first slack vector (1, 0, 0)’
equal to the total supply prior to produc-
tion.

(1,0,00

0,1,00

In triangle 10, for example, the vertices

.5 .5 4
1 .2 .2
4 .3 4

are associated with

—4 —4 6.85
8 4 5.00
9.65

and we are therefore insisting that the
equations

1 —4 —4 0
Oly+| 8lm+| 4lwm=|20]
0 1 3 9

have a unique non-negative solution, which
in fact is given by (31, 3., y5)=(76/3, 6/5,
13/3).

Triangle 10 is obtained by following the
sequence illustrated in Figure 2. If we wish
to proceed from this triangle to a new tri-
angle, then the decision as to which of the
two older vertices is to be eliminated is
uniquely determined if we desire the new
triangle to have the same specific property.
The equality

1 4 —4 0

76[0 + 6 8 +13 4 20

SL 5 5 LY
0 1 3 9

may be considered as representing a feasible
basis for a linear programming problem, and
if the column (6.85, 5.00, 9.65)" is intro-
duced into this basis the conventional pivot
operation will remove (—4, 4, 3) and yield

1 —4 6.85
3.371 0+ 2.05] 81+ .72]5.00
0 1 9.65
0
=120 |.
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Therefore the vertex (.53, .2, .3)’, associated
with the column (—4, 4, 3)’, is to be elimi-
nated from triangle 10. We obtain triangle
11, whose new vertex is given by (4, .1, .5)
as can be seen from Figure 2. A version of
this pivot operation occurs at every iteration
of the algorithm.

Let us proceed for several additional itera-
tions. The vertices of triangle 11

SA7.4711 .4
A4 .14 2
A4L.51L.4
are associated with
—4 ‘—4’1 6.85
8 8 [} 5.00
111.9.65

Since the new vertex of this triangle has as-
sociated with it a column identical to one
already in the basis, the pivot step will
merely remove this pre-existing column. The
vertex (.5, .1, .4)" will therefore be eliminated
from triangle 11, and we obtain triangle 12.

As figure 2 indicates, the three vertices of
triangle 12, are given by

377 .4 .4‘}
20112
silslLal

which, according to our rules, are associated
with the three columns

07 —4776.85
2.4 81]5.00
-1 1119.65

If the new column is brought into the basis
represented by the equations

1 ~4
3.37 |0 [+ 2.05| 8
0 1
6.85 0
+.72 ] 5.00 |=| 20
9.65 94,

then the conventional pivot rules will elimi-
nate the first slack column, and the basic
equations become

0 —4
1.241 2.4 |+1.54 8
-1 1
6.85 0
+.915.00 = 20
9.65 9.1

The algorithm now terminates, since the
three columns associated with the vertices of
triangle 12 form a feasible basis.

A formal demonstration that the algo-
rithm will always terminate in a finite num-
ber of iterations with the desired solution
may be found in {1], {2], and [5]. The funda-
mental ideas behind the algorithm are, how-
ever, quite simple. At each iteration a new
vertex is determined and the column asso-
ciated with that vertex is calculated. That
column is brought into the basis consisting
of the first slack vector and the two columns
associated with the remaining two vertices
of the triangle. The algorithm terminates if
the first slack vector is eliminated by this
pivot step. If not, some other column is re-
moved and the vertex associated with that
column is eliminated from the triangle,
thereby producing a new triangle. The pro-
cess is then repeated. When the algorithm
eventually stops it provides us with a region
on the simplex containing an approximate
equilibrium price vector.

Some aspects of the algorithm are capable
of a rudimentary economic interpretation.
Each stage of the algorithm involves a pro-
duction plan and a weighted sum of market
demands evaluated at neighboring price vec-
tors. A new price vector is proposed and the
technology is examined to determine the ac-
tivity which maximizes profit at this set of
prices. If the maximum profit is nonnega-
tive, the scale of this activity is increased
from zero. On the other hand, if the maxi-
mum profit is negative, the market demands
are calculated at these prices and introduced
into the basis. A new price vector is then
generated, depending upon the result of a
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pivot step. It is this last aspect of the algo-
rithm which seems to be very difficult to in-
terpret from an economic point of view.
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