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PRODUCTION SETS WITH INDIVISIBILITIES
PART II. THE CASE OF TWO ACTIVITIES'

BY HERBERT E. SCARF

Part I of this paper introduces a general framework for the discussion of discrete
production sets and the associated programming problems which arise when a particular
endowment of factors is specified. In this part of the paper we shall apply these ideas to
integer programming problems with two activities and bring to bear some of the basic
considerations of the theory of computational complexity. The numbering of sections,
figures, and equations will follow those used in Part 1.

7. THE COMPLEXITY OF DISCRETE PROGRAMMING PROBLEMS

THE ASSUMPTIONS of constant returns to scale in production, implicit in neoclas-
sical analysis, is inadequate to account for one of the major facts of economic life:
the existence of large industrial enterprises which form the basic units of economic
activity. To the extent that a purely technical explanation can be offered for this
phenomenon it istobefound inthe property of increasing returns to scale which is
implied by the presence of indivisibilities and other forms of nonconvexities in
production.

The systematic study of maximization problems involving indivisibilities is now
over two decades old. At its inception there was considerable optimism that this
area of research would be as fruitful for economic analysis as linear programming
had previously been. But this optimism has faded. For in the intervening period,
virtually no general theoretical results have been produced nor have universally
applicable algorithms been developed which are capable of even the most
tentative economic interpretation. The bulk of research on this topic has moved
far from economics and become concerned instead with intricate and detailed
problems in combinatorial analysis and graph theory.

The concentration on combinatorics does not represent an arbitrary dis-
engagement from real issues, but is based on a growing appreciation of the
enormous complexity of discrete programming problems. The existence of
combinatorial problems which seem to possess no efficient algorithms finds its
counterpart in that body of economic literature which replaces the concept of a
profit maximizing firm by that of an organization concerned with heuristic and
tentative searches for suboptimal solutions. In this literature there is a persistent
suggestion that the problems of resource allocation are extremely complex and
that the firm is the economic entity organized to solve them.

I think that this point of view has much to recommend it. It is my own belief
that an understanding of the complexity of economic problems will become an
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important ingredient of any future theory of the firm, even though the specific
lines of development of such a theory are far from clear at present.

Duringthe last decade there has been a very active area of research in computer
science and operations research which has enhanced our ability to describe and
investigate the intrinsic difficulty of mathematical programming problems. The
basic question asked in this theory of computational complexity (see Garey and
Johnson [3] for an exposition of the theory) is whether a particular combinatorial
or programming problem has a solution algorithm whose time of execution is in
some way commensurate with the time required to describe the problem.

To be more specific let us consider the general integer programming problem:

max Y aoh;,
i

Z aljhj = bl ’
/

Z am}'hj = bm 3
]

with k; integral. The problem is described by the (m +1)xn matrix A and the
vector b. Letus imagine that the entries of A and b are all integral and are stored in
a computer in terms of their binary expansion. Each of these m+(m+1)-n
entries will require a certain number of binary bits to be represented. The total
number of bits required to represent all of these numbers will be an integer, say I,
which measures the size of the problem.

Let us consider an algorithm which solves a given set of integer programs in a
finite number of basic steps, each of which consists of a single addition, subtrac-
tion, multiplication, division, or elementary logical operation. The algorithm is
said to be polynomial if there is a polynomial function f(I) of the size of the
problem so that the algorithm terminates in no more than f(/) steps, for all
instances of the class of integer programs being studied whose size is no more
than L.

Animportant example which illustrates the distinction between polynomial and
nonpolynomial algorithms is the Euclidean algorithm for finding the greatest
common divisor (a, b) of two positive integers a and b. Assume that ¢ > b and
define the sequence ry, ra, ..., res; Dy

a=nb+r, 0<rn<b,
b=tri+ry, 0<r,<r,

rn=taratr, 0<rs<ry;

Te = le~2Tk+15

with 1y, ..., ez, and ry, ..., res integral. Itis a trivial matter to verify that r,.q is,
in fact, the greatest common divisor of a and 5.
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To illustrate the process consider the two integers 141 and 15. We have

141=9-15+6,
15=2-6+3,
6=2-3,

so that (141,15)=3.
The number of binary bits required to represent a positive integer a is

fla)=[log: (a + 1)),

where [x]is the smallest integer 2x. The function f(a) can easily be seen to satisfy
f(2a) = fla)+1 for any positive argument,
The size of the problem is given by

S =fla)+f(b),
the number of bits required to store the two integers a and . From
r,-“1=t,<+1r,'+r,-+1, and

Ti-1 >r,>r,-+1,

we have 1.1 =1 and, therefore, r;j-y =, + rj.1 > 2r;4. It follows that
f(r[—1)+f(rj)Zf(r}')+f(r[+1)+ls

and this measure of size decreases by at least one unit on every iteration of the
Euclidean algorithm. The algorithm must therefore terminate in no more than
steps and is certainly polynomial.

There is an obvious variant of the Euclidean algorithm which is not polynomial
in the data of the problem. Assuming that a > b, the Euclidean algorithm replaces
these two integers by the pair

b, r=a—1th, with 0=sr<p,

and continues. What might be called the slow Euclidean algorithm avoids division,
replaces the pair by b, a —b and continues. The slow algorithm is obviously not
polynomial since it takes a steps to verify that the greatest common divisor
{a, 1)=1, even though the size of the problem is [log; (a+1)].

One way of formulating the central question of complexity theory is whether
the general integer program has a polynomial algorithm. Integer programming
has the property that if it were to have such an algorithm then a very large number
of other combinatorial problems would have polynomial algorithms as well. And
in particular virtually all problems of resource allocation involving indivisibilities
could be solved with extreme rapidity.

Part I of this paper does describe a general algorithm for the solution of integer
programs based on Sperner’s Lemma. For this approach to be implemented it is
necessary to be able to describe the full collection of primitive sets, or equivalently
the neighborhood system, associated with a given technology. In this part of
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the paper we shall provide a full characterization of the neighborhood systems
for the general integer program with two activities, and an algorithm for deter-
mining the particular neighborhood system for a specific technology. The deter-
mination will be seen to be polynomial in the data of the problem.

Initsimmediate application Sperner’s Lemma suffers from a difficulty similar to
that experienced when it is used in fixed point problems. It proceeds through a
large number of small steps from an initial position to the final answer. In the
language of complexity theory, Sperner’s Lemma will not provide a polynomial
algorithm for the two variable integer program. But in much the same way as the
slow Euclidean algorithm relates to the ordinary Euclidean algorithm, these small
steps can be organized and telescoped so that the resulting algorithm is in fact
polynomial in the data.

The existence of 2 polynomial algorithm for the two variable problem was first
demonstrated for the particular example known as the knapsack problem by
Hirschberg and Wong[1] and for a more general class of problems by Kannan [2].
In contrast to the arguments of the present paper, neither of these approaches
seems to me to suggest a generalization when the number of variables is greater
than two. The use of primitive sets and neighborhood systems does, however,
point to a possible argument for the conjecture that there is a polynomial
algorithm for integer programming when the number of variables is fixed in
advance.

8. SOME REMARKS ON POLYGONS IN THE PLANE

_In this section we shall review some elementary material on triangles and
quadrilaterals in the plane.

Let us begin by considering a triangle in the plane (see Figure 19), whose three
vertices h°, k', h” are lattice points, and which contains no other lattice points in
its interior or on the boundary. The area of such a triangle is given by 1/2 of the
absolute value of either of the following determinants:

1 1 1
det|hY hi h3| or
hS hY K2

hi—-h hi-hS

detlyi_ng m2-ngl

FIGURrE 19
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We have the following classical theorem.

THEOREM 8.1: A necessary and sufficient condition that a triangle whose vertices
are lattice points contain no other lattice points is that its area equal 1/2.

Consider a triangle whose vertices are lattice points and such that

1 1 1
det|hS A hil==x1.
hS Kl h?

If a lattice point (h;, h2) is a convex combination of these three vertices, then

1 1 1 17
hil=1AY Kl hylla.l,
hzl hg hé h% ay

with «; = 0. But since the determinant is +1, the a/’s are integral. They sum to 1
and therefore & must be one of the three vertices.

In order to argue the converse let us consider a triangle whose vertices are
lattice points and whose area is larger than 1/2. We shall construct a fourth lattice
point contained in the triangle.

Our argument will involve linear transformations 4’ = Uh + k of the plane into
itself, where k is an integral vector and U a unimodular matrix, i.e., a matrix with
integral entries and determinant of £1. Such a transformation carries the lattice
points in the plane onto themselves and preserves area.

By applying a translation we may assume that #°= (0, 0). But then 4| and A
must be relatively prime, since if they had a common factor there would be a
lattice point on the line connecting #° and &'. It follows that there are integers p
and g such that

phi—qhy=1.

The linear transformation h’'= Uh where

p -
v-[ 5 il
-h; hi
is unimodular, so that it is sufficient to consider the triangle (Figure 20) whose
three vertices are Uh®, Uk', Uh* or

(o)o))

FIGURE 20



400 HERBERT E. SCARF

There is no loss in generality in assuming that y >0, since this can be brought
about by a unimodular reflection. We may also assume that 0 < x <y since this can
be achieved by adding a suitable integral multiple of the second coordinate to the
first coordinate of each of these vectors.

The area of this triangle is y/2; we therefore assume that y = 2. But the lattice
point (1, 1) is contained in such a triangle since

(x—-1)/y
D=5 & Jfo-on
1/y

This demonstrates Theorem 8.1.

In the course of this argument we have also verified that if the triangle
(h° k', h?) contains no other lattice point, then there is a unimodular trans-
formation (including a translation) which brings this triangle to the form

D60
0/\N0/\1

If the second coordinate is subtracted from the first—again a unimodular
transformation—we see that such a triangle can be brought into the canonical

(o0)5)

Lemma 3.4 tells us that a convex polyhedron in the plane whose vertices are
lattice points and which contains no other lattice points has either 3 or 4 vertices.
We have, in the above argument, characterized such polyhedra with 3 vertices.
Now let us consider one with 4 vertices h°, h’, h%, h°.

Since the triangle with vertices h°, k', h? contains no other lattice points, there
is a unimodular transformation which brings all four points to the form

(G

(0,1)
(0,0 (1,0)

FIGURE 21
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But the triangle formed by
@))G)
0/\0/\h,
contains no additional lattice points; therefore

1 h
det =h,=x1.
€ 0 hz hz

In a similar fashion hA; = 1, so that there are at most four possible locations for
the point A, as illustrated in Figure 21. Of course, we cannot have (h, h;) =
(—1, —1) since (0, 0) would not be a vertex of such a quadrilateral. The three
possible quadrilaterals appear in Figure 22.

—
I

FIGURE 22

The first of these is the unit square, and the second, consisting of
[0 10 1]
0 0 1 -1J
can be brought to
[0 10 1]
0 1 10
by adding the first row to the second. The third figure can be transformed by a

similar unimodular transformation into the unit square.

THEOREM 8.2: A convex polyhedron whose four vertices are lattice points, and
which contains no other lattice points is equivalent to the unit square under a
unimodular rransformation.

Aside from translations the general example of such a quadrilateral is a regular
parallelogram of unit area whose four vertices are given by

LHEG-C)

with x, y, p, q integers satisfying py — qx = +1. (See Figure 23.)
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(x,y)

FIGURE 23

9. THE COLLECTION OF PRIMITIVE SETS FOR AN ACTIVITY ANALYSIS MODEL
WITH TWO ACTIVITIES

Let the set X consist of all vectors x = Ah, with A an (m +1)x 2 matrix of
integers and h = (h,, h;) ranging over the lattice points in the plane. Ties in the
vectors x are assumed to be broken by the lexicographic rule of Section 1.
Assuming that X contains some efficient vectors the primitive sets associated with
this technology will contain either three or four non-slack vectors.

Each such primitive set will be described by a triangle in the plane or a
parallelogram of the sort discussed in the previous section. According to
Theorems 1.7 and 1.8, each lattice point in the plane will be contained in a finite
number of primitive sets. This implies that, aside from translations, a finite
number of triangles and parallelograms will appear as primitive sets. As we shall
see this collections of polygons will have a definite structure.

Let us begin by examining the triangles which represent primitive sets in
conjunction with a particular set of m —2 slack vectors. For notational con-
venience we shall assume that the non-slack vectors correspond to the coordinates
0, 1, 2. Let x° x', x> with x’ = Ah’ be the non-slack vectors in a particular
primitive set arranged so that the row minima of

0 1 2
Xp Xo Xo
0 1 2
X1 X1 Xy

0
X2 X2 X3

lie on the main diagonal. There is no loss in generality in assuming that R = (1, 1),
h'=(1,0), h* = (0, 1) since this can be achieved by a unimodular transformation.
Figure 24 displays this primitive set. The line through the vector A’ is given by

aithi+ aish, = a; hi +aihs.

In order to determine the replacement for 4° we press in the line through A°
until a second vector in the primitive set is reached; in this case A ! We then relax
the line through 4 ' and reach the replacement k= (0,0).

The replacement may be written as A=h"+h*—h° In this form the replace-
ment operation is invariant under unimodular transformations. This permits us to
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FIGURE 24

conclude that, in general, the replacement for a given vertex in a triangle is equal
to the sum of the other two vertices minus the vertex itself. When all possible
replacements are carried out we see that we never leave the collection of triangles
described in Figure 25. Since any two primitive sets with the same slack vectors
can be obtained, one from the other, by a sequence of replacement operations, we
have therefore discovered the full collection of primitive sets.

FiGURE 25

THEOREM 9.1: The collection of triangles which form primitive sets in conjunction
with a particular set of m — 2 slack vectors form a simplicial subdivision of the plane
which can be brought to Figure 25 by a unimodular transformation.

Now let us turn to the determination of the primitive sets which are associated
with a particular collection of m —3 slack vectors. Again we assume for con-
venience that the non-slack vectors correspond to the coordinates 0, 1, 2, 3. Some
of these primitive sets will be described in the plane, by parallelograms of unit
area, and others by triangles in conjunction with one of the first four slack vectors.



404 HERBERT E. SCARF

-h

FIGURE 26

Consider a parallelogram of unit area whose vertices h° k', h*, h® are lattice
points, To be specific we assume that k> = (0, 0), that k' and #° are adjacent to k°,
and that h° is opposite to k>. The new parallelogram obtained by replacing any
one of these vertices by its reflection through an adjacent vertex will also be of unit
area. Figure 26 represents a pair of parallelograms the second of which is obtained
from the first by replacing h° by its reflection through k°. A different, and
noncongruent, parallelogram would be obtained if we replace k' by its reflection
through h°.

We shall be concerned with a sequence of parallelograms P,, ..., P, with the
properties given in the following definition.

DEFINITION 9.2: A finite sequence of parallelograms, each of which has integral
vertices and unit area will be called a chain of parallelograms if (i) the originis a
vertex of each P;, and (ii) P, is obtained from P; by replacing one of the vertices
adjacent to the origin by its reflection through the vertex oppaosite to the origin.

Without loss of generality the first parallelogram in a chain can be taken to be
the unit square since an arbitrary such parallelogram can be brought into this form
by 2 unimodular transformation. At each stage in the sequence of parallelograms
a choice is made as to which of the two vertices adjacent to the origin is to be
replaced in order to determine the next parallelogram in the chain. One of these
two vertices will be above the diagonal through the origin; we shall use the letter a
to represent this choice, and the letter b to represent the choice of the vertex below
the diagonal. Given the first paralielogram the chain is determined by a sequence
of a’s and b’s. Figure 27 illustrates the particular chain of parallelograms asso-
ciated with the sequence aab.

Figure 27 also includes two pairs of triangles, associated with the first and last
parallelograms in the chain. The first pair is obtained by drawing the diagonal
through the two vertices adjacent to the origin in the unit square. The second pair
is obtained by drawing the diagonal through the origin in the final parallelogram.

The concept of a chain of parallelograms permits us to characterize the
primitive sets which are associated with a specific set of m — 3 slack vectors.

THEOREM 9.3: The quadrilateral primitive sets associated with a specific set of
m—3 slack vectors are represented, up to translations and unimodular trans-
formations, by a chain of parallelograms. The primitive sets which are triangles, in
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NN

0,0
i

(0,0

(0,0) b

—

FiGURE 27—The chain aab.
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conjunction with an additional slack vector, are given by the pairs of triangles at
either end of the chain.

In order to demonstrate Theorem 9.3 we assume for definiteness that 0, 1, 2, 3
are the coordinates corresponding to the non-slack vectors. Let x°, x, x?, x* with
x'= Ah'be a primitive set arranged so that the row minima of [x/] lie on the main
diagonal. There is no loss in generality in assuming that h' are the vertices of the
unit square drawn as in Figure 28. The line through k' is given by a; 1+ a;2hy =
aihi +a;hs.

FIGURE 28

LEMMA 9.4: The replacements for h' and h* are either the same slack vector, or
they result in a pair of congruent parallelograms which are a successor to the unit
square in a chain of parallelograms.

In order to determine the replacement for h' we press in the line through A’
until we reach a second vector in the primitive set—in Figure 28 thisis °. We then
relax the line through h°. If the point 2h°—h' does not satisfy the inequality
through h* then this line may be relaxed indefinitely and the replacement for k' is
the slack vector £¢°. In this case it will also be true that the replacement for h?isthe
same slack vector £°. If, on the other hand, the point 2h°—h' does satisfy the
inequality through h° then it is the replacement for A’ and the new parallelogram
is the successor to the unit square obtained by using the letter 5. Moreover, the
replacement for h® can be seen to be 2k —h?, resulting in a congruent paral-
lelogram. And finally, if 4> is reached before h° in pressing in the line through &',
the new parallelogram is the successor obtained by using the letter a.

In the same fashion the replacements for #° and 4> will either lead to triangular
primitive sets with the same additional slack vector or to a parallelogram which
preceeds the unit square in a chain of parallelograms. Repeated applications of
the replacement operation will result in a chain of parallelograms with a pair of
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triangular primitive sets at either end. In order to complete the proof of Theorem
9.3 we must simply argue that there are no primitive sets other than those
produced by this construction. But this is clear since the replacement operations
(other than eliminating a slack vector £ with i > 3) keep us within this class of
primitive sets,

One final observation is appropriate before completing this section. The chain
of parallelograms has a structure which will be very useful in accelerating the small
steps of Sperner’s Lemma to obtain a polynomial algorithm for integer programs
with two variables. The chain will begin, say, with the unit square and be described
by a sequence of letters g or b. The parallelograms have a particularly simple form
if the same letter persists for a number of steps. Figure 29, for example, describes
the initial segment of a chain given by the sequence aaa. For such a segment the
sequence of new vertices are consecutive lattice points on a line.

B
FIGURE 29

DEFINITION9.5: By a link in the chain of parallelograms we mean a maximal set
of consecutive parallelograms in the chain, each of which is obtained from its
predecessor by using the same letter a or 4.

The chain can therefore be decomposed into links, and as we shall see each such
link can be transversed very rapidly in the application of Sperner’s Lemma.

10. THE APPLICATION OF SPERNER'S LEMMA

In this section we shall discuss the application of Sperner’s Lemma to the
solution of the general integer program in two variables

max a01h1 +agha,

ayhy+aph,=by,

amih1+amha= b, ,

with h = (h1, h,) integral. One possible approach is to define X to consist of all
vectors x = Ah and to apply that form of Sperner’s Lemma discussed in Section 5,
If the specific structure of the collection of primitive sets could be determined
easily, we would be able to carry out the required replacements leading to a
completely labeled simplex.
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There is no difficulty in proceeding in this fashion and in showing that the
sequence of steps may be accelerated so as to produce an algorithm which is
polynomial in the data of the problem. In the interest of simplicity, however, I
shall take a slightly different approach. Theorem 3.3 states that there is a
subproblem obtained by selecting three of the m inequalities which has the same
solution as the original problem, assumingthat the original problem is feasible and
has a finite maximum. Since there are (7) such subproblems at most, an argument
that the problem with two variables and three inequalities has a polynomial
algorithm will yield a corresponding conclusion for the general problem as well.

For this reason we shall restrict our attention to matrices

ao1 4oz
a, 4
A= ,
az; Aazz
a3 4aa:

whose corresponding set X contains some efficient vectors. The subsequent
section will provide an algorithm to determine the chain of parallelograms
associated with this technology. At present we shall assume that the chain is
known to us in the form given by Theorem 9.3.

The typical primitive set in the chain is given by four vectors x°, x*, x*, x> with
x'= Ah' and organized so that the row minima of [x}] lie on the main diagonal.
This particular convention gives specific names to the four vertices of the
parallelogram, names which change as the sequence of replacement operations is
carried out. In Figure 28 the vector ho, associated with row 0 of the matrix, is
opposite to k>, associated with row 3. In the same way h' and h” are opposite to
each other. The careful reader of the proof of Lemma 9.4 will realize that this
same relationship persists for all parallelograms in the chain. This observation
gives meaning to the following notational convention.

ConNvENTION 10.1: We assume that for all parallelograms in the chain the
vertex associated with row 0 of A is opposite to that associated with row 3, and
similarly for rows 1 and 2.

In applying Sperner’s Lemma the vectors in X are given an integer label /
corresponding to a violated inequality, and the label O if all of the inequalities are
satisfied. When the notational Convention 10.1 holds we adopt the more specific
Rule 5.3 that x is labeled with the subscript of the last violated inequality. This
innocuous assumption is important in demonstrating the major result of the
present section.

The algorithm for finding a completely labeled primitive set moves through a
sequence of adjacent primitive sets each one of which bears the labels 1, 2, 3 with
one of the labels appearing on two vertices. The arguments of Section 6 based on
orientation theory permit us to say which of the vertices with doubled labels is to
be removed in the path towards the solution.
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The primitive sets which are encountered will be triangles with associated slack
vectors or parallelograms. The transition from a triangle to a parallelogram must
be at the first or last parallelogram of the chain. Itis entirely conceivable, however,
that we enter and depart from the chain of parallelograms any number of times.
The following theorem, which is primarily responsible for the simplicity of the
algorithm, tells us that this possibility will, in fact, never occur. It says that if we
ever enter the chain of parallelograms, we proceed through it-—never visiting two
congruent parallelograms—until a completely labeled primitive set is found, or we
exit at the other end of the chain and never return to a parallelogram.

THEOREM 10.2: The algorithm never encounters a parallelogram congruent to
one previously visited.

We shall demonstrate this theorem by showing that the algorithm always takes
us from an almost completely labeled parallelogram to its successor in the chain of
parallelograms under our notational convention and the particular labeling rule.

Let the unit square represent a typical parallelogram in the chain, as in Figure
30. We shall argue that the labeling rule requires us to remove either h' or h’.

FIGURE 30

The labels associated with the four vertices depend on the particular placement
of the inequalities a;; h; + a;2h, = b;. The reader may easily verify that Figure 31
captures all possible dispositions of these labels.

Let us consider each case in turn.

L. In this case we eliminate either A*> or h°. According to 6.5, h” will be
eliminated because the permutation (/(h%), I(h?), 0, I(h*)) or (2, 1,0, 3) is odd.

I1. In this case ' will be eliminated since (/(h°), 0, I(h*), I(h*)=(1,0,2,3) is
odd.

I11. Here h* will be eliminated since (/(h°), I(h"), 0, 1I(h*))=(2,1, 0, 3).

IV. (I(h°),0,lI(h%), Ih*))=(1,0, 2, 3), again an odd permutation.

This demonstrates Theorem 10.2. The removal of h' or h* will lead to
congruent parallelograms, but the particular placement of these parallelograms,
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FIGURE 31

and the subsequent sequence of labels, will depend on the particular choice of ht
or h* to be removed. This would seem to require a calculation for each paral-
lelogram in the chain, and the algorithm might then require at least as many steps
as there are distinct parallelograms. We shall see, in a subsequent section, that the
number of parallelograms is not polynomial in the data of the problem. The
number of links will, however, be polynomial in the data, and this raises the
question of whether the passage of the algorithm through all of the parallelograms
in a given link can be accomplished rapidly.

In order to see how this can be done, let us assume that the unit square of Figure
30 is the initial parallelogram in the link illustrated in Figure 32. Aside from
translations the parallelograms in the link are given by

[01;'—1,']
00 1 1

forj=1,2,...,t Let us consider Case Iin detail in order to see the particular
sequence of parallelograms which appear as we progress through the link.

Case I; In this case h? is initially removed and replaced by (2, 1) which cannot
bear the label 3. If (2, 1) =2 we remove (1, 1) and continue along the line (j, 1). If
I(j1)=2forj=1,2,...,1—1, then we immediately move to the final primitive
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(0,1) (1,1) (1,1 (2,1)
?- —————————— 1 ,” __________ .
bmmemeeee - @ een -o’/
(0,0) (1,0) (0,0) (1,0
(t-1,1) (t,1)
,:'.'_‘:: ..... ol -
(0,0 1,0
FiGURE 32

set in the link, located at
[O 1 -1 r]
00 1 1
On the other hand there may be some point (j*, 1) where the label changes from

2 to either O or 1. The first such point may, of course, be found by a simple
computation. If [(j*, 1) = 0, then the primitive set

[0 1 j*-1 j*]
00 1 1 )

bears all four labels and (j*, 1) is the global solution to the integer programming
problem.

The label for (j*, 1) may be 1, as in Figure 33. At this point the vector (1, 0) is
removed and replaced by (-1, 0) which bears the label 3, as do all points on the
line to the left of the origin. But, without any additional computation, this locates
the final primitive set in the link as

we
|
:
i
P S

FiGURE 33
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The remaining cases may be examined in a similar fashion. In two of them no
computation at all is required to determine the precise location of the final
primitive set in the link. In the remaining case, a single computation of the first
lattice point on a line for which the label changes is adequate. We have the
following theorem.

THEGREM 10.3: The passage of the algorithm through the entire chain of
parallelograms can be accomplished by a number of computations equal to the
number of links in the chain.

Two items are missing from a complete description of the algorithm. First of all
we must determine the precise location of the almost completely labeled paral-
lelogram at the beginning of the chain. Theorem 10.3 would then tell us that the
passage through the chain could be accomplished rapidly. But the completely
labeled primitive set may not be a parallelogram; it may, in fact, be a triangle
associated with one of the two simplicial subdivisions at either end of the chain, in
conjunction with a particular slack vector. A second missing item 1s, therefore, a
description of the algorithm which solves the two inequality problems obtained by
discarding the inequality corresponding to that particular slack vector. We shall
concentrate on the latter problem first.

Let the initial parallelogram in the chain be the unit square as in Figure 30, and
assume for definiteness that 4’ is reached first when the line through 4° is pressed
in. This implies that the triangles of Figure 34 are primitive sets in conjunction
with the first slack vector &'

FIGURE 34

We solve the problem
max ag1h; +aozh§ )
axh,+anh,=b,,
as h;+ash=b;,

and (h,, hy) integral, by first solving the equations D ah;=b;, i=2,3. The
solution (A1, A>) is typically fractional and we let h3 be the greatest integer less
than or equal to h,. We have the following conclusion.
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THEOREM 10.4: Let the structure of primitive sets be as in Figure 34. The optimal
solution to the above integer program will be on one of the two lines hy = h3 or
hy= h;‘ +1.

In order to demonstrate 10.4, we let (h¥, h3) be the rightmost lattice point on
the line h, = h% which violates inequality number 3. The label associated with
(h*, h¥) and any point on the line to its left is 3. The label associated with
(h¥ +1,h%)is 0, since if the second inequality were violated at this point, the
intersection of the two lines would have its second coordinate less than h3. We
have therefore found a completely labeled primitive set for the problem with two
inequalities, if /(hT, h3 +1)=2.

If, on the other hand, I(h}, h¥ +1)=0,wereplace (hT +1, h3 )by (hT -1, h% +
1) and continue moving to the left until we first find a point on the line h, = h¥ +1
whose label is different from 0. By construction this point will violate inequality
number 2. If, as in Figure 35, the point satisfies the third inequality, we have found

FIGURE 35

a completely labeled primitive set. On the other hand, as in Figure 36 the point
may violate the third inequality as well, and one additional replacement is
required to find the completely labeled primitive set. In either case a single
computation on each of the two lines is sufficient to solve the problem.

The solution will, of course, satisfy inequalities 2 and 3. If it happens to satisfy
inequality number 1 as well, it is the optimal solution to the problem with three

FIGURE 36
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inequalities. If, to the contrary, the solution violates inequality number 1, it will
receive the label 1 in the context of the problem involving all four rows. But then
this triangle, in conjunction with the first slack vector ¢', will be an almost
completely labeled primitive set. When ¢’ is eliminated we enter the chain of
parallelograms with an almost completely labeled parallelogram. This concludes
our description of the algorithm, which can be carried out in a number of
computations bounded by a linear function of the number of links in the chain of
parallelograms.

11. THE DETERMINATION OF PRIMITIVE SETS

Let A be an integral matrix with two columns and four rows, possibly selected
from an activity analysis matrix with a larger number of rows. In order for
Theorem 3.3 to be valid it is necessary that the tie-breaking rule used for the
submatrix be consistent with the rule used in the larger matrix. In the interest of
simplicity, however, we shall restrict our attention to the rule which breaks ties in
the ith coordinates of two vectors (xo, X1, X2, Xx3)' and (%o, £, £, £3) by the
lexicographic ordering starting with the Oth coordinate. Other tie-breaking rules
may be treated in a similar fashion.

We assume that the production set X, consisting of the vectors x = Ah, with
ranging over the lattice points in the plane, contains some efficient vectors, Our
purpose will be to describe an algorithm to determine the chain of parallelograms
and two pairs of triangles associated with this technology.

Making use of unimodular transformations the collection of quadrilateral
primitive sets can be put in the form given by Theorem 9.3: a chain of paral-
lelograms whose first member is the unit square.

Let us begin by observing that there is a very simple test to determine whether
the four vertices of the unit square, oriented as in Figure 30, form a primitive set
for the matrix A. Itis clear from an examination of this figure that a necessary and
sufficient condition is that A have the sign pattern;

- 4+
e |
+ +

(Zero entries are, of course, resolved by the lexicographic tie-breaking rule.)
The four vectors in X which describe this primitive set are given by the columns
of

R° ' R
Qo1+4do2 Qo1 doz
anp+a; an dn

a +ax; axn axn

o o oo o

asz1+dsx; 4z as;
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The sign pattern of the matrix A tells us that the row minima lie on the main
diagonal. Let us assume that the next parallelogram in the chain is obtained by the
operation we have called a: the replacement of the vector h° above the main
diagonal by its reflection through 4°. In the new primitive set #° will have the
smallest second coordinate, and the replacement 24°~ h? will have the smallest
zeroth coordinate.

The columns of the following matrix represent the vectors in the new primitive
set

2api+as; Qo1 Qortao:
2a11+a; an antan

0
0
2ax:+a; a;n antan 0
2as+asx; az an+tasn 0

We see immediately that a necessary and sufficient condition for the new primitive
set to be obtained by using operation a is that

o1 Aot ag:
a;; antai
a; axntaz
as, as+as;
have the same sign pattern as the original matrix. An identical argument tells us

that the successor to the unit square is obtained by operation b if and only if the
matrix

acitao: 4o
antap a:
a+taz ax
asi+asz asz

has the same sign pattern as the original matrix.

The process can obviously be continued to determine all of the parallelograms
in the chain. Each such parallelogram has associated with it a matrix with sign
pattern

- 4+
T
+ +

The matrix associated with the successor in the chain is obtained by replacing one
of the two columns by the sum of the two columns. Operation a is used if the
second column is replaced by the sum and operation b if the first column is
replaced.

If the sign pattern of the row sums issuch that neither replacement preserves the
sign pattern of the matrix, the chain of parallelograms terminates with a pair of
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triangles, each of which forms a primitive set in conjunction with one of the slack
vectors. We should also remark that a link in the chain is obtained by successively
replacing the same column by the sum. The following list of matrices and
associated parallelograms illustrates this sequence of steps.

(-4 -17
_2 5 T..--_..;.
-2 Lod
1]
4 s
-2 3 A
1 -1 oy
L1 2
4 o
-2 1 e —-ooszie
1 0 ezl
L1 3]
-13 -9 o
-1 1 r___,;'-‘;:“ .
1 0 i
L s 3 Y e e e
[~22 -9 L
0 1 e °
1 0 e < °
LT LT

At ejther end of the chain of parallelograms is a pair of triangles which represent
primitive sets in conjunction with a specific slack vector. The chain is entered by
removing that slack vector and replacing it by a non-slack vector in X. It is
possible, however, that the particular matrix A has no quadrilateral primitive sets
associated with it at all. This would be revealed by a triangular primitive set with
the property that the replacement for the associated slack vector is, itself, another
slack vector.

Let us argue that there are no quadrilateral primitive sets if a unimodular
transformation of A can be found which has the sign pattern

-+
+_
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with a1, +a12> 0 and a,; + ax; > 0. Of course, the particular rows in which the +
signs appear are arbitrary. _
Our argument proceeds by showing that the three columns of

[1 1 0]
1 0 O
K W' R

form a primitive set in conjunction with the third slack vector £°. It would then
follow from the replacement operation that the triangles of Figure 37 are
primitive sets in conjunction with £°. But the above sign pattern makes no

/|

/|
|

-

FiGURE 37

distinction between rows O and 3. This implies that the same triangles are
primitive sets in conjunction with £°. Since all replacements stay within this class
we have determined the full collection of primitive sets.

The three vectors in X associated with h°, k', h’ are given by the columns of

Qo1t+aez am 0
an+a; an 0}
an+ax» an 0
with row minima determined by the sign pattern of A. In asking whether thereisa

vector x = Ak with (xq, x,, x2)’ greater than these row minima we can restrict our
attention to vectors h so that the quadrilateral

[1 10 hl]

1 0 0 hy

contains no lattice points other than these four vectors themselves. It follows that
h must be one of the following three vectors

(DO

whose associated vectors in X are
—Qoz Qo2 2ap +ao
~a1; @iz 2an+ai]l.
~ax; Az 2ax+daz
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But —a,2<ai;, a22<0, and 2ag; + ao2 <@g + ao2. This demonstrates that the
three vectors h°, k', h* do indeed form a primitive set in conjunction with £°.

The remainder of this section will exhibit an algorithm which yields one of the
two forms of the following theorem,

THEOREM 11.1: Let A be a matrix with four rows and two columns whose
associated set X contains some efficient vectors. Then there is a unimodular
transformation which brings A to one of the two forms

-+
+ —
+ +
or
-+
+ _ 3

with the two middle row sums positive. In the first case there are some quadrilateral
primitive sets and in the second case there are none. The signs are to be interpreted
daccording to the lexicographic rule and the sign patterns can appear in rows other
than those indicated above.

The algorithm has two parts. In the first part we use the Euclidean algorithm to
find a unimodular transformation which brings A into one of the following two
sign patterns:

1 I

or one of the variants where the sign patterns appear in different rows. In the
second part we achieve one or another of the specific forms of Theorem 11.1.

Part 1. The Euclidean algorithm for finding the greatest common divisor of ao,
and ao; can be carried out by a sequence of elementary column operations. Each
such operation, and their composition, is equivalent to multiplying A on the right
by a unimodular matrix, and results in a new matrix whose zeroth row has the sign
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pattern, say, (—, 0). Let us examine the second column

0
ai
asz

‘a32/

in this matrix,

The nonzero entries in this column cannot all have the same sign if the
technology is to have efficient vectors. Assume, first of all, that all three entries are
different from 0. Then, by multiplying by —1 if necessary, column two has one of
the sign patterns

0 o\ /0
+ +] V=T

+ - +

i

If we then subtract a large multiple of this column from column one, the pattern I
is reached.

If, on the other hand, there is another zero entry in column two, we can obtain
one of the following patterns:

0 0 0
0 — —
—- 3 0 3 + i
+ + 0

and by subtracting a large multiple of this column from column one, one of the two
patterns I or 11 is reached.

Part 2. Let us assume, first of all, that we begin with a matrix of sign pattern I1.
We proceed through a series of steps, each of which consists of adding a positive
integral multiple of one column to the other, so as to preserve the sign pattern. If
such an addition is possible, let us add the largest such possible multiple. If no such
addition is possible, then the sign pattern of the sum of the columns must be

different from either column, and must therefore be
/

+
4
Since the process terminates after a finite number of iterations, we reach a matrix
of the type described in Theorem 11.1, which reveals that there are no quadrila-
teral primitive sets.

If, on the other hand, the initial matrix is of sign pattern I, we also add the largest
positive multiple of one column to the other so as to preserve this sign pattern.
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This can be carried out unless the sign pattern of the sum of the two columns
differs from either of them. There are 8 possible sign patterns for the sum, one of
which—all signs negative—is ruled out if there are to be efficient vectors in X. Two
of the sign patterns duplicate the columns. The remaining 5 patterns are:

+
+ -
-+
1 2

- 4
4

w o+ o+ o+
|

In the first two cases a matrix with pattern II is reached if the first column is
replaced by the sum; similarly for case 3 if the first column is replaced by the
negative of the sum. In cases 4 and 5 if the second column is replaced by the sum
we reach a matrix of the sort described in Theorem 11.1, revealing the existence of
quadrilateral primitive sets. The algorithm terminates in a finite number of steps
with the desired conclusion.

12. THE COMPLEXITY OF THE ALGORITHM

In this section we return to the ideas of complexity theory and demonstrate that
our accelerated version of Sperner’s Lemma is a polynomial algorithm in the size
of the problem. Since the algorithm requires a fixed amount of computation for
each link in the chain of parallelograms, we shall show that the number of links is
bounded by a polynomial function—in fact a linear function—of the problem size,
if the matrix has the sign pattern which permits us to recognize a parallelogram in
the chain.

In general the matrix A is not given to us in a form which permits an immediate
recognition of the primitive sets, and the procedures of Section 11 are required.
But identical arguments can be used to show that these procedures terminate in a
number of steps which is polynomial in the size of the original problem. Moreover
the resulting matrix has a size which is also polynomial in the data. In the interest
of simplicity these later arguments will be omitted in the present paper.

Let A be an integral matrix with sign pattern

- 4+
+__
+ +

so that the vertices of the unit square form a primitive set. The number of bits
required to represent the integer a;; is [log; (Ja;|+1)], where [x] is the smallest
integer =x. The matrix A therefore has a size given by

S =X Llog; (jaz{+1)).
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THEOREM 12.1: The number of links in the chain of parallelograms associated
with A is no larger than S/2.

In order to find the successors to the unit square in the chain of parallelograms
we add one of the columns of A to the other in such a way as to preserve the sign
pattern. When this can no longer be done the chain of primitive sets terminates.

A link in the chain is obtained by repeated addition of the same column to the
other. If it is the first column which is being added to the second this results in a
sequence

a1 doz Qo1 Goitdo: do1 ido1taoz
a;; ap a1 antai a; ta;ztaz:
- ->...> .
az; Qs az axntax az tax+az
as; asz a3y Q33 tdas; as; las tas;

with the last matrix representing the final primitive set in the link. For the chain to
proceed to a subsequent link it must be that the sign pattern of the sum of the two
columns in the final matrix is the same as the sign pattern of the first column, or
ta11+a12>02 (1+ 1)011+012
and
tan+an<s0<(t+ Das +axn.
Let us examine the change in the expression
Togz (|a11|+ 1))+ [log. (la1|+ 1))

evaluated at the first primitive set and the last primitive set in the link. The change
is given by

4 =[log; (la1z|+ 1)]-[log: (ra1: + aiz| + 1)].
But
a;z=(tan+an)—tan
=(tay +a2)—an
=2(tay; +ai2) >0,
and using the obvious fact that
[logz (2al+ 1)]=[log: (|a| + D]+1,
for any nonzero integer a, we see that
a4=1.
In the same fashion

[log, (|az1|+ 11+ [log: (|az2|+1)]
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decreases by at least one unit as we move through each link in the chain, other than
the last link. We see that the number of links which follow the unit square in the
chain is not larger than

2 2
2 T T log: (Jagl+ 1.
i=1j=1
If the unit square is not the first primitive set in the chain, the matrices
representing its predecessors are obtained by repeated subtraction rather than
addition. Using the same arguments the number of links which precede the unit
square is not larger than
3 Y Yllog; (’aii"*' D]
i=0,3 j
This demonstrates Theorem 12.1, which is the basic idea of the argument that the
accelerated algorithm is polynomial.
The number of parallelograms in the chain of primitive sets is definitely not
polynomial in the data. To see this consider the matrix

-1 -1
-1 k
1 -k
1 1

whose size is § =6+ 2[log; (k +1)]. If the first column is added to the second i
times, we obtain

-1 -1-j
-1 k~j
1 —k+j
1 1+

with sign pattern sufficient to recognize a primitive set for j=0,1,...,k—1. It
follows that there are at least k distinct primitive sets, a number which is
exponeritial in S.

For this series of examples the number of lattice points in the minimal
neighborhood of the origin for which a local maximum is global is also exponential
in the data. But in spite of the fact that a nonpolynomial number of neighbors of a
given lattice point must be examined to verify optimality, there is sufficient
structure in the problem so that this can be accomplished in polynomial time. By
an analytical investigation the apparently unmanageable complexity of these
integer programs receives a structure and coherence leading to a rapid method of
solution.

It is my belief that these results are not special to the two variable problem. It is
entirely possible that there is a polynomial algorithm for integer programming
whenever the number of variables is fixed in advance, but that the degree of the
polynomial is exponential in the number of variables. The resolution of this and
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related questions seems to me to be of the greatest significance to the problem of
economic decision making in the presence of indivisibilities, and ultimately to the
construction of a realistic theory of the firm.

In a subsequent paper we shall discuss this approach for the 3-variable integer
program.

Yale University

Manuscript received June, 1979 ; revision received February, 1980.
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