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PRODUCTION SETS WITH INDIVISIBILITIES
PART I: GENERALITIES'

By HERBERT E. SCARF

This paper and its sequel present a new approach to the study of production sets with
indivisibilities and to the programming problems which arise when a factor endowment is
specified. The absence of convexity precludes the use of prices to support efficient
production plans and to guide the search for optimal solutions. Instead, we describe the
unique minimal system of neighborhoods for which a local maximum is global, and discuss
a related algorithm. The definition of this neighborhood system is based on techniques
used in the computation of fixed points of a continuous mapping. In Part Il of the paper this
neighborhood system is investigated in the special case of two activities and it is shown that
the algorithm may be accelerated 5o as to terminate in polynomial time.

INTRODUCTION

THE ASSUMPTION OF CONVEX PRODUCTION SETS plays a central role in neo-
classical economic theory. Its replacement by weaker and more plausible
assumptions seems to me to be one of the major challenges of mathematical
economics. The present paper, and its sequel, present a new approach to the study
of discrete production sets, and to the mathematical programming problems
which arise when a particular factor endowment is specified.

The primary consequence of the convexity assumption is the existence of a
vector of prices which supports an arbitrary efficient production plan. This leads
immediately to the duality theorem for linear programming when the technology
is given by an activity analysis model and to the existence of implicit prices for the
general convex programming problem. The major economic theorems concerning
decentralization of economic activity arise directly from this body of ideas.

Decentralized prices are no longer available when the production set displays
increasing returns to scale, indivisibilities, or other forms of nonconvexity. There
is no natural algorithm, based on prices, which verifies that a proposed solution to
the associated programming problem is optimal and no corresponding theory of
decentralization in production. Qur major innovation, for the case of discrete
production sets, will be to replace the concept of competitive prices by an entirely
different analytical apparatus in order to solve the discrete programming prob-
lems arising from a specification of factor endowments.

The most important example of a discrete production set is an activity analysis
model in which the activity levels are restricted to being integers rather than
assuming arbitrary real values. We shall associate with each such vector of activity
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levels a neighborhood consisting of a finite set of nearby activity vectors. The
neighborhood system will be defined in a canonical fashion for each activity
analysis model with discrete activity levels. A major conclusion of this paper will
be the theorem that this neighborhood system is the unique, minimal neighbor-
hood system for which a local maximum for the associated integer programming
problem is global.

The method for constructing this neighborhood system will be based on the
concept of primitive sets, introduced in the study of fixed point algorithms. If the
neighborhood system for a particular activity analysis model were known we
would have available to us an elementary algorithm for solving the associated
integer programming problems. Given a vector of activity levels which satisfies the
constraints of the programming problem we simply check the finite list of vectors
in its neighborhood to see whether one of them satisfies the constraints and yields
a superior value of the objective. If there is one we move to this vector and repeat
the construction; if not, we have the optimal solution.

In this algorithm the test for optimality by means of competitive prices has been
replaced by a search through a neighborhood which is intrinsically defined by the
activity analysis model. The usefulness of the algorithm depends on the difficulty
in determining this neighborhood system and on the complexity of its description.
If the neighborhood system for a specific technology were extremely complex, the
search for optimal solutions would necessarily be replaced by a series of heuristic
tests which exploit the broad features of the system rather than its fine detail.

The theory of computational complexity is a major advance in our ability to
describe and investigate the intrinsic complexity of mathematical programming
problems. In this theory a basic distinction is made between algorithms which
terminate in polynomial time—as a function of the size of the problem being
studied—and those which require an exponential amount of time for their
successful execution. In the second half of this paper these ideas will be introduced
and we shall demonstrate that our methods lead to a polynomial algorithm for the
general integer program with two variables. A study of the three variable problem
is being carried out in collaboration with Sergiu Hart and Roger Howe.

Aside from the work of Herbert A. Simon and his collaborators the concept of
computational complexity has not played an important role in economic theory. It
does seem to me, however, that an assessment of the computational difficulties
introduced by nonconvex production sets is central to economic analysis. 1 feel
that the subject of computational complexity will illuminate our understanding of
this question and provide a new bridge between mathematical programming and
economic theory.

1. THE SIMPLICIAL COMPLEX

Let us consider a discrete production set X consisting of a set of vectors {x} in
R™*'. Each specific vector in X represents a technically feasible production plan
with inputs denoted by negative entries and outputs by positive entries. In
subsequent sections of this paper we shall assume that the vectors in X arise from
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an activity analysis model with integral activity levels:

Aol . Aon
ay  ox=| - |k
Am1 .- Aun
where h =(hy, ..., h,) ranges over all integral points in R". For the moment,

however, we take X to be completely general, aside from the following assump-
tion:

AssuMPTION 1.2 (Non-Degeneracy): No two vectors in X have the same ith
coordinate, for any i.

Figure 1 represents an example of a production set consisting of a finite list of
vectors x°, x*, . .., x%in R*. 1 have drawn through each vector the translate of the
nonpositive orthant having its vertex at that particular vector. This provides us
with an intuitive picture of what one might mean by the “‘upper surface” of a
discrete production set and also reveals a surprising amount of structure, which
will form the basis for much of our subsequent analysis.

FIGURE 1

We shall define, in a canonical fashion, a collection of m-simplices whose
vertices are selected from the vectors in X. We begin the construction by
translating the positive orthant of R"™*! parallel to itself until it contains none of
the vectors in X, Then translate the orthant downwards, passing through none of
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the vectorsin X, until no further reduction of any of the coordinates of its vertex is
possible. The orthant will typically be stopped by a set of m + 1 vectors in X say
x%, ..., x’» From the nondegeneracy assumption each coordinate hyperplane of
the translated orthant will contain precisely one of these vectors. Moreover the
vertex of the orthant will have its coordinate given by

min [x", ..., x™],

the coordinate-wise minimum of the m +1 vectors. These sets of m +1 vectors,
which have elsewhere been given the name of primitive sets (Scarf, Hansen [5]),
will be the m-simplices of our collection. This definition may easily be seen to be
equivalent to the following:

DEeFINITION 1.3: A setof m +1 vectorsin X, x”, . .., x™ is said to be a primitive
set if there is no vector x in X with

T o
x>min[x", ..., x"].

In Figure 1 the vectors %", x', x* form a primitive set with vertex «, and
x°, x°, x” aprimitive set with vertex 8. In order to be somewhat more concrete let
us imagine that the vectors in Figure 1 arise from a doubly infinite set of vectors
given by

Qo1 doz
x=|an anlh
a2y 4z

.as h runs over all lattice points in the plane.
A translate of the positive orthant with vertex (co, ¢y, c2) corresponds, in
activity level space, to a specific positioning of the three inequalities

aphi+apnh=c, for i=0,1,2.

If there are no vectors x in this translated positive orthant, then this region in
activity level space contains no lattice points. When the coordinates of the
translated positive orthant are decreased, the corresponding inequalities are
relaxed until three lattice points are reached. Primitive sets are seen, therefore, to
correspond to all triples of lattice points, say 4°, &', h°, arising by an arbitrary
relaxation of the inequalities from a lattice free region. This is, of course, stronger
than merely requiring that there be no lattice points in the convex hull of
h°, k', h”. The nondegeneracy Assumption 1.2 is required to insure that there is
no ambiguity about which lattice point is reached first when an inequality is
relaxed.

FIGURE 2
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If the activity analysis model generating the set X is given by a matrix

apr  doz
ai 4
dzy  dzz
dszp  dsz

with four, rather than three, rows, the vectors x will lie in R* and primitive sets will
consist of sets of four vectors. The following figure illustrates a set of four lattice
points in R*> whose associated x vectors form a primitive set. The figure describes a
quadrilateral each of whose sides is associated with a given row of the matrix, and
which contains no lattice points other than the four which define the primitive set.

FIGURE 3

It will be argued, later in this paper, that primitive sets contain no more than 2"
vectors if the set X is generated by an activity analysis model with # activities. If,
for example n = 2, primitive sets will consist of either three or four lattice points in
the plane. This leads to an apparent inconsistency inthe definition of primitive sets
assets of (m +1) vectorsin R™ ", if m is sufficiently large. From a geometric point
of view this arises because the set X does not have sufficiently high dimension to
resist the downward movement of the positive orthant. Figure 4 illustrates this

FIGURE 4

point with a set of points X which can be thought of as arising from an activity
analysis matrix with three rows and one column. As we see, either the first or
second coordinate of the vertex of the translated positive orthant can always be
reduced without passing through any of the points in X.

This difficulty may be overcome by the formal introduction of (m +1) “ideal”
vectors £°, £, ..., &, which are called slack vectors, because of an analogy with
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linear programming. As we shall see they simply indicate which coordinates of the
vectors in X are being neglected at a given moment.

DEFINITION 1.4 (Slack Vectors): The slack vector £ is defined by saying that its
ith coordinate is less than the ith coordinate of any of the vectors in X, and its jth
coordinate (for j # i) is larger than the jth coordinate of any of the vectors in X.

The definition of primitive sets given in 1.3 is now extended to include primitive
sets, some of whose members are slack vectors, and the remainder vectors in X. In
Figure 4 the vectors x° and x', in conjunction with the slack vector ¢! form a
primitive set, as do the triples (x°, x', £%) and (x?, x, &N,

If the set X, described in Figure 1, isassumed to be finite and consist of the seven
points xo, c ,x6, there will be a number of primitive sets which involve slack
vectors. Examples are (x!, x5, fl) and (x°, x°, fl) as well as (x', £, 52).

At various points in our subsequent arguments it will be useful to require that
the number of primitive sets containing any specific vector in X be finite. Of
course, this will automatically be satisfied if X is finite and the reader may wish to
make this assumption and proceed directly to the next section. But since our
primary application is to integer programming, in which case X is certainly
infinite, some discussion of this point is required.

An example of a set X, some of whose members are contained in an infinite
number of distinct primitive sets was given to me by Michael Todd in a private
communication. Let m =2, and let X consist of the origin (0, 0, 0) and an infinite
set of points on the plane xo = 1, given by (1, —h, —1/ k) where 4 is either a positive
integer or the reciprocal of a positive integer.

FIGURE 5

Primitive sets for this example will consist of the origin and any pair of adjacent
points on the plane xo=1; the origin will therefore be contained in an infinite
number of distinct primitive sets.

This set X has a particular property whose absence is sufficient to rule out
membership in an infinite number of primitive sets. Let us consider the problem of
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finding the vector x in X which maximizes x, subject to the single constraint
xo=b. If, for example, b = —1, the vector (0, 0, 0) will have the largest second
coordinate. On the other hand if 5 =1/2, the maximum will not be assumed; the
second coordinate in the sequence (1, —h, —1/k) can be made arbitrarily close to
0, but cannot attain this value.

Let X be a general setin R™"! S asubset of the indices (0,1, ..., m),and i*a
particular index in S, We shall consider the problem of finding that vector x e X
which maximizes x + subject to inequalities of the form

x;=b for ieS—{i*}

A maximum, if it exists, will certainly have the property that there is no vector
x' e X with x{ > x,; for i € S. This motivates the following definition.

DEFINITION 1.5: A set S<(0,1,...,m) is defined to be an efficient set of
indices if there is a vector x € X such that forno x'€ X is x; >x; foralli e S.

This property is a minimal requirement on a set of indices if the associated
maximization problems are to have a solution. It also permits us to formulate the
following basic assumption.

AssUMPTION 1.6: Let S be an efficient set of indices, and Y asubset of X whose
members satisfy the inequalities y, = b; for i € §. Let i* be a particular index in §
for which y;+ <c forall y in Y. Then thereis a vector y* in Y with y* >y« for all
other vectors in Y.

Assumption 1.6 is in the nature of a compactness assumption. It states that
bounded maximization problems based on an efficient set of indices achieve their
maxima, even when the allowable vectors are restricted to an arbitrary subset of
X. The assumption will be useful in a variety of subsequent arguments in addition
to its role in the following theorem, whose proof will be given in the Appendix.

THEOREM 1.7: Assumption 1.6 implies that each vector in X [s contained in a
finite number of distinct primitive sets.

In order to complete this section let us make some observations about the
important case in which X consists of all vectors of the form x = Ak with A an
(m +1) x n matrix and 4 ranging over all integral vectors in R". At various points
it will be useful to assume that the entries in A are themselves integral.
Unfortunately this causes some difficulty with the nondegeneracy assumption
since a pair of vectors x and x’ can have an identical /th coordinate without the
vectors being identical in all coordinates. But for our subsequent arguments all
that is required is that the ith coordinates of the vectors in X be totally ordered,
with an ordering } which is irreflexive, complete, and transitive. The natural
ordering with these properties is the lexicographic ordering which states that
xi Y x if (1) x; > x; or (i) x; = x; and the vector x'— x is lexicographically positive.
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We shall assume, without being explicit about it, that this ordering is used
whenever it is necessary. The proof of the following theorem will also be deferred
to the Appendix.

THEOREM 1.8: Let the set X consist of the vectors x = Ah with A an integral
(m+1)Xn matrix and h ranging over the lattice points in R". Assume that the
lexicographic ordering is used to break ties. Then Assumption 1.6 is satisfied.

2. MAXIMIZATION PROBLEMS AND THE LOCAL NEIGHBORHOOD STRUCTURE

We shall be concerned with the problem of finding that vector x’ in X which
maximizes x} subject to the inequalities

le ‘>’bls

i
Xm &= bms

with b1, . . ., b, preassigned numbers. In the event that the vectorsin X arise from
an activity analysis model (1.1) with integral activity levels our problem becomes
the customary integer programming problem

max doihy+. . . +daonh,, subject to

ankh.+...+ah.=by,

amlhl +.. -+amnhn mes

and h=(hy,..., h,) a vector of integers,

Our purpose in this section will be to discuss one of the relationships between
primitive sets and discrete maximization problems. A vector x € X is said to be
efficient if there is no vector in X all of whose coordinates are strictly larger than
those of x. The vectors in X which are not efficient are, clearly, contained in no
primitive sets, since the downward movement of the positive orthant will be
resisted before reaching such a vector.

The concept of primitive sets permits us to define a finite set of vectors which are
neighbors of a given efficient vector in X.

DeFINITION 2.1: Let x be an efficient vector in X, A vector x’' in X (or one of the
slack vectors) is defined to be a neighbor of x if they are both members of a
common primitive set.

In Figure 1 the vector x” has six neighbors: the vectors x', ..., x° This will be
seen to be the typical situation when the set X is generated by an activity analysis
matrix with three rows and two columns.
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THEOREM 2.2: An efficient vector x in X has a nonempty set of neighbors. In
particular forany [=0,1, ..., m, that vector x' in X (or the slack vector fl) whose
Ith coordinate is maximal, subject to x; > x; for all i #1, is a neighbor of x.

We demonstrate this theorem for the case / =0, by the following geometrical
argument. Translate the positive orthant so that its vertex coincides with x. Since x
is efficient there will be no vectors in X in this positive orthant. Then translate the
orthant by lowering the zeroth coordinate only until a vector x’ € X is reached.

[

FIGURE 6

This vector, whose zeroth coordinate is maximal, subject to x;>x, for i=
1,2, ..., n,isthe vector referred to in the statement of Theorem 2.2, (If no vector
in X is ever reached by decreasing the zeroth coordinate, we use the notation x'
for the zeroth slack vector ¢°.) We then continue by decreasing the first coordinate
of the vertex until a vector x” (or the first slack vector) is reached. This con-
struction, when continued through all of the coordinates, obviously leads to a
primitive set containing x and x'. The existence of the relevant vectors follows
from Assumption 1.6.

The concept of the neighborhood of an efficient vector x in X may be applied to
the problem of finding that vector x in X which maximizes x; subject to the
inequalities

X1 = by,

X = by

As the following theorem states, an efficient vector which satisfies these inequali-
ties is a global maximum if it is a local maximum when compared only with the
finite set of its neighbors.

THEOREM 2.3: Let x* be an efficient vector in X and satisfy the inequalities

xF=bifori=1,..., m. Assume that for every neighbor x' of x* either (i) xi < b; for
somei=1,..., mor (ii) xo <x& Then x* is that vector in X which maximizes xg
subjectto x;=b; fori=1,...,m.

The proof of Theorem 2.3 is by induction on m; it is clearly correct ifm=1. Let
us consider those points in X which satisfy the inequality x,, = b,, and project



10 HERBERT E. SCARF

them into R™ by disregarding the last coordinate. If T is used to denote the
projection operator T: (Xo,. .., Xm—1, Xm) = (X0, . . ., Xm—1), We define Y to be the
discrete production setin R™ obtained by considering all of the points y = Tx with
x in X and x,, = b,.. The set Y, illustrated in Figure 7 may easily be seen to satisfy
Assumptions 1.2 and 1.6.

FIGURE 7

As Figure 7 indicates the image Tx of an efficient vector in X need not be
efficient in Y. There is one important case, however, in which this is so.

LeMMA 2.4: Letx* be a local maximum for our programming problem, i.e. satisfy
the hypotheses of Theorem 2.3. Then y* = Tx* is efficient in Y.

If this were not so there would be a vector x' in X satisfying x|, = b,,, and x| > x
fori=0,..., m—1.Infact we may take x’ to be that vector in X (whose existence
is guaranteed by Assumption 1.6) which maximizes x,, subject to x;>x7 for
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i=0,...,m—1.But then by Theorem 2.2, x’ is a neighbor of x* which satisfies
x6>x§,

xi >xf =by,

4 £
Xm—1 >xm—1 = bm—la

X Z by

contradicting the assumption that x* is a local maximum.

Having demonstrated that y* = Tx* is efficient in Y, we are now prepared to
apply Theorem 2.3 by induction to sets of points in R™. This is facilitated by the
following lemma.

LEMMA 2.5: Lety = Tx be a neighborof y* = Tx* in Y. Then x is a neighbor of x*
in X.

The fact that y = Tx is a neighbor of y* = Tx* in Y will be revealed by their

membership in a common primitive set in Y, composed, say, of the vectors

(}‘*7 y’ yzﬁ""ym_l)'

Each of these vectors is the image, under T of the vector in X, whose mth
coordinate is = 5,,. Let the vectors in X be denoted, using an obvious notation, by
x* x,x%, ..., x™ " In order to demonstrate our Lemma, it is sufficient to exhibit
a vector x™ in X (with x 2 < b,,) so that x*, x, x>, ..., x " isa primitive set in X,
But this vector may simply be defined to be the vector in X whose mth coordinate
is maximal subject to

. 2 -1
xg' >min [y, yo, Yo, - .., yo.

. x 2 -1
X1 >IN (Y51, Yooty Vet + o s Yimo1 ]
(Assumption 1.6 is used to guarantee the existence of such a vector.)
To complete the proof of Theorem 2.3 we observe that if x* is a local maximum

for the problem

max xo,

X = by,

X Z by,
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in X, then y* = Tx* will be a local maximum for the problem
max yo,

ylzbl’

,Vm—l = bm~1»
in Y. For if there were a neighbor y = Tx for which
Yo=Y,

yl;bh

Ym—l = bmfla

then by Lemma 2.5, x would be a neighbor of x* in X. But x would then satisfy
Xm = b, in addition to

Xo™> x§,
x1;b1’

Xm—1Z bm—ls

contradicting the assumption that x* is a local maximum.

Having established that y* is a local maximum in Y, our induction assumption
permits us to conclude that y* is a global maximum in Y. It is then immediate that
x* is a global maximum in X, for if x in X satisfies

Ed
x0>x()’

X1 2bls

xm 2 bm,
it follows that y = Tx is in Y and satisfies
Yo > y?:

}713b1,

y;n—lzbmflv

This demonstrates Theorem 2.3. A converse to this Theorem will be given in
Section 4. We demonstrate there that any neighborhood system, for which a local
maximum is global, must include the neighborhoods given by primitive sets.
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FIGURE 8

Theorem 2.3 suggests an obvious algorithm for the solution of discrete pro-
gramming problems. Begin with an efficient vector which satisfies the inequalities
x;=bfori=1,..., m Examine the neighbors of x. If each of them either violates
one of the inequalities or gives a lesser value of the zeroth coordinate, we
terminate with the global optimum. Otherwise replace x by one of its neighbors
which satisfies the inequalities, and yields a higher value of the zeroth coordinate,
and continue.

The ease with which this idea can be implemented depends on the ease with
which the neighborhood structure associated with the technology X can be
determined. It should not be surprising, therefore, that if no structure whatsoever
is imposed on X, the determination of the neighborhood structure is as complex as
solving the original programming problem itself. With complete generality the
above algorithm will be at best a systematic way of organizing what is inevitably a
search through the entire set X.

On the other hand if the set X has a sufficiently rich structure, the associated
primitive sets and neighborhood structure may be quite easy to determine. I will
illustrate this by anticipating a subsequent theorem which forms the basis for a
rapid algorithm (an algorithm which solves the problem in polynomial time—
using the terminology of complexity theory) for the general integer programming
problem with two variables.

Assume that the set X is generated by an activity analysis matrix with 3 rows
and 2 columns whose entries have the following sign pattern:

i

In addition let a;; +a,2>0 for i =1, 2. Then it may be shown that the primitive
sets correspond, in activity analysis space, to one of the two triangles illustrated in
Figure 8, translated to an arbitrary lattice point. Each lattice point will have,
therefore, the six neighbors shown in Figure 9.

FIGURE 9



14 HERBERT E. SCARF
In order to solve the programming problem

max dg1h, +aozha,
ajihy +anhy = by,

Az1hi +axh> = by,

and & =(hy, h,) integral, it is therefore sufficient to find a vector (hy, k)
which satisfies the two inequalities, and such that (h;—1, k,) violates the first
inequality and (h;—1, h,—1) violates the second (or alternatively (hy, ho—1)
violates the second and (h;—1, A, —1) the first). For if (h, —1, h,—1) violates
inequality 2, then so does (h;, ho—1), whereas the three other neighbors
of (hy, k) ((h1+1, hy), (hy, ho+ 1), (hi+1, ha+1)) all produce lower values
of the objective function.

FIGURE 10

3. THE NUMBER OF BINDING CONSTRAINTS FOR AN INTEGER PROGRAM

We shall further illustrate the relationship between primitive sets and discrete
programming problems by demonstrating a theorem on the maximal number
of binding constraints in an integer programming problem with n variables.
Consider the problem

max dgi1hi+. .. donhn, subject to

a11h1+. . .+a1nhn 2bla
(3.1) .

amlhl +...+ amnhn = bm’

andwith &4 = (h,, .. ., h,) integral. Nonnegativity requirements on the variables, if
any, will be incorporated in the constraints, whose number m will typically be
larger than n. The lexicographic tie breaking rule will be used and as a
consequence Assumptions 1.2 and 1.6 will apply to the discrete production set
generated by this model.

We assume that the inequalities have a feasible integral solution, and a finite
maximum. The maximizing x vector will, of course, be unique.
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DerFINITION 3.2: A subset S of the inequalities is said to be binding, if the
integer programming problem obtained by discarding the inequalities not in S has
the same optimal solution.

The question to be raised is whether there is a function of », say f(n), such that
an integer program with n variables always has a set of binding constraints of
cardinality f(rn) or less. It is one of the major theorems of linear programming—in
which the variables are not restricted to be integral—that a set of binding
constraints of cardinality # can always be found. This result is, in fact, the basis for
the simplex method for linear programming, which proceeds by systematically
analyzing appropriate subsets of » inequalities. The result also leads to the pricing
theorems of linear programming, with their important implications for the
decentralization of economic activity.

Of course, it is conceivable that no function of n will suffice for integer
programming, and that problems may be found with a fixed number of variables
and an arbitrarily high number of constraints, none of which can be discarded
without modifying the answer. The following theorem, first demonstrated by
David Bell [1] and independently (though somewhat belatedly) by myself (Scarf
[6]), states that the function f(rn)=2" —1 is the correct one for integer program-
ming. An even earlier proof is given by Doignon [2].

THEOREM 3.3: An integer programming problem with n variables has a set of
binding constraints of cardinality 2" —1 or less.

At this point I will give Bell’s argument for Theorem 3.3, rather than mine.
Both arguments, however, make use of the following geometrical lemma, which
seems to me to be at the heart of integer programming problems.

LEMMA 3.4: Let P be a convex polyhedron in R”, whose vertices are lattice points,
and which contains no lattice points other than its vertices. Then the number of
vertices is no larger than 2".

The unit cube in n space is an example of the type of convex polyhedron
referred to in the lemma with a maximal number of vertices. It may be shown that
when n =2 any such polyhedron with 4 vertices is equivalent under a unimodular
transformation to the unit square, a fact that accounts for a good deal of the
simplicity of programming problems with 2 variables. This simple charac-
terization of the maximal polyhedra of Lemma 3.4 is, however, no longer correct
when #n = 3. The detailed study of these polyhedra is just being initiated.

The proof of Lemma 3.4 is quite simple. Let the vertices be TR LN |
k >2" then there must be at least one pair of vertices, say v' and ¢, all of whose
coordinates have the same parity, in terms of being even or odd. But then
(v’ +v?)/2 is integral, contained in the polyhedron, and not a vertex. This
completes the argument.
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Let usreturn to the programming problem (3.1), and denote its optimal solution
by 4. Let ¢ >0 be small and consider the polyhedron defined by

Z. ao]‘h]' ?Z ao,-h? + e,

(3.5) ’
Za,—,»hj?b,- for i=1,...,m.
i

By the definition of 4°, this polyhedron is free of lattice points. We wish to show
that there is a subset of 2" or less of these inequalities (including the inequality
derived from the objective function) so that the larger polyhedron obtained by
deleting the remaining inequalities is also free of lattice points.

Every lattice pointin R" is, by construction, eliminated by at least one of these
inequalities, and, of course, each inequality eliminates many lattice points. Bell’s
argument begins with the following classification of the (m + 1) inequalities (3.5).

DEeFINITION 3.6: The inequality X a;h; = b; issaid tobe of type I if it eliminates a
lattice point which is not eliminated by any other inequality. It is said to be of type
IT if every lattice point which it eliminates is also eliminated by some other
inequality.

This definition is illustrated by the top drawing in Figure 11 which represents an
integer program with 2 variables and 4 inequalities. The feasible set has been
shaded and the objective function moved inwards slightly from the optimal
solution. Inequality O is of course of type I. Of the remaining inequalities 1 and 2
are of type I, and 3 and 4 are of type II.

If an arbitrary inequality of type Il is eliminated, the convex polyhedron defined
by the remaining inequalities will be enlarged, but it will still contain no lattice
points. The resulting integer program will have a larger constraint set but the
optimal solution will be unchanged. This is illustrated by the second drawing in
Figure 11.

After an inequality of type 11 is eliminated, an inequality of type I will still be of
type I, but inequalities of type II may change their character. If inequality 3 is
eliminated in Figure 11, inequality 4 changes from an inequality of type II to an
inequality of type I.

We may therefore continue the process of eliminating inequalities of type II,
one at a time, until only type I inequalities remain. Theorem 3.3 will be
demonstrated by showing that there can be no more than 2" inequalities if they are
all of type I. Consider the inequalities in the order of their subscripts, beginning
with inequality 0. Relax inequality O until it hits the optimal solution of the
programming problem. Relax each inequality, in turn, until it first hits a lattice
point which it previously eliminated but which is not eliminated by any other
inequality. When this relaxation is applied to any particular inequality in the
sequence the convex polyhedron is enlarged but no lattice points are introduced
into its interior. Moreover the inequalities remain as type I. When the process is
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FIGURE 11

completed each relaxed inequality will be associated with a specific lattice point
which satisfies the remaining relaxed inequalities. This process is illustrated by the
third drawing in Figure 11.

The process results in a set of lattice points {h'} for i € S, where S is the set of
indices referring to inequalities of type I. By the construction, the convex
polyhedron formed by the relaxed inequalities contains no lattice points other
‘than {h'}, each of which is supported by its own translated inequality. H, the
convex hull of the /', is therefore a convex polyhedron, whose vertices are the &'
themselves, and which contains no other lattice points. It follows from Lemma 3.4
that the number of vertices (and therefore the number of inequalities of type I) is
no larger than 2". This demonstrates Theorem 3.3.

It is a trivial matter to verify that the bound provided by 3.3 is sharp, i.e. that
there are integer programs with n variables and 2" — 1 inequalities, whose optimal
solution changes when any of the inequalities are discarded. Figure 12 illustrates



18 HERBERT E. SCARF

this possibility for # = 2; a similar construction based on the unit cube in n-space

FIGURE 12

This observation casts some doubt on those methods for solving integer
programs which examine subsets of »n inequalities, solve the resulting program-
ming problem and check to see whether the remaining inequalities are also
satisfied. There may simply be no subset of » inequalities whose solution satisfies
all of the constraints.

Theorem 3.3 has been generalized by Alan Hoffman [3, 4], who demonstrated
that the maximum number of binding constraints in a programming problem with
n integral variables and k real variables is no larger than (k +1)2" —1.

Bell’s construction may be seen, quite easily, in terms of primitive sets. We
define the set X to consist of the m + 1 slack vectors 50, ..., &" and the vectors
x = Ah as h ranges over all lattice points in R". By assumption the translate of the
positive orthant in R™"" with vertex at

s 0
x ao;'hj,
1

bla

b,

contains no vectors in X other than x°= Ah°. We translate this vertex downward,
lowering each coordinate in turn, until a primitive set is reached. The slack vectors
in this primitive set will correspond to inequalities which are not binding and
which may be discarded without changing the solution to the original program-
ming problem. The existence of a set of binding constraints of cardinality 2" — 1 or
less follows directly from the following theorem whose proof is an immediate
consequence of Lemma 3.4.

THEOREM 3.5: Let X consistof the slack vectors £°, . .., €™ and the points x = Ah
as h ranges over the lattice points in R". Then the number of nonslack vectors in a
primitive set is less than or equal 10 2.
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4. THE REPLACEMENT OPERATION

In this section, we consider an arbitrary primitive set x, x, .., x" and ask
whether there is a replacement for a given vector so that the new collection of
(m +1) vectors also forms a primitive set,

FIGURE 13

Before dealing with the general problem, let us examine geometrically the case
in which the vectors in X lie in R’. Figure 13 illustrates a primitive set composed
of three vectors x, x1, x”2, Without loss of generality I have selected the vectors
so that

min [x}o, xi, x2]=x% for i=0,1,2.

In other words x” lies on the ith coordinate hyperplane of the translated orthant.

In order to remove, say, the vector x1, we increase the first coordinate of the
vertex of this orthant until we reach another vector in the primitive set, in this case
x”2. We then decrease the second coordinate of the vertex until another vector x*
(or possibly the second slack vector) is reached. The unique replacement for x”
is x ¥,

In order to discuss the replacement operation for general values of m let us
introduce a matrix whose columns are the m + 1 vectors of a given primitive set:

j i J
xy x¢ ... xg"
i() j] ]m
X X1 X7
(4.1) =
xle xh o

The vertex of the translated orthant associated with this primitive set is the vector
of row minima. These must lie in different columns, since otherwise one of the
columns themselves would be greater than the vector of row minima. I have
assumed, without loss of generality, that the row minima—which are under-
lined—lie on the main diagonal.
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In order to rep!ace x' we look at the second smallest entry in row 0; assumed in
this case to be xy. We then look through the set X to find that vector x which
maximizes x; subject to
Xp > X{fa

x> X%,

4.2)
Xy > X,

The replacement for x” is x and the new primitive set may be displayed as

i Jon
Xo X¢ ... X©
I .
X1 X3 X1
(4.3) - . .
Xm X X

Suppose that there is a nonslack vector in X satisfying (4.2). Let us use
Assumption 1.6 to verify that there will be—among such vectors—one which
maximizes x;. Observe that the ith inequality, for i =2, can be disregarded if the
ith slack vector is a member of the original primitive set. But the remaining
indices, augmented by the index 0, form an efficient set of indices, and Assump-
tion 1.6 can then be applied.

On the other hand if there are no nonslack vectors satisfying (4.3), then the first
slack vector &' will be the replacement for x* unless the m vectors in the primitive
set, other than the vector we are attempting to remove, are all slack vectors. In this
case no replacement is possible.

For example, in Figure 1 the vector x' forms a primitive set in conjunction with
the two slack vectors £' and £2, but it cannot be replaced.

It will be useful to verify that the replacement for x which has just been
described is the unique replacement. In order to see this let us consider the matrix
(4.3) without assuming that we know the location of the row minima in the new
primitive set. Aside from xy all of the entries in the last column are strictly larger
than the corresponding entry in some other column. Since one of the row minima
must appear in the last column we see that it must be x’ which is the smallest
entry in row m. Using precisely the same argument we see that x% is the smallest
entryinrow i fori=2,...,m.

The smallest entry in row 1 is either x; or x{. If it is the latter the vector x must
be that vector in X which maximizes xqsubject to x; > xkfori=1,..., m. Butthis
is the vector x” and we are back at the original primitive set. It follows that the
disposition of row minima is that given by (4.3), an observation which determines
the replacement uniquely. We summarize these observations in the following
theorem.
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THEOREM 4.4: The replacement for a given vector in a primitive set exists and is
unique, except for the case in which the primitive set consists of m slack vectors, and a
single nonslack vector which we are attempting to remove. In this latter case no
replacement exists.

The replacement step may be used to provide a converse to the theorem of
Section 2. In that section we defined two vectors to be neighbors if they were
contained in a common primitive set. The major conclusion was that an efficient
vector in X which was a local maximum when compared with its neighbors was, in
fact, a global maximum. The following definition provides a generalization of this
concept of neighborhoods.

DEFINITION 4.5: A neighborhood structure is defined by associating with each
efficient vector x in X a nonempty subset of neighbors N (x) < X. The assignment
is arbitrary aside from the requirement that y € N(x) implies that x € N(y).

A neighborhood structure permits us to define a local maximum for the
programming problem: find x in X so as to maximize x, subject to x; = p; for
i=1,..., m. Wesay that an efficient vector x in X is a local maximum if it satisfies
the constraints and if every vector in N (x) either violates one of the constraints or
has a smaller zeroth coordinate.

Letus assume that we are given a neighborhood structure with the property that
for each vector b, a local maximum is a global maximum. We shall demonstrate
that for every x, the neighborhood N (x) must contain all vectors which are in a
common primitive set with x. This implies that primitive sets provide the unique,
minimal neighborhood system for which a local maximum is global.

Suppose that x and y are in some common primitive set, but that y is not in
N(x), nor x in N(y). Without loss of generality we can assume that X0 < ¥y,
Consider a primitive set which contains both x and y, and whose columns are given
by

F e Xo ... Yo ]

L —_—

with the row minima assumed to lie on the main diagonal. By repeated appli-
cations of the replacement operation, removing those vectors with smaller zeroth
coordinate than that of x, we will obtain a primitive set~—containing x and y—with
x having the smallest zeroth coordinate. By a change of notation, if necessary, we
shall assume that y has the smallest mth coordinate, so that our matrix takes the
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form
1
Xo Xo Ve Yo
o 1
X1 X1 Y1
1 N
Xm Xm Ym

Now let X' = X —{y}.If x™ is that vector (guaranteed by Assumption 1.6)in X'
whose mth coordinate is maximal, subject to

x(r)n >XO,

1

x’{l >x1,
m m—1
Xm—1 >xm—1y

then (x, x*, ..., x™) will be a primitive set in X', displayed by the matrix

1 m
Xo Xo .. X0
- 1 m
X1 X1 X1
1 m
Xm Xm Xm

The relationship between these two primitive sets is illustrated by Figure 14.
Of course, y will be contained in the positive orthant whose vertex is
min[x, x', ..., x™].

ne”

\.
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*X

FIGURE 14

Let us define a particular programming problem by selecting the vector 4 as

min [X], Y1]2b1>xis

N [Xmy Vor ] 3= D = X .

Then it follows from the definition of primitive sets that x is that vector in X!
which maximizes x, subject to x; =5, for i =1,..., m. Since y is not in N(x), x
must be alocal maximum in X using the neighborhood N(x). But x is not a global
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maximum in X since y also satisfies the constraints and y, > xo. This demonstrates
the following theorem.

THEOREM 4.6: A neighborhood system for which a local maximum is global, for
all vectors b, must contain the neighborhood system defined by primitive sets.

5. SPERNER’S LEMMA

The following Theorem is the analogue of Sperner’s Lemma for primitive sets.

THEOREM 5.1: Let X be a finite set, and assume that each vector x in X is given an
integer label [ (x) selected from (0, 1, ..., m). Let the ith slack vector &' be given the
label 1(E)=ifori=0,1,..., m. Then there exists a primitive set all of whose labels
are distinct.

The argument for finding a completely labeled primitive set, when X is finite,
begins with the primitive set consisting of the m slack vectors g, €" and that
particular vector x in the finite set X whose zeroth coordinate is maximal. If
I(x) =0 we have found a completely labeled primitive set since the slack vectors
bear all of the remaining labels. If on the other hand /(x) =/ we remove the /th
slack vector and reach a new primitive set.

The algorithm will move through primitive sets whose (m + 1) vectors will bear
all of the labels 1, 2, . .., m. The algorithm terminates when the label 0 appears,
and prior to termination each primitive set will contain precisely two vectors
which have the same label. One of these vectors has just been introduced into the
priniitive set. We continue by removing the other vector with the doubled label.

A familiar graph theoretic argument demonstrates that we never return to a
primitive set previously encountered. Consider a graph whose nodes represent the
primitive sets through which the algorithm passes. Two nodes will be adjacent,
and connected by an edge, if one of the primitive sets is obtained from the other by
removing one of the vectors with a doubled label. Since this relationship is
symmetric the edges need not be ordered.

The initial and terminal primitive sets have nodes which are adjacent to asingle
other node. Each intermediary node is adjacent to precisely two other nodes. If
the algorithm were to return to a node previously visited, the first node which is
encountered twice—if it is not the initial position—would necessarily be adjacent
to at least three other nodes, which is impossible. If the first primitive set which is
revisited were the initial position it would necessarily be adjacent to at least two
other nodes—again impossible.

FIGURE 15
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One final remark to complete the proof. Every replacement operation called for
in the course of the algorithm can actually be carried out. If not we would be at a
primitive set containing m slack vectors. The label zero would have already been
brought in and the algorithm would have previously terminated unless the slack
vectors are 51, ..., &™ But in this case we would have returned to our original
primitive set, a possibility we have already ruled out. This completes our
algorithm for Sperner’s Lemma.

Let us enlarge our graph by considering all primitive sets whose (m + 1) vectors
bear the labels 1,2, ..., m, rather than only those encountered in the course of
the algorithm. As before, two nodes are adjacent if one is obtained from the other
by removing one of the two columns with the doubled label.

Aside from the initial primitive set and the completely labeled primitive sets,
each node is adjacent to two other nodes. The initial primitive set and the
completely labeled primitive sets are adjacent to precisely one other node. Such a
graph must have the form illustrated in Figure 16. This observation leads
immediately to the following refinement of Sperner’s Lemma.

L ]

U O

FIGURE 16

THEOREM 5.2: The number of completely labeled primitive sets is odd,

Sperner’s Lemma has become quite familiar, during the last decade, because of
its use in the approximation of fixed points of a continuous mapping. It may be
somewhat surprising, however, that it has an immediate application to discrete
programming problems, as well.

Let us return to the problem of finding that vector in X which maximizes x
subject to the inequalities

x12b1,

Xm = b,

Inorder to simplify the exposition we continue to assume that X is finite; virtually
all of our subsequent results have an analogue for infinite X satisfying 1.6. We
adopt the following labeling rule.

LABELING RULE 5.3: We label x in X with the label /(x) = if i is the largest
index for which x; <b. If x,= b, foralli=1,2,..., m, then I(x) =0,
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Figure 17 is aredrawing of Figure 1 with two additional lines x; = b; and x; = b5.
The labels for the seven vectors are given by Labeling Rule 5.3. We see that there
is only one completely labeled primitive set and that the vector in this primitive set
with the label 0, x°, is the optimal solution to the programming problem. The
general argument is given in the following theorem.

FIGURE 17

THEOREM 5.4: Let x be that vector in a completely labeled primitive set—labeled
according to Rule 5.3—with the label 0. If x is not a slack vector then it maximizes
xo among all vectors in X which satisfy x; = b;fori =1, ..., m. If x is a slack vector,
then it is the zeroth slack vector, and the constraints are infeasible.

Without loss of generality let us assume that the vectors in a completely labeled

s . [} 1 .
primitive set are given by x,x,..., x", arranged in such a way that the row
minima of

1 m

X0 Xo Xo
0 1 m
X1 X1 X1
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lie on the main diagonal. The particular form of the Labeling Rule 5.3 permits us
to argue that /(x')=i for i=0,..., m. To see this, we observe first of all, that
I(x")=i for all i. This is clearly correct for i = 0. On the other hand if 1(x"<ifor
some /=1 then x!=b; and therefore no vector receives the label i. These
observations imply immediately that /(x') =i for all i.

We see that x'<b, for i=1,..., m and that x°, if it is not the zeroth slack
vector, satisfies all of the constraints of the programming problem. But then it
must be the global maximum, for if there were another vector x in X with x; = b,
for i=1,...,m and xo> x5, we would have x;> x| for all i, which violates the
definition of a primitive set. If, on the other hand, x" is the zeroth slack vector,
then an identical argument implies that there is no x in X with x;=b; for
=1, ..., m This demonstrates Theorem 5.4.

We see that Sperner’s Lemma can be used to provide an algorithm for discrete
programming problems. The difficulty in its implementation is the replacement
operation, which requires a knowledge of all of the primitive sets associated with a
given technology X. If this approach is to be made useful, research must focus on
methods for determining these primitive sets when sufficient structure is placed on
X. In the second part of this paper we shall illustrate how this may be done when
the technology is based on an activity analysis model with 2 integral activities. The
case of 3 activities is much more difficult and will be presented in a separate paper.

We should remark that the completely labeled primitive set is identical with the
one obtained by Bell in his proof that the maximum number of binding constraints
in an integer program with # variablesis 2" — 1.

6. INDEX THEORY

In this section we shall use the concepts of index theory, applied to primitive
sets, to analyze the graph of almost completely labeled primitive sets displayed in
Figure 16. Our major conclusion will be that when the labelingrule is given by 5.3,
the graph contains no cycles and is composed of a single path connecting the initial
primitive set with the unique completely labeled primitive set.

This result seems important to me for two reasons. First it implies that we need
not start the algorithm with the primitive set consisting of the m slack vectors
£ E™ Any primitive set whose m + 1 members bear the labels 1,2,...,m
will lie on the unique path leading to the required answer. As we shall see this
flexibility will be quite useful in discussing programming problems with two
integral activities.

This result also suggests that our algorithm for discrete programming has
captured one of the significant properties which differentiate algorithms for
convex programming from the more subtle techniques required for fixed point
computations. In this regard the same arguments can be used to show that the
minimum entry in row 0 is nonincreasing, in the sequence of primifive sets which
arise when Sperner’s Lemma is used to solve discrete programming problems.

Let us return to the general problem studied in Section 5. The set X is taken to
be finite and the labels /(x) are arbitrary members of the set (0, 1,..., m). As
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before the ith slack vector will receive the label /(&) =i. We introduce the
following definition of the index of a completely labeled primitive set.

DEFINITION 6.1: Let x, .. ., x'~ be acompletely labeled primitive set arranged
so that the row minima of the matrix

x®  xd xo™
i i1 Im
X X1 X1
(6.2) . =
X8 xh xm

lie on the main diagonal. Then
index (x’, ..., x")

is defined to be +1 if the permutation 1(x"), ..., 1(x") is even, and —1 if the
permutation is odd.

We shall demonstrate the following important generalization of Theorem 5.2
which states that the number of completely labeled primitive sets is odd.

THEOREM 6.3: The number of completely labeled primitive sets with index +1
exceeds the number with index —1 by unity.

The proof of Theorem 6.3 is based on our ability to orient the graph of almost
completely labeled primitive sets with label 0 missing by a calculation which
depends solely on the data involved in the particular primitive set being studied.

An orientation is a designation of the direction in which the vertices of each
component of the graph are to be traversed. Consider a primitive set (x%, ..., x")
whose members bear the labels 1, 2, . . ., m, and which is arranged so that the row
minima of the matrix 6.2 lie on the main diagonal. Two of the vectors, say x’= and
xiﬂ, have the same labels; aside from the initial primitive set one or the other of
them will be removed.

O t1
7

FiGURE 18
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The string of symbols

[y, oo L), o, ), L (')
will not be a permutation of (0, 1, ..., m), since the label 0 is missing. But both
[(x®),...,0,...,1(x%), ..., 1(x), and
(6.4) . X )
I(x), ..., [(x"),...,0,..., I(x")

will be permutations. In fact the two permutations will have opposite parity since
they are obtained, one from the other, by a single transposition.

In order to orient the graph we must select one of the two vectors to be
removed.

PRESCRIPTION OF AN ORIENTATION 6.5: Let us orient the graph of almost
completely labeled primitive sets by removing that vector with the property that
when we replace its label by 0, the resulting permutation is odd.

Several remarks are in order. We must, first of all, verify that this orientation is
consistent in the sense that if we move from one vertex to an adjacent one, the next
step does not require us to return to the original vertex. Consider a primitive set
whose columns form the matrix

X ... x ... xip
. , )
X2 xg xg
j j i
Xom X X

arranged as usual so that the row minima lie on the main diagonal. Assume that
I(x*),...,0,...,1(x™) is odd, where /(x'«) has been replaced by 0; x'~ is to be
removed, and replaced by a vector x.

We must demonstrate that Orientation 6.5 does not require us to remove x
from the new primitive set. The permutation [(x*), ..., 0, ..., [{(x’) obtained by
replacing /(x) by 0 in the new primitive set is identical with the previous
permutation and is therefore odd. But a simple transposition (see, for example,
(4.3)) of two columns is required to bring the new primitive set to the form in
which the row minima of the corresponding matrix lie on the main diagonal. This
transposition will change the sign of the permutation so that the other vector with
the doubled label is removed.

LEMMA 6.6: A completely labeled primitive set which is reached by traversing the
graph in the direction given by Orientation 6.5 has an index of +1. If such a set is
obtained by moving in the opposite direction, the index is —1.

In order to demonstrate this lemma, return to the notation we have just
used, and assume that the incoming vector x" has the label 0, so that we have
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reached a completely labeled primitive set. The permutation of labels
1(x), ..., 1(x),..., I(x') is, of course, odd, but the single transposition required
to bring the row minima of the final matrix to the main diagonal will convert the
permutation to an even one. A virtually identical argument will demonstrate that
a completely labeled primitive set obtained by moving in the opposite direction
has index —1. This demonstrates Lemma 6.6.

A single completely labeled primitive set is obtained by initiating the algorithm
at the primitive set composed of the slack vectors g, .., & andthe vector x in X
whose zeroth coordinate is maximal. Since the permutation 0, [(¢), ..., [(£™) is
the identity permutation, the orientation rule is consistent with removing that
slack vector whose label duplicates that of x. Our arguments therefore imply that
the primitive set obtained by our algorithm has an index of +1.

The remaining completely labeled primitive sets may be grouped in pairs. The
two members of each pair will lie at opposite ends of a connected pathinthe graph
of almost completely labeled primitive sets, and will therefore—by Lemma
6.6—have opposite indices. This demonstrates Theorem 6.3,

This important result is all that can be said about the indices of completely
labeled primitive sets when the labels /(x) are arbitrary. But a considerable
sharpening is available when the Labeling Rule 5.3 is used to solve the discrete
programming problem: find that vector x in X whose zeroth coordinate is
maximal, subject to the inequalities

X1 = bls
X = by
Let us now assume that Labeling Rule 5.3 is being used and let O xt L x”
be a completely labeled primitive set, arranged in our customary way:
0 1 m
Xo Xo ... Xo
0 xl xi
1 1
(6.8) R .
.(] 1 m
Xm Xm Xm

Then, by the argument previously given in the proof of Theorem 5.4, we must
have I(x')=1i for all ;. We see therefore that the index associated with every
completely labeled primitive set is +1. This demonstrates the following theorem.

THEOREM 6.9: The Labeling Rule 5.3 results in a unique completely labeled
primitive set.

The graph of the almost completely labeled primitive sets is seen therefore to
consist of a single path, connecting the initial primitive set to the unique
completely labeled primitive set, and possibly a number of cycles. In the remain-
der of this section we shall demonstrate that there are, in fact, no such cycles.
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The argument will be based on a detailed examination of the labels associated
with the almost completely labeled primitive sets which are assumed to appear in
such a cycle. Consider such a primitive set, x°, ..., x™, again arranged in such a
way that the row minima of

[} 1 m
Xo X0 ... Xo
x;  xi xf
1 1 1
(6.10) LA .
Q 1 m
Xm Xm Xm

lie on the main diagonal. As before, it is easy to verify that the Labeling Rule 5.3
implies that [(x") = .

Let us define for each such primitive set an increasing sequence of indices
O=ip<i,<...<i by

1(x")=1i,>0,

l(xi‘)= i2>i1,

Hx™ )= > iy,
l(xi") = ik.

We have the following lemma:

LEMMA 6.12: I(x')=1i for all columns i #0, 11, ..., ix-1.

The argument is immediate. We let § be the set of indices/in (0, 1, ..., m) with
i#0,iy,...,i. For each such i in S there must be some x’ with /(x')=i. But
F#0,i1, ..., ik-1, ix since the labels of %% x™, ..., x* are notin S. We see that the
set of indices {/(x")} for i in § is precisely S itself. Lemma 6.12 follows from the
observation that /(x') =i for all i,

The two columns x*~' and x' have the doubled label and one of them will be
removed as we proceed around a cycle following the orientation given by
Prescription 6.5. The permutation

1(x%),...,0,...,1x™,

where /(x ') has been replaced by 0 may be brought to the identity permutation by
precisely k transpositions. It follows that this permutation is odd if the number & is
odd; otherwise it is even.

LEmMA 6.13: If the orientation given by Prescription 6.5 is followed, we remove
x' when k is odd, and x"— when k is even.

In order to obtain a contradiction to the existence of a cycle using these
arguments, it is convenient to define

e=min[x° ..., x™],
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for each primitive set in a cycle, and to study the way in which the coordinates of &
change as we follow the Orientation 6.5. For example, ao w1ll increase only if the
vector x° is removed, and will decrease if x' is removed and x° is that vector in the
primitive set with the second smallest ith coordinate.

Can ag be increased when the Labeling Rule 5.3 is followed? This can only
occur when x° has one of the doubled labels, so that /(x") = /;. But Lemma 6.13
then tells us that the vector x"* will be removed as we traverse the cycle with the
Orientation 6.5, and @ is not increased. If, however, ao is not increased
throughout a cycle, it can never decrease, and must remain constant. It follows
that the vector x° is contained in every primitive set in the cycle, and in fact retains
its role as the vector with smallest zeroth coordinate.

The index [(x°) =i, will therefore be unchanged throughout the cycle. By
Lemma 6.13 none of the vectors x’ for 0 < i < i; which appear in any primitive set
in the cycle will ever be removed. Therefore the ith coordinate of a, for 0 </ <iy,
will never be increased. This implies that every one of these coordinates will
remain constant throughout the cycle and therefore all of the vectors
Ooxt x17! will be contained in every primitive set in the cycle. Moreover
they will retain their roles in bearing the row minima for rows 0,1,...,7;—1.

In order to argue that x is never removed, let us avail ourselves of the
opportunity of moving around the cycle in the reverse orientation. If x't bears the
doubled label then we must have /(x2) = i,. It follows from Lemma 6.13 that x’
will be removed in the reverse orientation. The coordinate a;, is never increased in
the reverse orientation. It must therefore stay constant regardless of the orien-
tation.

"The proof then verifies that a;, for /; < < i, never changes and continues with
@, In discussing a; we use the Orientation 6.5 if [ is odd, and the reverse
orientation if / is even. The final contradiction, of course, is that none of the
vectors x°, ..., x™ are removed throughout the cycle.

THEOREM 6.14: When Labeling Rule 5.3 is used, the graph of the almost
completely labeled primitive sets contains no cycles.

The same arguments may be used to demonstrate the following theorem which
provides an analogy between our methods and dual feasible algorithms for the
solution of programming problems.

THEOREM 6.15: When Labeling Rule 5.3 is used,

@o=min[x0, ..., x0']
is monotonic along the single path of almost completely labeled primitive sets.

Yale University

Manuscript received June 1979; revision recetved February, 1950.
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APPENDIX
In this Appendix we demonstrate the two theorems enumerated at the end of Section 1.

THEOREM 1.7: Assumption 1.6 implies that each vector in X is contained in a finite number of distinct
primitive sets.

Let us assume to the contrary that x is contained in an infinite sequence of primitive sets. As usual
the coordinates of the vectors in these primitive sets will appear as the columns in a matrix, arranged so
that the row minima lie along the main diagonal. By selecting suitable subsequences, without loss of
generality we may assume the following: (i} In each of these primitive sets, x has the smallest zeroth
coordinate. (if) The same stack vectors, if any, appear in each primitive set. (iii) If the ith slack vector
does not appear, then the minimum entry in the /th row in the sequence of matrices representing
primitive sets is unambiguously decreasing, constant, or increasing.

Let S be the set of indices i, including 0, such that the ith slack vector does not appear, and such that
the minimum entry in the /th row of the matrices representing this sequence of primitive sets are
bounded from below. S 1s an efficient set of indices since if there were an x’ with x} > x; for i € §, then x'
would violate the definition of a primitive set sufficiently far in the sequence.

Now let i* 0 be in § and let Y be the set of all vectors appearing in column i* in this sequence of
matrices. But then all of the vectors in Y have their /th coordinates bounded from below, for i € §, and
y+ < x for all such y, It follows from Assumption 1.6 that one of these vectors has the largest /*th
coordinate, for all ye Y. This implies that the minimum :*th coordinate must be decreasing, or
constant for every such i* in S. But then, by selecting a suitable infinite subsequence all of the row
minima corresponding to nonslack vectors must be constant or decreasing. This is inconsistent with
there being an infinite number of primitive sets in the sequence, and demonstrates Theorem 1.7.

The next Theorem demonstrates that Assumption 1.6 is satisfied when X arises from an activity
analysis model with integral activity levels.

THEOREM 1.8: Let X consist of the vectars x = Ah, with A an integral (m +1)Xn matrix and h
ranging over all lattice points in R". Assume that for each |, ties in the ith coordinates of the vectors x are
broken by the lexicographic tie breaking rule. Then Assumption 1.6 is satisfied.

. Let S be an efficient set of indices; an assumption which in this case is equivalent to saying that there
isno x = Ak with x; >0 for all / in § (using the lexicographic tie breaking rule should any of the x; be
equal to 0).

Let Y be a subset of X whose /th coordinates are bounded from below for all i in S, let i* be a
particular index in S, and assume that y;» is bounded from above for all y € Y. If there isno y* e Y with
yi >y for all other ye Y, then there is an infinite sequence y e ¥ with y'' >y% in the
lexicographic sense, But the i*th coordinates of the vectorsin Y can take on a finite number of values:
we can therefore assume that y%"' = y% and the vectors y°*' — y" are lexicographically positive.

The numbers y; are bounded from below for all i in §. We can therefore, by selecting suitable
subsequences, assume that y? ™' —y? = 0forall / in §. But the lexicographic rule for breaking ties in the
i*th coordinate applies to these coordinates as well. It follows that yS*' —y! is lexicographically
positive for all i in S. This contradiction demonstrates Theorem 1.8.
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