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1. Introduction. In this paper we study, from a geometrical point of view, the
solutions of systems of piecewise linear equations involving one more variable than
equation. As our examples will indicate, virtually all of the fixed point and comple-
mentary pivot algorithms, as well as a number of related techniques which have been
developed over the last decade, can be cast in this framework (Lemke and Howson
[16], Lemke [17}, Scarf [22], [23], Scarf and Hansen [24], Kuhn [14], [15], Eaves [4], [6],
[7}, Shapley [26], Merrill [19], Katzenelson {13], Fujisawa and Kuh [10], and Chien and
Kuh [1]). This geometrical setting leads naturally to an index theory—analogous to
that of differential topology—which is of considerable importance in the study of
uniqueness and monotounicity of these algorithms. Examples of the use of index theory
in computation have recently been given by Kuhn [15], Shapley [25] and Lemke [18].

In the development of our ideas we have been strongly influenced by the lucid
exposition of differential topology presented by Milnor [20}, and by a number of
stimulating conversations with Stephen Smale. Other important sources are the
exposition of index theory on discrete structures given by Fan [9], and the construc-
tive proof of the piecewise linear nonretraction theorem of Hirsch [12].

In the interests of simplicity we have avoided the most general presentation and
restricted our attention to a small number of well-known applications. For example,
the domain on which our equations are defined will be the union of a finite number of
compact convex polyhedra. With some cost in simplicity the domain could equally
well have been a noncompact oriented piecewise linear manifold. We have also
omitted from the paper applications such as the nonlinear complementarity problem
in which index theory is extremely useful (see Saigal and Simon [21]).

2. Piecewise Linear Mappings of Polyhedra. We shall be concerned with a set of
points £ in R"*! which is the union of a finite number of compact convex polyhedra,
P, P, ..., P, each of which is assumed to be of dimension (n + 1), and no two of
which have an interior point in common. The term polyhedron, with the adjective
“convex” omitted, will be used to describe such a set. The convex polyhedra used in
constructing P will be referred to as the pieces of the polyhedron.

Figure 1 represents a somewhat extreme example of such a polyhedron. As the
figure illustrates, the polyhedron P need not be convex even though it is composed of
convex pieces. It need not be connected or for that matter simply connected, and
moreover the intersection of two adjacent pieces of P need not be a full face of either
polyhedron as they are assumed to be in a simplicial subdivision.
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An example which is more typical of those arising in the application of our
techniques is given in Figure 2. In this example the polyhedron P is the product of an
interval with the simplex S = {(x;, x,) | x, > 0, x; + x, < 1}. The pieces {P;} are
obtained by taking the product of this interval with each n-simplex in a simplicial
subdivision of S.

We con'sider now a mapping F of the polyhedron P into Euclidean space R"”, which
is assumed to be linear (F(ax + (I — a)x’) = aF(x)+ (I — a) F(x")) in each piece P,
and continuous in P. In each of our applications the polyhedron P and the mapping F
will be defined by the nature of the problem and we shall be concerned with solutions
to the system of equations F(x) = ¢ for a specific vector ¢ in R".

In order to motivate the subsequent arguments let us begin with a few intuitive and
not quite rigorous remarks about the character of the set of solutions to such a system.
In each piece of linearity P, the mapping F{x) is linear with a maximal rank of n,
since the mapping is into R". If the mapping is, in fact, of rank » in a given piece of
linearity then the intersection F ~'(c) N P, if it is not empty, is generally a straight
line segment touching two distinct faces of P, of dimension ».

Consider an adjacent piece of linearity P; whose intersection with P, contains a
single point of F~'(c). Since the mapping is continuous on the common boundary of
P, and P; we expect in general that F~ "oyn P, will be a straight line segment in the
piece of linearity P, which fits together continuously with the corresponding segment
in P;. We shall see shortly what technical points must be examined in detail in order
to make this type of argument precise. For the moment, however, these remarks seem
to suggest that the set of solutions F~!(c) can be obtained by traversing a series of
straight line segments from one piece of linearity P, to an adjacent one.

Since the polyhedron is composed of a finite number of bounded pieces, there are
essentially two types of curves (by a curve we mean a homeomorph of a closed
bounded interval or a circle) that can arise in this fashion. One possibility is that the
process of moving from one piece of linearity to an adjacent piece will terminate by
reaching the boundary of the polyhedron P. Since movement is possible in twe
directions this would imply a curve touching the boundary of P in two distinct points;
we shall call such a curve a path. This case is illustrated in Figure 4, in which the
dashed line represents F ~1(¢).
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Another possibility that may arise by continuing the straight line segntents is the
generation of a closed curve or loop which has no intersection with the boundary of
P. Figure 5 illustrates a possibility in which the set of solutions F ~!(c) contains such a
loop in addition to a path terminating in a pair of boundary points of P.

These rough arguments suggest that the set of solutions to F(x) = ¢ will either be
empty or be a disjoint union of a finite number of paths and loops. As we shall see,
this important conclusion will generally be correct. However, the problem may
occasionally become degenerate for specific choices of the function F and vector ¢
and produce a set of solutions more complex than that described above.

For example, we may be working in a piece of linearity P; in which the rank of F(x)
is less than ». In such a region the solutions of F(x) = ¢ may very well form a set of
dimension strictly larger than one. Another illustration of difficulty arises if for some
piece of linearity P, the set P, N F ~!(c) lies fully in the boundary of P,.

A final example occurs when the set 7 ~'(¢) intersects the boundary of a piece of
linearity P, in some face of dimension less than n. As Figure 7 illustrates, this case
may produce a bifurcation of the path in two different directions. The common
feature of these examples, and in fact all difficuities caused by degeneracy, is the fact
that F(x)= c has a solution on some face of dimension less than », of a piece of
linearity. '

In the next section we shall use this idea to impose a condition on the basic
problem which avoids degeneracy and permits us to establish the main theorem
characterizing the set of solutions to F(x) = c.

It may be appropriate at this point to provide a formal definition of the terms
“path” and “loop,” which have been used in the previous discussion.

DErFINITION 2.1. A path is a curve in P with two endpoints, each of which lies in
the boundary of P and whose intersection with each piece of linearity is either empty
or a straight line segment. A loop is a closed curve with no endpoints whose
intersection with each piece of linearity is either empty or a straight line segment.

Figures 4 and 5 illustrate paths and loops; Figure 6 a path but of the type we shall
avoid, and in Figure 7 the dotted set is neither a path nor a loop.

3. The Main Theorem. We are given a polyhedron P in R"*! and a piecewise
linear mapping F which carries P into R”. The following definition employs a
modification, which is suitable to our purposes, of well-known terminology used in
differential topology.

DeriNITION 3.1, A vector ¢ in R" is a degenerate value of F : P— R" if there is an
x in P lying in a face of dimension less than » of some piece of linearity P,, for which
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F{x) = c. A vector ¢ which is not a degenerate value is called a regular value of the
mapping.

Consider the following simple illustration of this definition. The polyhedron-P is
composed of four triangles in R? The mapping into R! is given by F(x,, x,) = x, +
x,. According to the definition the degenerate values are those taken on at the six
0-dimensional faces (vertices), and are therefore given by (0, 1, 2, 3). The regular
values of the mapping consist therefore of all points in R ! other than these four values
—illustrating the fact that vectors in R” which are not assumed by F are considered to
be regular values. We also see that degenerate values can be assumed on faces of
higher dimension; for example, the value 1 is assumed by F on the entire face
connecting (0, 1) and (1, 0).

We shall now provide a complete description of the set of solutions to F(x)=c,
when ¢ is a regular value of the map. We shall organize the argument by demonstrat-
ing the following preliminary lemma.

LeMMa 3.2, Let P, be a piece of linearity, let ¢ be a regular value of F, and assume
that P, F~(c) is not empty. Then P, F~'(c) consists of a single straight line
segment whose endpoints are interior to two distinct faces of dimension n of P,

In order to demonstrate this lemma let us assume that F(x) = Ax + b in P, with 4
an # X (n+ 1) matrix. First of all let us remark that th¢ matrix 4 has rank ».
Otherwise the value ¢ is assumed on a face of dimension n — 1 of P,, contradicting the
assumption that ¢ is a regular value. '

Since A4 is of rank » the solutions to Ax + b = ¢ in P, form a straight line segment.
The line segment cannot be fully contained in any face of dimension n of P, since
extending it would then enable us to reach a face of dimension » — 1. Its endpoints
must therefore be contained in the interiors of two distinct faces of P,. This de-
monstrates the lemma.

We are now prepared to prove the major theorem characterizing the set of solutions
to F(x) = c, where ¢ is a regular value.

THEOREM 3.3.  Let F : P— R" be continuous and linear in each piece P,, and let ¢ be
a regular value. Then the set of solutions of F(x)= c is a finite disjoint union of paths
and loops, each path of which intersects the boundary of P in precisely two points and
each loop of which has no intersection with the boundary of P.

The proof of Theorem 3.3 is, of course, an immediate consequence of the arguments
of the previous section combined with Lemma 3.2. If F7!(¢) has a nonempty
intersection with a piece P, then this intersection will consist of a straight line
segment touching two faces of dimension n of P, and no lower dimensional face
either of 2, or of any adjacent piece of linearity. If either endpoint of this line segment
is not on the boundary of P it will be contained in precisely one other piece of
linearity, say P;. (The fact that this endpoint is contained in at most one other piece of
linearity is the feature which assures that paths do not bifurcate as in Figure 7.) But
then P, N F ~!(¢) will not be empty and will consist of a similar straight line segment.

This process will either produce a path which intersects the boundary of P in two
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distinct points, or a path which returns to itself and is therefore a loop. This provides
us with one component of the set of solutions to F(x) = c. If there is another piece of
linearity which intersects F ~'(c) we continue by constructing an additional com-
ponent. Since there are a finite number of such pieces, the process of constructing
paths and loops will ultimately terminate. This demonstrates Theorem 3.3.

This characterization of the set of solutions to F(x) = ¢ is valid only if ¢ is a regular
value of the mapping; if ¢ is degenerate the corresponding set may be considerably
more complex. In applying Theorem 3.3 it will be necessary-to avoid degenerate
values, which, as the following theorem indicates, form a negligible subset of R".

THEOREM 3.4. The set of degenerate values is a closed subset of R", contained in a
finite union of (n — 1) dimensional hyperplanes.

This theorem, analogous to Sard’s theorem in the case of differentiable manifolds,
is an immediate consequence of the definition of a degenerate value to be the image
of a point x lying in an n — 1 dimensional face of some piece of linearity. There are a
finite number of such faces, each of which is carried by F into a closed subset of an
n — 1 dimensional hyperplane in R”.

Theorem 3.4, in the form stated above, is not quite suitable for most of our
applications since-a value ¢ is considered to be a regular value whenever F~!(c) is
emply. While the degenerate values form a small subset of R”, they need not form a
small subset of the image of P under F. For example, if F maps all of P onto, the same
vector then all values ¢ for which F~!(c) is not empty will be degenerate. The
following theorem is a sharpening of Theorem 3.4, which is more appropriate for our
purposes. :

THEOREM 3.5. Let Q be a face of dimension n of a piece P, and let x be interior to
this face. Assume that the image of Q under the mapping F is of dimension n. Then any
relative neighborhood of x on the face Q contains points x' for which ¢’ = F(x') is
regular. ‘ '

The hypothesis of Theorem 3.5 implies that any neighborhood of x, on Q, will be
mapped into a set of dimension # by the linear transformation obtained by restricting
F to Q. Since the set of degenerate values of F is a set of dimension n —1 or less,
there will be many values of x’ in this neighborhood, whose image is a regular value of
F.

Theorem 3.5 permits us to treat degeneracy by a slight perturbation of the vector c,
as is customary in linear programming. (See any standard reference which discusses
the resolution of degeneracy in linear programming,)

4. Examples of the General Method. In the present section we shall illustrate the
significance of our characterization of the set of solutions to F(x) = ¢ by applying this
result to a series of examples which have played an important role in the development
of fixed point computational techniques. There are many other examples which we
have chosen not to discuss in this paper.

ExaMpLE I. Our first example is that of “integer labelling,” one of the earliest
techniques for the numerical approximation of a fixed point of a continuous mapping
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of the simplex into itself. For simplicity of exposition we shail take the particular form
of this method described in Chapter 7 of {24]. (Also see Cohen [2] and Eaves [4], [5].)

Consider a simplicial subdivision of the simplex §= {x=(xy,...,x,)|x; >0,
S7x; < 1} which is arbitrary, aside from the assumption that the only vertices of the
subdivision lying on the boundary of S are

°=(0,0,...,0),
ol=(1,0,...,0),
v? = (0, 1,;..,0),

v"=(0,0,...,1).

Let every vertex v of this subdivision be given an integer label /(v) selected from the
set (0, 1, ..., n). The label associated with a given vertex will typically be assigned on
the basis of some underlying mapping of the simplex into itself. For our purposes,
however, the labelling can be considered to be arbitrary, aside from the proviso that o
receive the label 7, for i =0, 1,..., n

We shall show that Theorem 3.3 can be employed, in the present context, to
demonstrate the existence of at least one simplex in the subdivision, afl of whose
labels are distinct. This conclusion can be viewed, of course, as a simplified form of
Sperner’s lemma.

The conventional computational procedure for determining such a simplex starts
out with the unique simplex in the subdivision containing the vertices v', .. ., v" and
the additional vertex ¢/. If the label associated with ¢/ is 0, the process terminates.
Otherwise we remove that vertex of the simplex say v* whose label agrees with that of
o/. A new vertex v’ is introduced, where the vertices ¢!, ..., v" o/, v/, with o*
omitted, form a simplex in the subdivision. If the label assoicated with o’ is 0 the
process terminates; otherwise we continue by removing the vertex whose label agrees
with that of v'. ) '

At each iteration we are presented with a simplex whose vertices bear the labels
1, 2, ..., n Of the two vertices with the same label, we remove the one which has not
just been introduced. The argument that the algerithm does not cycle and must
terminate with a simplex of the desired type may be found in the previously cited
reference.

In order to place the problem in our context we make the following definition.

DermniTioN 4.1, Define a continuous map f:.S— .5 of the simplex into itself as
follows:

1. Let v be any vertex of the simplicial subdivision, and let /(v) =i be the integer
label associated with v. We then define f(v) to be v'.
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2. We extend the definition of f to the entire simplex by requiring f to be linear in
each simplex of the subdivision of S.

With this definition the function f is piecewise linear in S, and because of the
special structure of the subdivision it is easy to see that f(x) is the identity map
(f(x) = x) on the boundary of S. In order to demonstrate the existence of at least one
completely labelled simplex it is clearly sufficient to show that for any vector ¢ interior
to the simplex § there will exist a vector x for which f(x) = ¢. The vertices of that
simplex in the subdivision which contains x will certainly bear distinct labels. For if
the label / is omitted, then the image of each vertex in the simplex will be on that face
of S whose ith coordinate is zero (or on the face T7x, = 1, if i = 0). f(x) will therefore
lie on the boundary of S, contradicting the assumption that ¢ is an interior point.
Conversely, if the vertices of a particular simplex in the subdivision bear distinct
labels then it is easy to see that the system of equations, f(x) = ¢, has a solution
contained in that simplex.

We begin by defining a polyhedron P in R™*',

DeriNiTION 4.2.  The polyhedron 2 is defined to be the product of the simplex S
with the closed interval {0, 1], ie. {(x}, ..., X, X, )| % 20, 27x, <1, and x, .,
< 1}. The pieces P, P,, ..., P, of P are obtained by taking the product of an
arbitrary n-simplex in the subdivision of § with the same closed interval [0, 1].

The following definition will provide us with a function F(x,,..., x, X,,,
which Theorem 3.3 can be applied.

DerFINITION 4.3, Let 4 be that vector in R” all of whose coordinates are unity. We
define F(xy, ..., X, X, D= fx - o0 X)) — X, 4.

F is a continuous map of P into R” which is linear in each piece of the polyhedron
P. Our purpose is to show that for an arbitrary vector ¢, interior to the simplex S,
F ~ (¢} will intersect that face of P on which x,, = 0.

Let ¢ be a vector interior to S and let us examine the intersection of F ~!(c) with the
other faces of P. First of all we remark that # 7 '(c) cannot intersect that face of P on
which x,,, = 1. This would imply that f(x, ..., x,) — d=c, which is impossible,
since fi(x)<1,d=(1,1,...,1)and ¢, > 0 for all /.

On the remaining faces of £, other than the two ends of the prism, we know that
f(x)==x. A vector x in F'(c) which is on such a face will therefore satisfy
x — X,4,d = ¢, the unique solution of which is given by

{ n 3 { "
(-Sa)e [1-34)
(x;“,,..,x;“)=c+—-r—l—————, x¥ = p .

) to

We have therefore demonstrated the important conclusion that if ¢ is interior to S,
the equations F(x) = ¢ have precisely one solution on the boundary of P other than

*
lctxpy) dy Xopp) =%
¢

c+xn+,d

FiGure 13 FiGUre 14
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on that face where x, ., = 0. But if ¢ is a regular value of the mapping F, Theorem 3.3
can be invoked to produce a path starting from x*. Since the path must terminate at
some other boundary point of P, there must be a vector on the bottom face of P for
which F(x)=c¢. As we have already seen, this demonstrates the existence of a
completely labelled simplex.

In order for this argument to be complete we need only show that there exists at
least one vector c¢, interior to S, which is a regular value of the mapping F. But this
follows immediately from Theorem 3.5 and the observation that F maps the face of P
on which 3 {x;, = 1 onto an n-dimensional subset of R".

Let us examine the path generated from x* and terminating with a solution to the
problem in somewhat greater detail. Since ¢ is a regular value this path will move
from one piece of linearity to an adjacent one by passing through the interior of their
common face Q. The face @ is the product of the interval [0, 1] with the intersection
of two adjacent simplices in the simplicial subdivision of S, say S; and S,. It is easy to
see, however, that the » vertices common to §; and §; must together bear all of the
labels 1, 2, ..., n. For if the ith such label were missing it would follow that f,(x)=0
on this common intersection, which contradicts f(x, ..., x,) — x,,,d = c.

We see, therefore, that the projection of our path to the lower face of P moves
through simplices each of which has vertices which together bear all the labels
1,2, ..., n and which do not bear the label zero until the process terminates. Each
such simplex must have a single duplicated label belonging to that vertex which is
being removed in passing to the next simpliex. The sequence of simplices is therefore
identical with that produced by the conventional algorithm, described at the begin-
ning of the example.

It may also be instructive to remark that a second solution to F{x) = ¢ on the face
x,.1=0 would generate a second path lying on F~!(c) which would, of necessity,

n

n+i

FIGURE 17 FIGURE 18
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return to this face. This permits us to arrive at the well-known conclusion asserting the
existence of an odd number of solutions to f(x) = c. (See Figure 16.)

ExaMpLE II.  As our second example we shall indicate a way in which fixed point
methods based on “vector” labels (a version of the main theorem in the monograph
by Scarf and Hansen [24]) rather than integer labels may be placed in the general
framework of this paper. We begin with a simplicial subdivision of the simplex

n
S={x=(x1,...,xn)|x,-20,zxi=l .
1

Let the vertices of the subdivision be denoted by »', 0% ..., "% 0" ..., v
where

ol=(1,0,...,0),
v2=(0,1,...,0),

" =(0,0,...,1).

For simplicity of exposition we make the assumption that no vertices of this subdivi-
sion, other than the first » vertices, lie on the boundary of §. (See Figure 17.)

Each vertex v/ will have associated with it a vector f(v/) contained in R™. In
practice this association is determined by the particular problem being solved; for our
purposes, however, we may consider the vector labels to be completely arbitrary aside
from the assumption that f(vi) =y fori=1,2,...,n In addition to this assign-
ment of vecior labels a specific positive vector ¢ in R" is given.

By a solution to this problem we mean the determination of a particular simplex in

the subdivision, with vertices ¢/1, v/2, . . ., t/~, such that the equations,
a [+ o f(o2) + - o f(vM) = ¢,
have a nonnegative solution (w;, @, ..., ;). In order to guarantee that such a

solution does indeed exist it is sufficient to make the following assumption.

ASSUMPTION 4.4. Let a = (ay, &y, - .., &) be nonnegative and satisfy e f(v/)
< 0. Then a = 0.

To cast this problem in our general form we begin by defining a function f(x)
taking the nonnegative orthant of R” into R”, as follows:

1. f(v/) = the vector label associated with ¢/ for any vertex of the subdivision;

2. f(x) is linear in each simplex of the subdivision S; and

3. f(x) is homogeneous of degree 1, i.e., f(Ax) = Af(x) for any A > 0.

According to this definition, f(x) is therefore linear in each cone with vertex at the
origin whose half-rays pass through a particular simplex in the subdivision of S,
Because of the special assignment of vector labels to the vertices ¢!, ..., 0", the
function is the identity { f{x) = x) on the boundary of the nonnegative orthant of R".
Moreover, Assumption 4.4 implies that for no nonnegative vector x, other than the
zero vector, will f(x) be < 0. (See Figure 18.)

It should be clear that solving the vector labeiling problem is simply equivalent to
the determination of a nonnegative vector x for which f(x)=c¢. The particular
simplex in the subdivision involved in the solution is then obtained by intersecting the
ray from the origin through x with the simplex S.

In order to define an appropriate polyhedron P we begin by remarking that
Assumption 4.4 implies that the set of nonnegative x for which f(x) < ¢, is bounded.
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For if there were a sequence x', x%, ... tending to infinity with f(x/) < ¢, then any

limit point of the sequence (x//||x/||) would be nonnegative, different from zero and
map into a vector all of whose coordinates were less than or equal to 0. For specificity
let us assume that there is a positive constant M, such that x > 0, and f(x) < ¢ implies
that 37, < M.

DerFiNiTION 4.5.  The polyhedron P is defined to be the product of the closed unit

interval 0 < x,,, < 1 with the set {(x,, ..., x,) | x; > 0, 2]x, < M }. Each piece P, is
determined by a particular simplex of the subdivision, S,, and consists of all
(xp, ..., X%, X, ) with

. 0<x, <1,

2. ¥x, < M, and

3. (xp -+ -5 X,)/ 2%, contained in S,

We also define the function F(xy, . . ., X,, X, ) in the following way.

DEFINITION 4.6.  Let d be a vector in R" which is strictly larger than ¢, and assume,
for definiteness, that

¢/d> e /dy forj=2,....n
We then define F(x,, ..., X, Xpo1) = f(Xp .. ., x,) + X, 4. '
With this definition a solution to the vector labelling problem will be obtained by
finding a vector (x,, .. ., X, X,,,) in F7'(¢) with x, ., = 0. In order to argue that

such a vector does indeed exist let us examine the intersection of F~'(c) with those
boundary faces of P other than that face with x,,, = 0.

1. The upper face x,,,= 1. An intersection on this face would satisfy
f(xp ..., x,)+ d=c, which is ruled out by Assumption 4.4 since d > c.

2. The face 3x, = M, x,,, > 0. Such an intersection would satisfy f(x;, ..., x,)
< ¢ and 3%x, = M, which is again impossible by the implications of Assumption 4.4.

3. The face x;=0, for i=1,...,n On any such face the function f(x) is the
identity, and the system of equations F(x) = ¢ may therefore be written as x + dx,
=c or x=c—dx,,, Given our assumption, however, that ¢,/d, <c¢;/d for j
=2,...,n, it is easy to see that the only such intersection is the vector x* = (¢ —
(¢;/dpd, c,/d,), on the face x, = 0.

We have reached the important conclusion that F~!(c) intersects the boundary of
P, other than that part of the boundary where x, ., =0, in a single point. If ¢ is a
regular value of the mapping this completes our argument, since the path beginning at
x* must reach a second boundary point of P which necessarily lies in the face
Xn41=0. If ¢ is not a regular value of the mapping we appeal to Theorem 3.5. The
image of the face x, = 0, under F, is clearly of dimension » (since f is the identity on
that face) and we therefore conclude that there are values of x’, lying on that same
face and arbitrarily close to x*, for which ¢’ = F(x’) is regular. The system of
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equations f(x) = ¢’ will therefore have solutions, and by passing to the limit, so will
the original system.

It may be useful, as a final remark, to show that the path generated above—when ¢
is a regular value—moves through a sequence of simplices which is identical to that
generated by the algorithm described in Scarf and Hansen [24]. Consider two adjacent
pieces of linearity P, and P, whose common face Q is traversed by the path. Since c is
a regular value the mapping F must take Q into a subset of R" of full dimension, for
otherwise a component of F~'(¢) would be fully in this face.

Let us express the action of F on Q as follows. The piece P, is generated by u

simplex in the subdivision with vertices v/1, v/%, . . ., v» and P, by the simplex, say, in
which ¢/' is replaced by v'. Any (x,,...,x,, x,,,) on the face O can therefore be
written as
(xpp oo s X)) = gt -+ ajnvf", so that
Flxy,ooos X X,00) = ajzf(vh) +- + O‘j,,f(vj") + x,4.d.

Since this mapping has full rank, it follows that the matrix

dy fi(v?) t fi(v™)
A= : . .
d,  f(v7) . f.(v")
has a nonsingular determinant. Since 4(x,, |, ., ..., ) = c at the point of inter-

section of the path and Q, it follows that the columns of A4 form a feasible basis whose
columns correspond to the vertices of the simplex defining P, with the single
~ exception that the column d has replaced the image f(v/1). This is precisely the general
position of the conventional almost complementary algorithm.

ExampLE 1I1. The general arguments of this paper are very similar in spirit to the
homotopy methods introduced by Eaves {6], [7] and Eaves and Saigal {8] for the
approximation of fixed points of a continuous mapping of the simplex into itself. The
present example will illustrate this similarity in some detail.

Let § be the simplex {x =(x;,...,x,) | x >0, ¥7x, < 1}, and P the polyhedron
obtained by taking the product of S with the closed unit interval {z | 0 < 7 < 1},

Let f(x) be the continuous mapping of the simplex S into itself, whose fixed point
we wish 1o approximate. We interpret this mapping as carrying the lower face of P
(where ¢ = 0) into S, and on the upper face (where ¢ = 1) we construct some simple
mapping whose fixed point is unique and easy to determine. For example, the
mappinig on the upper simplex may carry every point into the same vector b.

A homotopy between these two mappings is a continuous mapping f(x, ¢) of P into
S such that f(x, 0) = f(x), and f(x, 1) = b. Such a homotopy may arise quite naturally

nti

Xy

FiGURE 21 FIGURE 22
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in some applications in which a parameter ¢ varies continuously in a closed interval or
it may be constructed directly by assuming for example that f(x, )=t b+ (1 —1)-
fx).

We shall make the simplifying assumption—which can easily be brought about by
embedding S in a larger simplex—that for each ¢, f(x ) maps the boundary of S into
its interior.

The basic idea of the homotopy method is to trace a path of fixed points from the
face t = 1, where the fixed point is given by x = b, until the path intersects the face
t = 0. In order to carry this out in a piecewise linear framework we assume that the
polyhedron P is given a subdivision with vertices {v/ = (x/, #/)}. The subdivision may
be quite arbitrary, but if we are concerned with an accurate estimate, the derived
subdivision on the face r = 0 should have a fine mesh. See Eaves [6], Eaves and Saigal
[8], and Todd [27] for such subdivisions.

We define the piecewise linear mapping of P into R” by defining it first on the
vertices of the subdivision and then extending the mapping linearly in each simplex of
the subdivision. On a vertex (x/, #/), we simply require that F(x/, t/) = x/ — f(x/, V).

In order to evaluate F at a point (x, £) on the boundary of P we locate this point in
a face of dimension n of some simplex of the subdivision, evaluate F on the (n + 1)
vertices of the face and extend the definition linearly. Since every vertex on the face
where 1 =1 is mapped by f(x, 1) to b, we see that F(x, 1) = x — b. A vertex (x, r) on
the face where x; = 0 is carried into the interior of the simplex, so that f(x, £) > 0 and
therefore F,(x, t) < 0. It follows that aside from the face of P on which 7 = 0, there is
precisely one boundary point of P contained in F ~}0), i.e. x* = (b, 1). (See Fig. 23))

If 0 is a regular value of F, the path in F~(0) beginning at (b, 1) must ultimately
penetrate the face where # = 0, say at the point (x, 0). Let x be contained in a simplex
in the derived subdivision on this face, with vertices o', v% ..., 0" so that x
=av'+ -+ + a,0", with o; > 0 and 37a, = 1. Then

O0=F(x,0)=— éaif(vi) + x.

If the subdivision is sufficiently fine on this face, f(v’) will be approximatély equal to
f(x), for all i, and x will serve as an approximate fixed point of the mapping. If, on the
other hand, 0 is not a regular value of F, Theorem 3.5 may be called upon to provide
starting points on the face where 7 = 1, which are as close as we wish to (b, 1).

It is important to remark that the cylinder P can be continued below the face ¢ = 0,
and be given a simplicial subdivision which becomes increasingly fine. This permits
the computational procedure to be prolonged until an approximate fixed point is
reached, with an arbitrary accuracy which has been specified in advance.

ExampLE IV. Our fourth example of the general methods of this paper will be the
linear complementarity problem as treated by Lemke [17]. (For more recent devel-
opments see Garcia [11].) Consider a square n X n matrix C and a vector ¢ in R*. A
solution to the linear complementarity problem is a nonnegative vector x, satisfying
the system of linear inequalities,

2%—”9‘% fori=1,...,n,

with the additional proviso that x; = 0 for any index i with 2=1C% > ¢
In order to place this problem in our setting we begin by defmmg n functlons gf(x)
each mapping R' into R".
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1 If x; 2 0,
Clj
gl = 1 |x.
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2. If x; < 0, then
0
gj('xj) = l xj:
0
with the single 1 appearing in the jth entry of this vector.
We then define the piecewise linear function f(x,, . .., x,), mapping R” into R", by

Gt eex) = 2 ().
j=1

It should be clear that a solution to the linear complementarity problem is obtained
simply by finding a vector x for which f(x) = ¢. To see this we introduce the following
notation. Let x =(x,, . . ., x,) be an arbitrary vector in R". Then

x* = (max(0, x;), . . ., max(0, x,)) and
x~ = (min(0, x,), . . ., min(0, x,)).

With this notation the equations f(x) = ¢ become Ix~ + Cx* = ¢. Since x," - x” =0
for all i, the vector x* is a solution to the linear complementarity problem.

The natural definition of the polyhedron P in R"*! is the product of the half line
[0, c0) with R”. F is then defined by

Flxp.ooooxpx,00)=f(x, ..., x)+dx,

with d a positive vector, strictly larger than ¢ in all coordinates. However, in order to
avoid unbounded pieces of linearity we shall restrict P to be the bounded polyhedron

-M< x5 <M, i=1...,nmand 0<x,,, <]
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for some large constant M. There are 2" pieces of linearity obtained by selecting an
arbitrary subset of the coordinates greater than or equal to zero, with the comple-
mentary subset less than or equal to zero.

In order to solve the linear complementarity problem we find a boundary point of
P in F~'(c) and follow the piecewise linear path from this boundary point until it
intersects the face x,,, =0, a procedure identical with that originally suggested by
Lemke. One such vector is given by x =(c;, — d,...,c, — d, 1). In general, there
may be more than one boundary point of P, with x, ., > 0, contained in F ~'(¢), and
the path may exit from P without reaching the plane x,,, = 0. ‘

The literature contains a variety of different conditions which may be placed on the
problem and which have the effect of implying that F~!(c) intersects the boundary of
P at a unique point with x,,, > 0. One such condition is the following:

ASSUMPTION 4.6. The matrix C will be assumed to have the property that if x > 0,
and xCx €0, then x = 0.

The condition of this assumption is known as “strict copositivity” as discussed by
Lemke. It may equally well be stated as x > 0, xf(x) < 0 implies x = 0, a condition on
the function f which is also known as “strict copositivity.”

The equations F(x, x,,,) = ¢ may be written as

0
0 0 Cn e Cln .
- . . +
' N R B R X, 414,
O L. 1 crzl T cnn

or Cx* »c—x,,,d 1f we multiply these equations by x*, and use the fact that
x¥-x7 =0for all i, we obtain x " Cx* = c-x* —x, dx".

Now let us examine the boundary points of 2 which lie in F~'(c).

1. The face x,,, = 1. Since d > ¢ we see that on this face c- x* —x,,,dx* <0, so
that x* Cx* < 0. From Assumption 4.6 this implies that x* = 0, and the equations

F(x, x,,.,) = ¢ become

O x“=c—d,
0 1
L ' .
yielding the unique solution on the upper face which we have previously remarked

upon.

2. The remaining faces other than x,,,=0. As we shall see, Assumption 4.6
implies that there are no solutions of F(x) = ¢ on these faces, for sufficiently large M.
Let us assume, to the contrary, that as M — co, there exist solutions x(M), lying on
these boundary faces and as a consequence having at least one of its coordinates
tending to infinity.

Consider, as the first subcase, the possibility that one of the coordinates of x* (M)
tends to + oo. But then, if y(M) = x*(M)/||x* (M)|, we have

y(M)Cy(M) = (c-y(M) = x,,. (M)dy(M))/||x (M)]|.

If y is any limit point of the sequence y(Af), then | y|| =1, and from the above
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equation yCy = 0. This contradicts Assumption 4.6, and implies that x* (M) is
bounded.

We are therefore led to the second subcase, namely x* (M) is bounded and some
component of x~ (M) tends to — oo. But this is an immediate contradiction of the
equations Ix (M) + Cx* (M)=c — x,, (M) -d, since both Cx* (M) and x,, (M)
remain bounded.

We have therefore verified that, aside from the boundary face where x, , = 0, there
is a unique point in F ~'(¢) lying on the boundary of P. If ¢ is a regular value of F, the
path emanating from this point must terminate with a solution to f(x) = c¢. If ¢ is not
a regular value we simply perturb the boundary point in order to initiate the path.

5. The Index of a Solution. As the previous sections have shown, virtually all of
our computational techniques for approximating fixed points can be viewed as
following a piecewise linear path, contained in F~!(c), from one boundary point of
the polyhedron P until a second boundary point is reached. By introducing the
concepts of index theory it is possible to obtain a considerable increase in our
understanding of such paths and consequently of solutions. As we shall see, each
solution to F(x) = ¢, on the boundary of P, has associated with it an index which is
either +1 or — 1. The index may be calculated entirely in terms of the local data
specifying the solution, independently of the path which has been traversed. The
important glebal theorem connecting these locally determined indices states that the
sum of the indices over all solutions to F(x) = ¢, lying on the boundary of P, is zero.

We begin with a few general remarks about the concept of orientation. A set of n
linearly independent vectors b', b2 ..., b" in an n dimensional vector space deter-
mines a basis for this space. Any two such bases (b', b, ..., b") and (b', 6%, .. ., b")
are said to have the same orientation if the determinant of the linear transformation
carrying b into b is positive. If the determinant is negative the two bases have an
opposite orientation. It is frequently useful to select a specific basis for a vector space
and to describe its orientation as being positive. Any other basis for the same vector
space will have a positive or negative orientation depending on whether its orientation
agrees or disagrees with that of the standard basis. '

A nonsingular linear mapping 7 from one »n dimensional vector space into another
will have an index of +1 if it maps positive bases into positive bases; in the contrary
case the index is defined to be — 1. In the special case in which the standard bases for
both vector spaces are given by

b'=(1,0,.:.,0),
BE=(0,1,...,0),

b"=(0,0,...,1),

the index 1s +1 if the determinant of the linear transformation T is positive, and — |
if the determinant is negative.

Such linear mappings arise naturally in the context of our problem. Let P be an
n + 1 polyhedron, F a piecewise linear map into R” and ¢ a regular value of this map.
Theorem 3.3 tells us that the set F~'(¢) is a finite union of paths, each of which
touches the boundary of P at two points, and loops which have no intersection with
the boundary of P. We shall assume that each path and loop in F~'(c) is given a
specific orientation. For a given path this means that the directions in each piece of
linearity intersecting F ™ '(c) are selected to be consistent with movement along the
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path from one endpoint to another; and for a loop, to be consistent with cyclic
movement. ‘

Now let us consider a piece of linearity P; which has a nonempty intersection with a
particular path or loop in F~!(c)—an intersection which is a straight line segment
connecting two distinct faces of dimension n of P,. Assuming that the path begins at
one such face and terminates at the other, its direction numbers will be given by a
specific vector ¢ in R”*!, normalized in some conventional fashion. The reverse
direction will, of course, be described by the vector —g.

Now consider any hyperplane H of dimension n» which intersects the straight line
segment at a single point x in P;; i.e., H is transversal to the path at x. The set of
vectors (y — x), for y in H, forms an n-dimensional vector space which we shall
denote by V.

We shall adopt the convention that a linearly independent set of vectors b, ..., b"
in ¥, has a positive orientation if the determinant

Y 2 ]
b bi T b 91
get| 2P B (5.1)
bz:+l b3+1 T blvi G

is positive, and has a negative orientation otherwise. This is equivalent to deriving the
orientation of a basis in ¥, from a standard orientation ‘of the enveloping space,
R"*! and a given direction g, transversal to the plane H.

The mapping F, which is linear in P, (and nonsingular since c is a regular value),
can be extended to a nonsingular map of V, into R". More specifically let F(x)
=Ax+a in P, with 4 an n X (n+ 1) matrix. Then vectors (y — x) in V,, are
mapped into R” by A(y —x).

In order to determine the index of this map, we endow the target space R” with the

standard orientation, and consider a basis b, 52, ..., b" of V. The index of the map
is determined by comparing the orientation of d', ..., " in V,, with the orientation
of its image 4b', . .., Ab™ in R". In other words we compare the sign of (5.1) with the

FiGURE 27 FIGURE 28
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sign of
det(Ab', 4b%, ..., Ab™). (5.2)

If the two determinants have the same sign the index is + 1, if not, — 1.
The importance of this definition is displayed in the following lemma.

LEMMA 5.3. The index of the map from Vi to R" is the same for all n-dimensional
hyperplanes H which intersect the segment P, F~'(c) in a single point.

The basic geometric idea behind this result is that the orientations of the various
vector spaces Vy are all determined by the same direction g and the orientation of
R"*!. In order to give a formal proof, we shall demonstrate that the index is identical
in sign to the determinant

a4 Gy Ay, n+1
: A
det| - = det ,
a anZ Tt an,rz+l q
9 92 T 9n+1

which is itself independent of the hyperplane H, and the point of intersection x.
We have

a a a ,
ro b S
det : . ) . .
a, a4 o qn,n+l i
] bnl+l b3+l e bn+l qn+1
9 P T In+1
. : t 0
: : t
3 2 n °
= det| A0, AP . Ab ! = llglPdet(4BY, . .., Ab"),
_____ L L i
gt qb? g-b" ilql?

where we have used the fact that Ag = 0, since the function F is constant along the
- path with direction ¢. This concludes the proof of Lemma 5.3. ‘

The index of the mapping from ¥, to R" is independent of the hyperplane H and
the point of intersection x on the straight line segment P, N F ~!(¢). In particular x
may be selected to be either of the two endpoints of this line segment and H to be the
n face of P, through which the path enters or leaves this piece of linearity. Calculating
the index in this fashion also permits us to relate the index in two adjacent pieces of
linearity containing part of the same path or loop in F~'(c).

THEOREM 5.4. The index is identical for any two points of the same oriented path or
loop in F~Y(c), if ¢ is a regular value of the mapping.

In order to demonstrate 5.4 we need only to show that the index is unchanged when
calculated in either of the two possible ways at a point x* contained in a common »
face H of two adjacent pieces of linearity P, and P,. Let x* + b', x* + b .. x* 4+
b” be a set of linearly independent vectors on this face, and let F(x)= Ax + a’ in P,
for i = 1, 2. The direction of the pathin P, is given by ¢' and in P, by 4*. (See Fig. 28.)
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Since ¢' and ¢? point to the same side of H, we have
g> =2 b/ +0q" with§ >0.
[

The two determinants

by B g
I S R S
bnl+1 T 1 qt;+l

used in calculating the index in each of the two adjacent pieces of linearity will
therefore have the same sign.

Since A'x + a' = A% + a? for all x in H we also see that A'(x* + b)) + a'
= A¥x* + by + a®, and therefore 4%/ = A%/ for all j. It follows that the two
determinants det(4‘b', 4p%, ..., A’b™) are identical in each of the two computations.
This demonstrates Theorem 5.4.

The index we have been discussing so far should be thought of as being defined at
each point of an oriented path or loop in F~'(c). A more cumbersome but
appropriate title would be “oriented curve index.” The major conclusion bf Theorem
5.4 is that this oriented curve index is identical at the two endpoints of a path
contained in F~!(c). At such an endpoint, however, it is appropriate to define the
index in the following way, which is independent of orientation. Such an index might
be thought of as a “boundary” index.

DEFINITION 5.5. Let x* be a boundary point of F~ (¢), contained in the relative
interior of an n face H of some piece of linearity in which F(x)= Ax + a. Let
x+ b, x+b% ..., x+ b"beaset of linearly independent vectors in H, and let g be
an arbitrary direction pointing into P at x*. The index of x* is defined to be + 1 if the
two determinants

[ ’ n
by - by 9

i NP n
det(A4b', A4b% ..., Ab™), det b? b_z o
byt Tt b 9+t

agree in sign, and — 1 otherwise.

In this definition the direction g is an arbitrary direction pointing into P at x*,
rather than the specific vector associated with the direction of the path in F~!(c)
which starts from x*. This more general choice is possible since the sign of the second
determinant in Definition 5.5 1s the same for all directions pointing into P, by an
argument identical to that used in the proof of Theorem 5.4.

With this definition the following theorem is an immediate consequence of our
previous arguments.

THEOREM 5.6. Let ¢ be a regular value of the piecewise linear map taking P into R".
Then S index (x) = 0, with the summation taken over all x in F~'(c) which also lie on
the boundary of P.
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6. Several Applications of Index Theory. In order to appreciate the additional
information provided by index theory, we shall apply the results of the previous
section to the examples studied earlier in this paper.

ExaMPLE 1. We are given a simplicial subdivision of S ={x=(x,, ..., x,)|x;
> 0, 37x, < 1) with vertices ¢% v, ..., 0" ..., v* and with the property that

v°=(0,0,...,0),
o' =(1,0,...,0),

o"=(0,0,...,1),

are the only vertices of the subdivision lying on the boundary of S. Each vertex v is

given an integer label /(v), selected arbitrarily from the set (0, 1, . . ., n) except for the
proviso that /(v/)=jforj=0,..., n
The function f(xy, ..., x,), mapping § into itself, is defined to be linear in each

simplex and equal to ©/® for each vertex x of the subdivision. The determination of a
simplex with distinct labels is then equivalent to finding a vector x for which ¢ = f(x)
is interior to S.

The function f was then extended to the product of § and the closed unit interval
by defining

F(xl’ crea X xn%—]) =f('x]’ rer xn) - dxn+l’
with d a vector all of whose coordinates are unity. A solution to the original problem
is then obtained by finding a point (x;, ..., x,, x,,,;) in F~}(c) lying on the face

Xp41 ™ 0.

In our previous study of this example we argued that there was a unique point in
F~'(c) lying on some boundary face of P other than x, ., = 0. In particular the point
x* lies on the face 4 defined by ¥7x, = 1. '

Let us select a basis &', ..., 5" for the vector space H —x*. The direction q,
pointing into the polyhedron P at x*, will be taken as g=(—1, —1,..., —1). The
determinant

bi R bl'* -1 ,
] [ n [—
det| 22 by~
b;}+l T by =1

may therefore be written as

N N
—det . :

| by = by v b:_b:+lJ
On the face Xix; = 1, the mapping F is given by

Flxy, oo x, o) =x, — Xnt1

= xn - xn+]
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so that a basis vector (b{, ..., b/, ) is carried into (b{ — &), \, ..., b/ — b/, ). The
two determinants used in evaluating the index at x* are therefore opposite in sign,
and the index of x* equals — 1.

We obtain the important conclusion that the sum of the indices associated with
points in F~'(¢) for which x, , , = 0 (the solutions to our original problem) equals + 1.
Let us attempt to determine the index for such a solution x, lving in a completely
labeiled simplex with vertices ©/°, . . ., v/». For definiteness we assume that v/ bears
the label 0, v/t the label 1, etc.

A basis for the hyperplane x,, ; = 0 may be obtained by selecting b’ = ¢/ — /o for
i=1,...,n, and the direction ¢ as (0,0, ...,0, 1). The first determinant used in
evaluating the index at x is therefore given by

oft — o vf—ofe 0
det _ 7
o/ — pio U;;n — Uﬁo 0
0 0
'_ v.{l - UJ{O N U{n — U{o
= det
U.,{n — U#’ Ce . v}{n _ Uﬁ"

In order to evaluate the second determinant we remark that F maps the basis vector
v/ — ¢/° into the ith unit vector in R”. The second determinant is therefore equal to
unity, We have the following theorem.

THEOREM 6.1.  Ler v/o, v/', . . ., v/ be the vertices of an arbitrary completely lubelled
simplex, and assume that v’ bears the label i. We define the index of the solution to be
equal to +1 if the determinant

U_{l — U{U e Ujl}. _ U-{U
det
U'/I'I - U,{" e D'_{n — v'{o
is positive and — 1 if the determinant is negative. Then the sum of the indices over all

completely labelled simplices is +1. Moreover a solution obtained by initiating the
algorithm on the boundary with x, ., > 0 will have an index of + 1.
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ExaMmpLE II. We begin with a simplicial subdivision of the simplex S={x
=(xp,...,x)|x =0, 2 =1}, with vertices v, v, . .., v", 0”1, .. ., v¥, where

o' =(1,0,...,0)

0" =(0,0,...,1),

and the remaining vertices interior to S. Each vertex has associated with it a vector
label f(v/), arbitrary aside from the requirement that f(v'y =o' fori=1,...,n A
specific nonnegative vector ¢ is given and we are concerned with finding a simplex in
the subdivision, with vertices o/, v/2, ..., v/, such that the equations a f(v/") +
o, f(7) + - - - + a,f(v/) = ¢, have a nonnegative solution a.

As we have previously seen, the procedure for converting this problem to the
solution of a system of piecewise linear equations is to define the function
f(xy, ..., x,) in R} by the conditions:

1. f(v’) equals the vector label associated with the vertex ¢/ of the subdivision;

2. fis linear in each simplex of the subdivision; and

3. f is homogeneous of degree 1.

The problem is then equivalent to finding a vector x for which f(x) = c.

The polyhedron P is given by the product of the closed unit interval [0, 1] with the

set {x=(xp,...,x)]|x 20 3x, < M}, and the function F by

F('xl’ s X xn+l)=f(x15 e ’xn)'—xn+ld'

In our earlier discussion we saw that d could be selected so that £7!(¢c) cohtains a
unique vector x* on the boundary of P, with x,,, > 0. The path emanating from this
point must therefore reach the face x,,; =0, and provide us with a solution to
f(x)=c.

It is a routine matter to verify that the index associated with the point x* is — 1.
The sum of the indices associated with the solutions lying on the face x,,, =0 is
therefore + 1. Rather than calculating this index directly let us take a slightly different
approach and examine the index along the path traversed by the computational
procedure.

In general, if the function F= Ax + a in some piece of linearity P, and if the
direction of the path is given by the vector g in P, then the index along the path has

ntt

i FIGURE 32
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the same sign as the determinant

— _
dyy dy2 T a1 et
det
Ay 9n T dy ntl
gy k) T n+1

We may use that fact that Ag = 0 to express the index in a different form. Assuming
that ¢,,, # O we multiply the jth column of this matrix by ¢;/q,,, and add it to the
last column, for j=1, ..., n, obtaining

n+l
a4y dp SRR aquj/qn+1

1

det ) 7 )

anl an2 T zanjqj/qn+l

1

n

2
QG 29/ Gus
. !

Every entry in the last column of this matrix is zero, other than the diagonal entry,
and we see that the index along the path has the same sign as

ayy e dyy ’li
nn Ji

Moreover, if g,,, # 0, it follows that this determinant is different from zero. On the
other hand, if ¢,,, = 0, then it is easy to verify that the corresponding determinant is

Zero.
Let us attempt to calculate this matrix for the general vector labelling problem. A '

4,4 det

a a

nl

specific simplex in the subdivision with vertices v/, ..., v/ will define the piece of
linearity consisting of all vectors (x,, ..., X, x,4) with (x;,. s x,)
=at/+ - taon for >0 Fx, <M, and 0< x,,; <1 In this piece of
linearity
F(Xpsovos X X)) = 0 f(01) + -+ + 0, f(07) = x,,,d.

If we define the two n X n matrices

f1(U"‘) cee filom) 1 ( of! e ol

ACO IR A CD J E R

then the linear representation of F in this piece of linearity takes the form
-1 ’
Fx,, . o, x, )= UV 7 (xy, 0o, %) — X, 44

We obtain the important conclusion that the index along the path, which must be
equal to — 1, is identical in sign with g, , deq UV ).
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The quantity g, , has a specific interpretation. If it is positive the coordinate x,, ,
is increasing in this piece of linearity and the path is therefore moving away from the
plane x,,, =0. On the other hand if ¢,,, <0 the path is approaching the plane
x,.;=0andif g,,, = 0 the path is moving parallel to this plane. But from the index
theorem the sign of ¢, , must be opposite to that of det(U V !y if this determinant is
not zero. If the determinant is zero, then g,,, = 0. This demonstrates the following
theorem:

THEOREM 6.2. The path generated by the algorithm will be moving towards the plane
X,., =0 in any piece of linearity in which det((UV ~') >0, away from the plane if
det(UV ~Y) < 0, and parallel to the plane if det(UV ~') = 0.

This result is significant in revealing the lack of monotonicity in approach to a
solution which is characteristic of fixed point methods. In any two adjacent regions in
which the determinants det(UV.~') are different in sign the rate of change of x, ., will
differ in sign. In order to guarantee monotonicity of convergence it is necessary to
require that det(UV ~') have the same sign in every simplex of the subdivision, a
property which holds only for rather special problems.

Of course, x,,, must be decreasing in the final piece of linearity in which the
determinant will therefore be positive. We have, in fact, the following theorem which
characterizes the index of a solution on the plane x,., =0 in terms of the de-
terminants det(UV ™).

THEOREM 6.3, Let v/, ..., v~ be the vertices of a completely labelled simplex; i.e.,
one for which Ua = ¢ has a nonnegative solution. The index of this solution, based on a
direction pointing into P, is equal in sign to det(UV ~'). The index sum over all
completely labelled simplices is equal fo +1.

The proof of Theorem 6.3 follows the same arguments which we have just presented
and need not be given explicitly. It is appropriate to remark, however, that the
solution will be unique if it can be shown that det(UV ') > 0 for evéry simplex in the
subdivision. Then each solution will have a positive index and there will, of necessity,
be only one such solution. There are a number of important problems (for example
the convex programming problem, and the nonlinear complementarity problem when
the Jacobian is a P-matrix) whose solutions can be shown to be unique, for
sufficiently fine subdivisions, by this argument.

ExampLE 11I. In our third example the polyhedron P is given by the product of
the closed unit interval [0, ] and the simplex S={x=(x, ..., x)| X 20, Zx
< 1}. A continuous map f(x, ¢) from P into the interior of the simplex S is given with
the property that f(x, 1) maps the upper face f = 1, into a constant b.

In order to approximate a fixed point of the mapping f(x, 0), of S into itself, we
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take a fine simplicial subdivision of P, with vertices {(v/, /)}. For each such vertex we
define F(v/, /)= v/ —~ f(+/, /), and extend the definition linearly in the interior of
each simplex. An approximate fixed point of the mapping f(x, 0) will be provided by
a vector (x, 0) in F~(0). .

As we have previously argued, the vector (b, 1) is the unique boundary point in
F~0), with x,,, > 0. In order to determine the index at this point we remark that

F(xy ..., x,0)=A(x,,...,x, 1) + a, in the piece of linearity containing (¢, 1),
with
+ 1 al, n+1
4 = 0 T 22 n+l
0 +1 a, .
If g=(q9,,..., 9y g,.) is the direction of the path emerging from (0, 1), then as
before the index has the same sign as
+1
qn+ldet O 0
0 +1

Since ¢,.,, <0, this index is equal to — 1.

The sum of the indices associated with the approximate fixed points of f(x, 0) is
therefore equal to + 1. Consider a particular (x, 0) € F ~1(0), and let x be contained
in a simplex on the face 1 = 0, with vertices ©% v!, ..., v". The index of x then has
the same sign as det B if F(x, 0) = Bx + a within this particular simplex.

Let x =Sayv/, with o > 0 and Ffe; = 1, or alternatively x = o+ Thay (v — 9.
If we define

S
V=
T R .
then (ay, ..., a,) =V (x — 0%,

With this representation for x, we have
F(x,0)=F(v°% 0)+ > a(F(v/, 0) — F(0° 0)),
! ,
so that if

Fi(v', 0) — F\(2° 0) < F,(v", 0) — F (<% 0)
U= . .

Fn(ul, 0) — Fn(uo, 0) R F (v", 0)— F,(v°% 0)

it will be correct that
F(x,0)= F(0° 0) + UV ~!(x — o).
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X

FIGURE 35

The index of the solution is therefore identical in sign with det UV ~',

EXaMPLE IV. In order to study the linear complementarity problem 37 ,c;x; 2 ¢,
fori=1...,nwith x=(x,...,x)20(x=0if 37_,¢;x > ), we introduced
the function f(x,, ..., x,), defined for all vectors in R”, as follows: f(x)=Ix" +

Ax*. The polyhedron P, in R"*!, is the cube
-M<x;, <M fori=1,...,n, O0<x,,, <1,
and the piecewise linear function F is given by
F(xpy oo Xp X)) = f(x, .00, %)+ x4,

with d a positive vector strictly larger than c.
The polyhedron P is naturally divided into 2" pieces of linearity, each obtained by

selecting a specific subset § of the integers (1, . . ., n) for which the coordinates x,, for
i € §, are nonnegative. :
The linear complementarity problem is solved by finding a vector (x, ..., x,,,)in

F ~Y(¢), for which x,,,=0. In our previous study of the problem we demonstrated
that under certain assumptions on the matrix C, there would be a unique boundary
point of P in F ~X¢), on those faces of P other than the face x,, , = 0. The specific
boundary point i1s given by (¢; — dy, ..., ¢, — d, 1)

It is a trivial matter to verify that the index associated with this boundary point is
—1. Assuming it to be the unique boundary point in F~!(c) lying above the face
X,+; =0, we conclude that the sum of the indices associated with solutions to the
original linear complemeitarity problem is unity. Let us calculate the index associated
with a solution x on the lower face of P.

Let x be contained in a piece of linearity defined by the index set S. In other words
x;20forieSand <OforiZ S. Let(q,, ..., gy, g,.,) be the direction of the path
terminating at x, and observe that ¢g,,, <0. As in Example II the index along the
path (which must be — 1, since that is its value at the beginning of the path) agrees in
sign with

2y T 4
qn+!det . s

a

nl nn

where F(x) = Ax + a in this piece of linearity.

This latter determinant is very easy to evaluate. For j € S, its jth column is given by
(cyj €app - - -5 ¢); and for j & S its jth column consists of 0’s and a single 1 appearing
in row j. We see that the index of a solution is given by the sign of the determinant of
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that principal minor of

whose rows and columns have indices bélonging to S.

Just as in Example II, these observations provide us with considerable information
along the path. Each piece of linearity will have associated with it a principal minor of
C obtained by striking out those rows and columns of C corresponding to indices j for
which %; <0 in this piece of linearity. If the determinant of this principal minor is
positive, then g, ., <0 and the path is approaching the plane x,,, = 0. Conversely if
the determinant is negative the path is moving along from a solution in this piece of
linearity. It follows that monotonicity of the path can only be guaranteed if the matrix
C has all of its principal minors positive; i.e., if C is a P-matrix. Similar conclusions
may also be obtained for the nonlinear complementarity problem in which the
functions ¥ .¢;x; are replaced by nonlinear functions defined in R%.

The algorithm described and studied by Katzenelson, Fujisawa and Kuh and others
is in a setting somewhat more general than that of Lemke. Let f: R"— R" be
piecewise linear and consider the problem of solving f(x) = y. Let x, be an estimate of
the solution, let y,= f(xy) and let F(x, t)= f(x) — tyy— (I — 1)p. Katzenelson’s
algorithm, as extended by Chien and Kuh, consists of generating a path in F ()}
beginning with the point (xg, 1), in order to find a point (x, 0) € F ~(0). Convergence
of the algorithm is established by these authors under a vatiety of assumptions on the
Jacobian of the mapping; these results can equally well be obtained by the use of
index theory as described in this paper.
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