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ABSTRACT A subset of the constraints of an integer pro-
gramming problem is said to be binding if, when the remaining
constraints are eliminated, the smaller problem has the same
optimal solution as the original problem. It is shown that an
integer programming problem with n variables has a set of
binding constraints of cardinality less than or equal to 27 — 1.
The bound is sharp.

1. Introduction

The purpose of the present paper is to illustrate a new point of
view in the discussion of discrete programming problems by
demonstrating a theorem concerning the maximum number
of binding constraints in an integer programming problem with
n variables. The arguments are a blend of those used in fixed
point computations and in the geometry of numbers, without
the symmetry assumptions which are characteristic of the latter
field. Subsequent papers will discuss the ramifications of this
point of view in greater detail.

Consider an integer programming problem of the following
form:

1.1 max (1()1}11 + ...+ a(}nhn

allh] + ...+ alnhn S bl

amlhl + ...+ amnhn z bm,

with the variables ky, . . ., h, restricted to integral values. Any
requirerment that some or all of the variables be non-negative
will be incorporated in the constraints, so that typically the
number of inequalities, m, will be greater than or equal to the
number of variables, n. The following assumptions will be made
throughout the discussion.

1.2. ASSUMPTIONS. We assume that for any vector ¢ in
R+ 1the set of integral h satisfying Ak = ¢ is finite, In addition
the constraints are assumed to have at least one feasible integral
solution for the given right hand side b.

It is an immediate consequence of these assumptions that
problem 1.1 has a finite maximum.

1.3. DEFINITION. Let S be a subset of (I, 2, ..., m). The
constraints ; a;;h; Z by, fori € S, are said to be binding if the
integer programming problem

max 3 agh;
I

Z a”hJ > b,‘ fori in S,
J
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has an optimal solution in which the remaining constraints are
all satisfied, and which is therefore optimal for the original
problem.

The primary result of the present paper is the following
theorem.

1.4. THEOREM. The integer programming problem 1.1 has
a set of binding constraints whose cardinality is less than or
equal to 2% — 1. Moreover, this bound is sharp in the sense that
there exist integer programming problems with n variables that
have no sets of binding constraints of cardinality less than 27
-1

The situation described in Theorem 1.4 is distressing when
compared to that arising in ordinary linear programming in
which a set of binding constraints of cardinality n can always
be found. The simplex method may, in fact, be viewed as a
systematic algorithm that searches through sets of n constraints
in order to determine whether or not they are binding and
concludes by exhibiting a specific set of such constraints. The-
orem 1.4 will also be demonstrated by means of an algorithm—
whose properties will be explored in subsequent papers—that
terminates with the appropriate set of binding constraints. The
theorem indicates the intrinsic complexity of some program-
ming problems imposed by the requirement that the variables
take on integral values.

2. Production set associated with the integer
programming problem

The study of linear programming problems is greatly facilitated
by introducing an associated production possibility set, i.e., the
convex cone of production plans obtained by varying the ac-
tivity levels in an arbitrary fashion. We shall introduce a similar
construction for integer programming,

2.1. DEFINITION. We define X to consist of the set of vectors
(xg, ..., *m) given by

X0 =2 aojhj
j

Xm = Z amjhj>
i

as hy, ..., h, vary over the integers.

In order to avoid certain technical difficulties the following
regularity assumption will be made about the matrix A and then
removed in Section 6 of the paper.

2.2. ASSUMPTION. The entries in A are independent over
the integers in the sense that if 4 is an integral vector other than
the zero vector, Z; a;;h; % 0 for each row 1.

The set X may be shown to lie on an m-dimensional hyper-
plane with a non-negative normal. Any bounded subset of the
hyperplane contains a finite number of vectors in X, and no two
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F1G. 1. A finite subset of the vectors in X form =n = 2.

vectors in X have their ith coordinates equal for any coordi-
nate.

Fig. 1 represents a finite subset of the vectors in X form =
n = 2. The set consists of seven vectors x°, . . ., x5 I have drawn
through each of these vectors that translate of the negative
orthant in R™* ! having its vertex at the particular vector in
question. This provides us with an intuitive picture of the
“upper surface” of this portion of the production possibility set
X.

We shall now introduce an infinite simplicial complex C,
whose vertices are the vectors in X, The first step is to define
those collections of m + 1 vertices (x70, xf1, . . . xim) forming
the m-simplices of the complex. We begin by translating the
positive orthant in R™+ ! parallel to itself until its vertex lies
above the plane containing X. We then translate the orthant
downwards, passing through no vectors in X, until no further
reduction in any of the coordinates of this vertex is possible. The
orthant will typically be stopped by a eollection of {m + 1)
vectors x/o, x71, .. xJm one on each coordinate hyperplane of
the translated orthant. (Assumption 2.2 implies that a coordinate
hyperplane of the translated orthant cannot contain more than
one vector in X.) These collections of {m + 1) vectors, which
have elsewhere been given the name of primitive sets, will be
the m-simplices in C.

In Fig. 1 the vectors (x9, x2, x3) form a primitive set with the
corresponding vertex at «; (x9, 21, x3) a primitive set with the
vertex at 8. Of course a = min[x°, 22, 3], in each coordinate,
and as a consequence of the construction there is no vector x in
X withx > «.

We have the following general definition.

2.3. DEFINITION. A set of vectors (xJ0, xi1, ... xim)in X is
defined to be a primitive set if there is no vector x in X with

x > min[xio, xN | xim],

It should be remarked that the question of whether a given
set of (m + 1) vectors x79, xit, .. xim forms a primitive set is
a local question in the sense that there are a finite number of
vectors in X contained in any specific translate of the positive
orthant.

If n is sufficiently small compared to m, then it is possible
that no collections of (m + 1) vectors satisfy the Definition 2.3,
In Fig. 2 either the first or second coordinates of the vertex of
the translated positive orthant can be decreased indefinitely
without passing through a vector in X.

In order to overcome this difficulty we shall adjoin to the set
X, (m + 1)“ideal” vectors £V £, .. . | £™, which we shall refer
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FiG. 2. A finite subset of vectors in X in which n is small com-
pared to m.

to as slack vectors because of an analogy with linear program-
ming. The ith of these vectors, £, will be assumed to have its
ith coordinate very negative, and its remaining coordinates very
positive. Definition 2.3 is applied to this extended set and
primitive sets will now consist of (m + 1) vectors, some of
which come from the original set X, and the remainder of
which are slack vectors. In Fig. 2, x!, x2, and £! form a primitive
set, as do x1, x2, and £2,

Consider a set of vectors xfo, x/1, .. xim arranged in such
a way that

o = min[x,vf", xifl, L, xijm] = xifi

fori=0,1,...,m. Let{xfi}fori € T be the non-slack vectors
in this set. In order to test whether this set of vectors forms a
primitive set it is sufficient to verify that there is no vector in
X with

x> a;fori € T.

The simplicial complex C obtained by taking the collection
of primitive sets as m-simplices and all proper subsets as lower
dimensional simplices is a basic tool in the analysis of production
sets with indivisibilities and will be discussed in detail in sub-
sequent publications. As an example of the relevance of this
construction I quote the following theorem, whose proof will
not be given here, because the theorem will not be used in de-
veloping the arguments of the present paper.

2.4. THEOREM. Let x € X and define the neighborhood of
x to be the set of vectors in X that are contained in some prim-
itive set that also contains x. Let x satisfy the constraints of the
integer program

n=hbfori=1...,m

Then a necessary and sufficient condition that x be an optimal
solution to the programming problem is that x be a local opti-
mum, in the sense that every neighbor of x either violates one
of the constraints or yields a smaller value of the objective.

3. Sperner’s lemma

In this section we consider an arbitrary finite subset of X, say
X', augmented as before by the (m + I)slack vectors &9, £,
..., &™ Primitive sets are defined to be those collections of (m
+ 1) vectors x/o, . xim (either slack vectors or members of

X’) such that there is no vector in X’ satisfying
x > min{xio, xfi | xim],

If, for example, X’ consists of the seven vectors illustrated by
Fig. 1, then the following triples are included among the
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Fi16. 3. Finding the replacement for x!.

primitive sets: (x% x2, 23), (x%, x1, x3), (x9, x1, £1), (29, £1, £2),
(x}, 21, £

The following theorem, whose proof may be found in ref.
1, is a version of Sperner’s lemma appropriate to the present
setting.

3.1. THEOREM. For each x &€ X’ let I(x) be an integer in the
set (0,1,...,m),andlet /(&) =ifori=0,1,..., m Thenthere
exists a primitive set x7, .. ., x/» (including possibly some slack
vectors) whose labels [(x0), . .. I(x/m) are all different.

Theorem 3.1 is a fundamental tool in numerical techniques
for the approximation of fixed points of a continuous mapping,
when the underlying combinatorial objects are given by
primitive sets rather than a simplicial decomposition of the
simplex. The proof of Theorem 3.1 depends on the following
lemma, which is illustrated in Fig. 3.

3.2. LEMMA. Let x/o,. . x/m be a primitive set (including
possibly some slack vectors). Consider an (m — 1)-dimensional
face of this simplex obtained by deleting a specific vector in the
primitive set. Then, aside from the special case in which the m
vectors on the face are all slack vectors, there is a unique other
primitive set with the same (m — I)-dimensional face. In the
special case there is no other primitive set with this proper-
ty.

InFig. 3 {x% x1, x?) form a primitive set with vertex o. We
have named the vectors so that a; = x;i fori = 0, 1, 2. To re-
move x!, we locate the vector in the primitive set with the
second smallest first coordinate; in this case x2. We then locate
that unique vector in X’ {or possibly a slack vector) with the
largest second coordinate, subject to xo > xo0, x; > x,2; in this
case x3,

The special case referred to in Lemma 3.2 occurs when the
primitive set consists of m slack vectors—say all of the slack
vectors except £*—and that particular vector in X’ with the
largest i*th coordinate. The lemma may be rephrased as saying
that every m — I face in the complex appears in precisely two
m-simplices, excepting those m — 1 faces consisting entirely
of slacks; these appear in precisely one m-simplex.

The algorithm for determining a simplex with distinct labels
begins with one of the special simplices—say the m-simplex (x*,
g, ..., &™) with x* that vector in X’ with largest Oth coordi-
nate. If [(x*) = 0, the algorithm terminates, because I{£) = i
fori=1, ..., m If [(x*) 5 0, then we remove that unique
vector in the primitive set, other than x*, whose label agrees
with /(x*), and continue.

At each iteration of the algorithm, prior to termination, we
are faced with a primitive set whose vectors contain all of the
labels in the set (1, 2,. .., m). A single pair of vectors, one of
which has just been intorduced into the primitive set, have the
same labels. The algorithm continues by removing the other

Proc. Natl Acad. Sci. USA 74 (1977) 3639

member of this pair. A simple graph theoretic argument
demonstrates that the algorithm never returns to a primitive
set previously encountered. Because X" is a finite set, the algo-
rithm must terminate after a finite number of iterations by
introducing a vector with the label 0 resulting in an m-simplex
with distinct labels.

4. Labeling procedure for integer programming

In this section we use a particular labeling procedure for the
vectors in X’. When a completely labeled primitive set is found
by the arguments of the preceding section, that vector in the
primitive set with the label 0 will solve the problem

max 3 aojh;
Z aljh]‘ > bl

Z amjhj z bm,

and also x & X’. If the vector with the label 0 is £9, then there
will be no vectors in X’ satisfying the constraints.

4.1. LABELING RULE. Let x € X’. We define [(x) =i (i =
1,2,...,m), if iis the first coordinate for which x; < b;. If x;
Zbhforalli=1,2 ..., m thenl(x)=0.

Let x% x1, ..., x™ be the vectors in a completely labeled
primitive set (including possibly some slack vectors) arranged
in such a way that min[x,%, x4, ..., x;™] = x,%. I claim that
because of the particular labeling rule being used we must have
[(x?) = 4.

This is certainly true for i = I, because x,! < 2,0, 1,2, . . .,
x," If the vector x! did not receive the label 1, we would have
11" = by and therefore x,/ 2 b for all j, implying that no vector
receives the label 1. We see, therefore, that x;! < b). Moreover,
x! 2 by forall j = 1, because otherwise two vectors would have
the label 1. But then x2 must receive the label 2, because if it
did not we would have x22 > by and therefore xo/ = by for all
j» implying that no vector receives the label 2. We see, as before,
that xo? < by and x27 = by for j = 1, 2.

The argument, when continued, verifies that [(x/) = j for j
=1,...,m, and therefore [(x%) = 0. It follows that x° if it is
not the Oth slack vector, must satisfy the constraints 1,9 > b; for
i=1,..., m But there can be no other vector x &€ X’ that
satisfies the constraints and whose Oth coordinate is larger than
that of x° for such a vector would have the property that

x> xOO = m‘iTl[X()O, I()l, e, xU"’L
and
x5 Z b > min|x %Y, 6™ fori=1,. .., m.

violating the definition of a primitive set. It is also easy to verify
that if x© is the Oth slack vector, then no member of X’ satisifes
the constraints x; = b,

Assuming that the constraints are feasible for some x in X/,
we define S to be the set of indices i (other than 0) for which
x*isnot aslack vector. It follows from the definition of primi-
tive sets with slack vectors that x0 is the vector in X’ with the
largest Oth coordinate subject only to the constraints

x; =2 h foriinS$.
In other words, the constraints associated with slack vectors are
not binding and can be discarded without introducing a new
optimal solution.

The arguments of this section have been conducted in terms
of an arbitrary finite subset of X. We now take a more specific
form by selecting a large positive number M, and letting X be
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the set of vectorsin X withx; > =M fori=0,1,..., m. If M
is sufficiently large, X’ will contain the optimal solution, say x*,
of our original integer programming problem 1.1. The primi-
tive set exhibiting this fact will have a set of indices S, corre-
sponding to the non-slack vectors in this primitive set (other
than x*), The activity levels associated with x* will therefore
be the optimal solution to

max Z a()jhj
> ahyz b fori €S
Z a,-;hj > —-M fori - Se.

If M tends to infinity through a sequence of values for which
the index set $ remains the same, we conclude that the con-
straints associated with S form a binding set of eonstraints for
1.1. Our main theorem will therefore be demonstrated if we
can show that there are never more than 2" non-slack vectors
(this includes x*) in a primitive set when X’ is given by those
vectors in X all of whose coordinates are greater than or equal
to —M.

5. Maximum number of non-slack vectors
in a primitive set

Let x% x1, ..., x™ be a primitive set based on vectors x &€ X
withx; 2 =M fori =0, 1,..., m, and arranged so that
xit=min{x0, ..., ™

fori=0,1,..., m. Because of Assumption 2.2 we have x;/ >
x;f for j < i. Let T be that set of indicesiin (0, 1,.. ., m)for
which x* is not a slack vector.

For eachi & T we have x' = Ah’, with k' a vector in R" with
integral coordinates. We define H to be the convex hull of h?,
fori €T,

We shall demonstrate that each h? is an extreme point of the
convex hull H, and moreover that there are no other lattice
points in H. If either of these situations were to occur there
would be a lattice point h (possibly one of the A’ themselves)
with

h=2 oghl, 3 =1, 05 20,

and at least two «; strictly positive. But then x = Ah isin X" and
satisfies x; = T o, > a;" for i € T and trivially x; > x;7 for
1 & T¢. This contradicts the definition of a primitive set.

The major conclusion of this paper—that part of Theorem
1.3 asserting the existence of a set of binding constraints of
cardinality (2" — I)—is an immediate consequence of the
following result, which appears in a letter to Roger Howe from
J. W. 8. Cassels.

5.1. THEOREM. Let {hi] be a set of distinct lattice points in
R™, which are extreme points in their convex hull H, and such
that H contains no other lattice points. Then the number of
points in [h] is less than or equal to 2.

To prove 5.1, Cassels demonstrates by induction on n, that
any set of more than 27 distinct lattice points in R™ must contain
a pair of lattice points h and h’ with

h; = k' mod(2).

But then (h + h)/2 is a lattice point in H which differs from
the vectors generating H. This demonstrates the existence of
a set of binding constraints of cardinality 2™ — 1.

Exhibiting an integer program with no set of binding con-
straints of cardinality less than 27 — 1 is, of course, trivial. We
simply take the unit cube in R with vertices 0!, .. ., %" (see
Fig. 4). Through each such vertex we pass a hyperplane with
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F1G. 4. A problem for which all constraints are binding.

normal a! that strictly separates that vertex from the rest of the
cube, i.e.,

at-vk>at-0! fori =k
The integer program

maxal-h
at-h>at o' fori 1,

will have v! as its solution, but if any particular constraint is
dropped, a superior solution will be obtained.

6. Removing Assumption 2.2

Assumption 2.2 guarantees that no two vectors in X have an
identical first, second, . . ., or mth coordinate, This is a non-
degeneracy assumption which plays two distinct roles in our
arguments. First of all, there is no ambiguity about which set
of (m + 1) vectors impedes the downward translation of the
positive orthant in the definition of primitive sets because no
two vectors in X lie on the same translated coordinate hyper-
plane. Moreover, there will always be a unique replacement
for a given vector in a primitive set because this involves finding
the vector in X that maximizes a specific coordinate subject to
inequalities on the remaining coordinates.

This technical difficulty can easily be overcome if Assump-
tion 2.2 does not hold—as will be the case when the matrix A
is composed entirely of integers. We simply introduce some
systematic rule that permits us to decide, when x; = x;’ for two
différent vectors, which of these two numbers is to be consid-
ered the larger. For example, we can say that in the event of a
tie x; will be considered to be larger than x;” if and only if the
vector x is lexicographically larger than x”.

I we adopt this rule, the only argument that requires some
reexamination is that of the last section, i.e., that no strictly
convex combination of two or more vectors A will be in H. But
this follows from the observation that if x is lexicographically
larger than x’, then ax + (I — «)x’ is also lexicographically
larger than 2" for 0 < & < 1. This demonstrates the validity of
our main theorem without Assumption 2.2.

7. Concluding observations

The proof of Theorem 1.4 is based on an algorithm for integer
programming problems. The algorithm may be shown to have
sufficient monotonicity properties (under the labeling rule 4.1)
so that finite convergenee to a unique completely labeled
primitive set can be demonstrated without the topological
arguments of Sperner’s lemma.

The major difficulty in implementing the algorithm is in the
replacement operation described in Section 3. This would seem,
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at first glance, to involve a search that is of the same order of
difficulty as the original integer programming problem itself.
There is, however, considerable structure in the problem, which
may be capable of exploitation. For example, there will typi-
cally be a finite number of distinct simplices arising from
primitive sets that form a fundamental region in the sense that
every primitive set is equivalent, by translation, to one of these
(see Fig. 1). Each simplex in lattice space arising from a prim-
itive set will have an index {+ I, 0, —1) associated with it in such
a way that the index sum, over the simplices covering any
particular point in lattice space, is unity. Moreover, the sum of
the algebraic volumes of the distinct simplices in a fundamental
region is also unity. These and related observations permit us
to describe the complete structure of primitive sets for certain
classes of problems, which can then be readily solved by our
algorithm.
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The complexity of the integer programming problem seems
to relate not only to the number of binding constraints but also
to the singularities of the embedding of the associated simplicial
complex C in R™ A step in understanding this complexity
would be a complete description of the integral polyhedra with
27 vertices that appear in the argument in Section 5. At the
present moment such a description is known only for n < 3,
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