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Chapter 21

THE COMPUTATION OF EQUILIBRIUM PRICES:
AN EXPOSITION*

HERBERT E. SCARF

Yale University

1. The general equilibrium model

A demonstration of the existence of equilibrium prices for a general Walrasian
model of competitive behavior necessarily makes use of some variant of Brouwer’s
fixed point theorem as an essential step in the argument. The strategy for
calculating equilibrium prices is to render that step constructive by a numerical
approximation of the fixed point implied by Brouwer’s theorem, or one of its
alternatives. We begin this chapter with a brief review of the competitive model
and the role of fixed point theorems. [See Debreu (1959).]

The typical consumer will be assumed to have a set of preferences for
commodity bundles x=(x,,..., x,) in the non-negative orthant of n-dimensional
space. These preferences can be described either by an abstract preference
relationship, =, satisfying a series of plausible axioms, or by a specific utility
indicator u(x).

It is customary to assume that, prior to production and trade, the typical
consumer will own a non-negative vector of commodities w, his endowment,
whose evaluation by means of market prices forms the basis for that consumer’s
income. More specifically, if the non-negative vector of prices m=(m,,...,m,) 18
expected to prevail then the consumer can obtain an income

n
I= Em-wizw-w
|
by the sale of his endowment bundle w. This income is then used by the consumer
for the purchase of an alternative bundle of commodities in such a way as to
provide him with the highest possible utility level.
Given a vector of prices for all of the commodities in the economy the
consumer is faced with a maximization problem: to find a vector of commodities
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x which maximizes his utility function (or is maximal according to his preference
relationship) subject to the budget constraint

T XET-W.

The problem faced by the consumer is clearly unchanged if the price vector « is
replaced by Aw, with A an arbitrary positive number. This provides us with a
degree of freedom in normalizing prices in any fashion which happens to be
convenient. For example, prices can be normalized so as to lie on the unit sphere
2"m? =1 (meaningless from an economic point of view, but mathematically quite
useful) or on the unit simplex 2m =1. For definiteness we shall adopt the latter
normalization throughout most of this chapter.

Under quite acceptable assumptions, such as continuity and strict convexity of
preferences, the solution to the consumer’s maximization problem will be a
single-valued demand function x( =) which 1s continuous on the unit simplex and
which satisfies the identity

n n
EWixi(W)EEWiWu
1 1

stating that the consumer’s entire income will be spent on the purchase of
commodities. (This is, of course, not meant to rule out the possibility that the
consumer may choose to save some of his current income for future purchases —
an aspect of consumer behavior which can be captured by declaring that certain
commodities become available in the future.)

For the purpose of computing equilibrium prices the demand functions x()
are frequently more natural to work with than the underlying utility function or
preference relationship. A general equilibrium model must be fully specified in
order to obtain a numerical solution. On the consumer side this is typically done
by providing a numerical or algebraic description of the functions x(7). A few
examples of some of the more familiar utility functions and their associated
demand functions may be appropriate at this point.

The Cobb-Douglas utility function
(1) w(x)y=xP...x;n, witha,=0, Za,:l.

A consumer with this utility function will spend the same fraction a; of his
income on the /th good, independently of relative prices. Since his income is given
by 7w, this implies that his demand for the ith good is given by

a;mw

x;(m)= .

(There is an insignificant technical problem that these demand functions and



Ch. 21: Computation of Equilibrium Prices 1009

others which are subsequently presented exhibit a discontinuity on the boundary
of the unit simplex.)

The fixed-proportions utility function
(2) w(x)=min[x,/a,,...,x,/a,], witha,>0.

A consumer with preferences exhibiting such strict complementarity wishes to
purchase a commodity bundle proportional to the vector (ay,...,a,). His de-
mands are therefore given by

x(m)=a;m-w/ma.
The C.E.S. utility function

n b/(b=1)
(3) w(xy,....x,)= (Ea}/bx,(b_])/” ) , with a,>0 and b<1.

i /
This utility function includes the two previous examples for special values of the
parameter b. The demand functions x,(#) are given by

a;mw

(™= 55
! J J
J

A model of equilibrium will generally involve a number of consuming units —
individuals, aggregations of individuals, or countries involved in foreign trade —
each of whom has a stock of assets w, prior to production and trade, and each of
whose demands are functions of the prevailing prices «. If the jth consumer’s
assets are represented by w/ and his demand functions by x/(#), then the market
demand functions are defined by

x(m)= zx«/(w).

The market demand functions specify the total consumer demand, for the goods
and services in the economy, as a function of all prices.

Market demand functions cannot be arbitrarily specified if they are derived
from individual demand functions by the process of aggregation described above.
For example, if the individual demand functions are continuous the market
demand functions will be continuous as well. Moreover, the market demand
functions will satisfy the identity

mx(m)=mw
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(if w=2w’) known as Walras’ Law — resulting from the assumption that the
income available for consumer purchases is accounted for fully by the sale of
privately owned assets.

The market excess demand functions, representing the difference between market
demands and the supply of commodities prior to production, are defined by

E(m)=x(m)—w.

Our analysis may be summarized as follows:
1.1. [Properties]
The market excess demand functions will satisfy the following conditions:

1. They are defined and continuous everywhere in the positive orthant other
than the origin.

2. They are homogeneous of degree zero, i.e. §(Am)=§(7), for any positive A.

3. They must satisfy the Walras Law:

7-§(7)=0.

In this form, the Walras Law has an interesting geometrical interpretation when
prices are normalized to lie on the unit sphere (Figure 1.1). If the excess demand
&(w) is drawn as a vector originating at =, the geometric interpretation of the
Walras Law is that this vector is tangent to the unit sphere at 7. The excess
‘demands determine, therefore, a continuous vector field on that part of the unit
sphere lying in the non-negative orthant.

Figure 1.1.
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A description of the consumer side of the economy, for the purposes of the
general equilibrium model, is adequately provided by the market excess demand
functions. To complete the model a specification of the productive techniques
available to the economy must also be given. We shall return to this point after
examining the pure trade model in which production is absent and consumers
simply exchange the commodities which they initially own. For such a model the
total supply is given by the vector w and the market demand by the functions
x(7). An equilibrium price vector #* is one which equilibrates supply and
demand for all commodities. We have the following formal definition which
allows for the possibility that some of the commodities have a zero price and are
in excess supply.

1.2. [Definition]

A non-zero price vector w* is an equilibrium price vector for the pure trade model
if £,(7*)<<0, for all i, and is equal to zero when #* >0.

If all of the coordinates of #* are positive, then #* is a zero of the vector field £
on the unit sphere. The existence of a zero for an arbitrary vector field on the
sphere is a subtle topological question. It is therefore a matter of some signifi-
cance, in assessing the difficulty of demonstrating the existence of equilibrium
prices (and in their calculation), to ask how general a vector field can be obtained
by the process of aggregating individual demand functions. This question was
first studied by Sonnenschein (1973), and was given a definitive answer in
subsequent papers by Mantel (1974), Debreu (1974), and McFadden, Mantel,
Mas-Colell and Richter (1975). There are some technical difficulties on the
boundary of the positive orthant, but given an arbitrary continuous vector field
on the sphere and an arbitrary open subset of the positive orthant, there will be a
collection of n consumers with preferences and initial holdings whose individual
demand functions sum to the preassigned vector field on the open subset. In other
words, market excess demand functions are essentially arbitrary aside from the
conditions described in 1.1,

Walras suggested that an equilibrium price vector could be found by a
“tdtonnement” process: the continued revision of non-equilibrium prices on the
basis of the discrepancy between supply and demand. If = is a price vector for
which §,(7)#0, then a formalization of our intuitive understanding of the price
mechanism would suggest that #, be increased if §(7w)>0 and decreased if
£,(m)<<0. The continuous analogue of this process is a system of differential
equations of the following sort:

dr, /dr=£,(m),

with some modification if the price vector happens to lie on the boundary of the
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positive orthant. The solution is a curve which simply follows the vector field on
the sphere. Given the arbitrariness of this vector field, however, there is no
difficulty in designing a model of exchange in which the Walrasian adjustment
mechanism leads to the most capricious behavior with no tendency whatsoever
towards equilibrium. For example, we can prescribe an arbitrary differentiable
curve on the positive part of the sphere and construct a model of exchange such
that the adjustment process follows that curve. The possibilities are quite stagger-
ing in large dimensions and surely imply that the price adjustment mechanism
can be used neither to provide a proof of the existence of competitive equilibria
nor an effective computational procedure for the general case.

Production can be introduced in the general equilibrium model in a variety of
ways. Perhaps the simplest is to describe the productive techniques available to
the economy by an activity analysis model based on a matrix of the following type

_] 0 o 0 - alj cee alk
= 0 - 0 a,, Ay
0 0 -1 a,; A,

Each column of 4 represents a known technical mode of production, which can
be employed at an arbitrary non-negative level. Inputs into production are
represented by negative entries in a given column and outputs by positive entries.
(The first n activities are disposal activities.) The result of using techniques 1
through k at levels x,,..., x, is a net production plan, Ax, where x=(x,,...,x,).
The negative entries in Ax represent demands for factors of production which
must be contributed by consumers from their stock of initial assets w. The
positive entries represent increases in the stock of other assets, which can then be
distributed among the consumers. An equilibrium price vector «* is one which
equilibrates the net consumer demand ¢{(#*) with the net supply Ax. It also
induces the correct selection of productive techniques on the grounds of de-
centralized profit maximization. We have the following formal definition of
equilibrium:

1.3. [ Definition]

A non-zero price vector #* and a non-negative vector of activity levels x*
represent equilibrium prices and activity levels if

1. &(m*)=Ax*
2. w*A<0,
3. #*Ax*=0.
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The second of these conditions says that all potential activities make a
non-positive profit when evaluated by means of equilibrium prices #*, and the
third condition that those activities which are actually used at equilibrium make a
profit of zero. The demonstration that equilibrium prices and activity levels
exist — under suitable assumptions on the matrix 4 — is more subtle than that of
the case of pure trade, and typically makes use of Kakutani’s fixed point theorem
rather than Brouwer’s theorem. The arguments apply equally well to a description
of production given by a closed convex cone [see, for example, Debreu (1959)]
rather than an activity analysis model.

2. Brouwer’s fixed point theorem

Let S be a closed, bounded, convex set in #-dimensional Euclidean space, which is
mapped into itself by the continuous mapping x— f(x). Brouwer’s theorem asserts
the existence of a fixed point, 1.e. a point for which 2 =/(%). In order to illustrate
the theorem we consider a few simple examples.

(1) Let S be the closed unit interval [0, 1]. A continuous mapping of this interval
into itself is defined by an ordinary continuous function f(x) whose values also lie
in the unit interval (Figure 2.1). A fixed point of this mapping is a point where
the graph (x, f(x)) intersects the 45° line from the origin, or a point where
g(x)=f(x)—x is equal to zero. But g(0)=0, and g(1)<0, so that the function
must be equal to zero at some point in the unit interval. Brouwer’s theorem is a
generahzation of this well-known property of continuous functions to higher
dimensions.

(2) Let S be the unit simplex {x=(x,,...,x,)|x,=0, Zx,=1}, and let 4 be a
square matrix with non-negative entries, whose column sums are equal to unity.

Figure 2.1.
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The mapping
f(x)=Ax

is continuous and maps the simplex into itself. The conditions for Brouwer’s
theorem are satisfied and there will be a fixed point £=AX. In this particular case
Brouwer’s theorem implies that a non-negative square matrix with column sums
of unity must have a characteristic root of 1 with an associated non-negative
characteristic vector, a result which can be obtained by simpler arguments.

(3) In this example we show how Brouwer’s theorem can be used to demonstrate
the existence of equilibrium prices for a model of exchange. We consider prices
normalized so as to lie on the unit simplex S. For each w in S, £(7) will be the
market excess demand associated with this price, ¢ is assumed to be continuous
on the simplex and to satisfy the identity #-§(7)=0.

Define a mapping as follows

_ 77,+max[0,§[(77)]
film) 1+2max[0,§j(w)]'

The fact that f is continuous follows from the continuity of the market excess
demand functions. It should also be clear that f(#) is on the unit simplex if = is.
Brouwer’s theorem can therefore be applied, and we deduce the existence of a
price vector #=f(#). We shall demonstrate that # is an equilibrium price for the
model of exchange.

If ¢ is defined to be

=1+ Zmax[0, ¢, (#)]>1,
then j

o, =, +max[0, £,(# )]
or

(c—1)# =max[0, ¢(#)].

But ¢ must be equal to 1, for if it were strictly larger this last relationship would
imply that

§,(#)>0, foreachi with# >0,
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violating the Walras Law 27‘7,.5,-(7?)20. If ¢=1, however, it follows that
2 max[0, ¢ (#)]=0, or ¢,(#)=<0, for all ;.

We see that the existence theorem for exchange economies is an immediate
consequence of Brouwer’s theorem. It is instructive to note that the converse is
also correct. The following argument [Uzawa (1962)] shows that Brouwer’s
theorem follows from the existence of an equilibrium price vector for an arbitrary
exchange economy.

Let x— f(x) be a continuous mapping of the unit simplex into itself. Define the
functions

£(x)=h(x) =Alx)x;,

where
Nx)=Zx,£(x)/ k.

Then &, are defined and continuous everywhere on the unit simplex and, by
construction, satisfy the Walras Law 2x,£,(x)=0. From the existence theorem
for competitive equilibria, we conclude that there is an £ with §,(£)<0, and equal
to zero if £,>0. But then

JACIRSNEIER

with equality if %,>0. If £,=0 we must also have equality, since otherwise
f(%)<0, and f would not map the unit simplex into itself. It follows that

f(£)=A(£)%,

But since 2 f(£)=2%,=1, it follows that A(£)=1 and that % is indeed a fixed
point of the mapping.

Since Brouwer’s theorem and the theorem asserting the existence of equilibrium
prices are equivalent to each other, any effective numerical procedure for comput-
ing equilibrium prices must at the same time be an algorithm for computing fixed
points of a continuous mapping.

3. An algorithm for computing fixed points

In this section we present our first algorithm for approximating a fixed point of a
continuous mapping of the unit simplex into itself. There is no loss in generality
in restricting our attention to the unit simplex. If the mapping f(x) is defined for
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S

Figure 3.1.

a more general closed, bounded, convex set C, we embed C in a larger simplex S
(as in Figure 3.1), and define a mapping g(x) of S into itself in the following way:

(1) if xeC, then g{x)=f(x), and
(2) if x&C, then g(x)=f(y),

where p is that unique point in C which is closest, in the sense of Euclidean
distance, to x.

Since y varies continuously with x it is clear that the new mapping satisfies the
conditions of Brouwer’s theorem and has a fixed point X=g(x). But since
g(x)eC it follows that £ C, and is a fixed point of the original mapping /.

A simplex is defined to be the convex hull of its # vertices v',..., v", i.e. the set
of points of the form

= vj ] =
X Eaju, with a; =0 and Eaj 1.

The vertices are assumed to be linearly independent in the sense that each vector
in the simplex has one and only one representation in the above form. The
simplex, which has dimension #—1 in our notation, has »n faces of dimension

Figure 3.2.
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n—2. The face opposite the vertex v/ consists of those vectors whose representa-
tion as a convex combination of the vertices has a; =0.

More generally the simplex has a number of subfaces of lower dimension. For
any subset 7 of (1,2,..., n) there is a face of the simplex consisting of those
vectors with a; =0, forj in T.

We now consider a finite collection of simplices S' ..., S contained in the
large simplex S. If no restriction is placed on this collection than two of its
members may have interior points in common, or their intersection may not
consist of an entire face of one or the other of them (see Figure 3.2). For the
purpose of demonstrating Brouwer’s theorem we shall require the collection of
simplices to form what is known as a “simplicial subdivision”, by ruling out these
forms of intersection.

3.1. [ Definition)

A collection of simplices S',..., S is called a simplicial subdivision of S if

(1) S is contained in the union of the simplices S',..., S¥, and

(2) the intersection of any two simplices is either empty or a full face of both of
them.

Figure 3.3 illustrates a typical simplicial subdivision of the simplex.

The method we shall adopt to demonstrate Brouwer’s theorem and to provide
an effective computational procedure for approximating fixed points makes use of
a combinatorial lemma involving simplicial subdivisions of the simplex. There are
altermative computational methods, notably those of Kellog, Li and Yorke, (1977)
and Smale (1976), which avoid simplicial subdivisions completely and use instead
the methods of differential topology. It is not yet clear which of these techniques,

Figure 3.3.
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which have greater similarities than might appear on the surface, is superior from
a computational point of view.

To appreciate the combinatorial approach to Brouwer’s theorem let us examine
the simplest case, namely a continuous mapping of the unit interval into itself. A
simplicial subdivision of the unit interval is given by a monotonic sequence of
points, say v® < v* < - -+ < v* (I have used the notation v' for the lower end point
of the unit interval and o® for the upper). In Figure 3.4 I have placed below each
vertex v/ an integer label which is either 1 or 2. The rule for associating the
integral label is to label v/ with 1 if f(v/)= ¢/ and 2 if f(v/)<v’. The combina-
torial lemma, which is trivial for this one-dimensional problem, is simply that
there must exist one small interval, in this case (v°, v*), whose two end points are
differently labeled. If the grid were very fine, this combinatorial lemma would
permit us to select two points, very close together, for which f(x)— x has opposite
signs. Any point in the interval will serve as an approximate fixed point of the
mapping, with the degree of approximation [the closeness of x to f(x)] controlled
by the fineness of the grid, and the modulus of continuity of 7. Of course, a proof
of the existence of a true rather than an approximate fixed point involves the
continued refinement of the grid and the selection of a convergent subsequence of
approximants. »

Our first generalization of this elementary combinatorial observation will
involve the special class of simplicial subdivisions specified in the following
definition:

Figure 3.4.
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3.2. [ Definition]

A simplicial subdivision of the simplex S={x|x=(x,,...,x,)|x,=0, 2Zx, =1}
will be said to be restricted if no vertices of the subdivision, other than the » unit
vectors, lie on the boundary of S.

An example of a restricted simplicial subdivision is given in Figure 3.5.

Let us consider a restricted subdivision of S, with v',..., v" representing the
first » unit vectors, and with remaining vertices v" "', ..., v*. We shall assume that
each vertex of the suybdivision has associated with it an integer label {( v/) selected
from the set (1,2,...,n). When, below, we apply our argument to Brouwer’s
theorem, the label associated with a given vertex will depend on the continuous
mapping f(x). For the present, however, the labels will be completely arbitrary
aside from the condition that {(v/)=/, for j=1,2,..., n. In other words, the only
vertices whose labels are prescribed in advance are those on the boundary of S.

The remarkable combinatorial lemma which lies behind Brouwer’s theorem is
the following:

3.3. [Lemma]

Let the simplicial subdivision be restricted, and let the integer labels (v/) be
arbitrary members of the set (1,2,..., n) aside from the condition that {(v/)=/,

for j=1.2,.... n. Then there exists at least one sumplex in the simplicial subdivi-

sion all of whose labels are distinct.

Avoiding for the moment the question of why one would want to find a
simplex with distinct labels, we shall demonstrate the existence of such a simplex

v3=1(0,0, 1)

v =(1,0,0 v2=1(0,1,0)
Figurc 3.5.
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by an explicit computational procedure based on an argument which first
appeared in Lemke and Howson (1964) and Lemke, (1965).

We begin by considering that unique simplex in the subdivision whose vertices
are the n— | unit vectors v?,¢v*,...,¢" and a single other vertex, say v’/. The
vertices v?, v°,..., v" will have the labels 2,3,..., n. If the vertex v/ is labeled 1 the
algorithm terminates immediately with a simplex whose labels are distinct, i.e. a
completely labeled simplex. Otherwise f(v’) will be one of the integers 2,3..... n.
We proceed by eliminating the vertex whose label agrees with [(v/), arriving at a
new simplex in the subdivision. Again we determine the label associated with the
new vertex which has just been introduced. If this label is 1, we terminate;
otherwise the process continues by eliminating that old vertex in the sudivision
whose label agrees with that of the vertex just introduced.

At each stage of the algorithm we will be faced with a simplex in the
subdivision whose »n vertices bear the n—1 labels 2,3,.... n. A pair of the vertices,
one of which has just been introduced, will have a common label. We continue by
removing that member of this pair which has not just been introduced.

Figure 3.6 illustrates a typical example of a path of simplices followed by the
algorithm.

There are a finite number of simplices in the subdivision. We shall demonstrate
that the algorithm never returns to a simplex which it previously encounters.
Assuming this to be correct, the algorithm must terminate after a finite number of
iterations. But termination can only occur if we have rcached a simplex all of
whose labels are different, or if we arrive at a simplex n— 1 of whose vertices lie
on 'the boundary of S, with the remaining vertex about to be removed. Such a

Figure 3.6.



Ch. 21: Compuration of Equilibrium Prices 1021

3
A\
A=A
A
2 2
Figure 3.7.

boundary simplex would, however, have to contain the vertices v2, ..., v", since if
the vertex v' appears in a simplex encountered in the algorithm the label | would
have been obtained, and the algorithm would have terminated.

We see, therefore, that a proof that the algorithm terminates in a finite number
of iterations, with a simplex whose labels are distinct, consists in showing that the
algorithm never returns to the same simplex. Consider the firsr simplex which is
revisited (as in Figure 3.7). If it is not the initial simplex it can be arrived at in
one of two possible ways: through one or another of the adjacent simplices with
n—1 distinct labels. But both of these adjacent simplices would have been
encountered during the first visit and our simplex is therefore not the first simplex
to be revisited. A similar argument demonstrates that the initial simplex (with
vertices t2, v°, ..., v and one other vertex) is not the first simplex to be revisited.
This concludes the proof of Lemma 3.3.

The, customary proofs of Brouwer’s theorem make use of a combinatorial
lemma known as Sperner’s lemma [see, for example, Berge (1959)] which is a
generalization of Lemma 3.3 to arbitrary simplicial subdivisions of the simplex.
Consider now a simplicial subdivision many of whose vertices lie on the boundary
of S. The vertices ¢/ will again be labeled with integer labels (v/) selected from
the set (1,2,..., n). The vertices, which are interior to S, will have arbitrary labels
(as in Figure 3.8). In order to guarantee the existence of a simplex all of whose
labels are distinct the vertices on the boundary faces of S will have labels which
are restricted according to the following theorem:

3.4. [Sperner’s lemma]

Let v be an arbitrary vertex in the subdivision and assume that {(v) is one of the
indices / for which v;>0. Then there exists a simplex in the subdivision with
distinct labels.

The assumption of Sperner’s lemma is that a vertex on a face of S generated by
a subset of the unit vectors must have a label corresponding to one of these unit
vectors. The assumption is illustrated in Figure 3.8, in which the shaded simplex
1s completely labeled.
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Figure 3.8.

Spemer’s lemma may be demonstrated from Lemma 3.3 by the following
simple argument. We embed the unit simplex in a larger simplex §" with vertices
s',...,s". We then extend the simplicial subdivision of S to a restricted simplicial
subdivision of S’ by introducing a number of simplices obtained in the following
way: take an arbitrary subset T of (1,2,..., n) with r<<n members. Consider a
collection of n—1 vertices on the face of S defined by x, =0, for i€ 7, and which
lie in a single simplex of the subdivision of S. These n—r vertices in S are
augmented as in Figure 3.9 by the 1 vertices s’ for /€T in order to define a
simplex in the larger subdivision.

Lemma 3.3 will be applied to the subdivision of $’. We must associate a
distinct label with each of the new vertices s',..., s”, and we wish to do this in
such a fashion that the completely labeled simplex obtained by applying Lemma
3.3 will contain none of the new vertices.

Let us define {(s') to be equal to i+ 1 modulo n. In other words, [(s')=2,
f(s2)=3,...,[(s")=1. A completely labeled simplex may then contain the vertices
s', for i in T, and n—r other vertices on the face x, =0, for i&T. Since these
remaining vertices will, by the assumption of Sperner’s lemma, have labels
different from the members of T, it follows that the collection of vertices s’ in the
completely labeled simplex must bear all of the labels in 7. This is in contradic-
tion to £(s")=i+ 1 modulo » unless T is the empty set and the completely labeled
simplex Is a member of the original simplicial subdivision of §. This completes the
proof.

Having demonstrated Sperner’s lemma by means of an explicit computational
procedure we turn now to Brouwer’s theorem. Let us consider a continuous
mapping x— f(x) of the unit simplex into itself. The mapping is specified by n
functions f(x), for i=1,...,n, which are defined on the unit simplex, are
continuous, and satiefy

fi(x)=0, fori=1,..., n,
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Figure 3.9,

and
2hH(x)=1,

A simplicial subdivision of the simplex is given, with vertices ¢',..., v", v" 1, ..., v~
We assume that none of these vertices are fixed points of the mapping £, since
otherwise Brouwer’s theorem would be trivially correct. It follows that for each
vertex v we must have

v, >f(v)

for at least one index i. We define the label associated with the vertex v to be one
of these indices. If the vertex lies on the boundary of the simplex, with say v; =0,
then the label associated with v must be different from ;. The assumptions of
Sperner’s lemma are satisfied, and the algorithm on which our proof of Sperner’s
lemma is based may be used to determine a completely labeled simplex.

If the simplicial subdivision has a very fine mesh, in the sense that the distance
between any pair of points in the same simplex is quite small, then any point in
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the completely labeled simplex will be close to its image and serve as an
approximate fixed point of the mapping. [An upper bound for || f(x)—xIl is
given in Scarf (1973) as a function of the mesh size and the modulus of continuity
of the mapping.] In order to demonstrate Brouwer’s theorem completely we must
consider a sequence of subdivisions whose mesh tends to zero. Each such
subdivision will yield a completely labeled simplex and, as a consequence of the
compactness of the unit simplex, there is a convergent subsequence of completely
labeled simplices all of whose vertices tend to a single point x*. (This is, of course,
the non-constructive step in demonstrating Brouwer’s theorem, rather than pro-
viding an approximate fixed point.) The point x* is the limit of points bearing all
of the labels 1,2,..., n. Since f is continuous it follows that

x}=f(x*), foralli.

Since 2x* =2 f,(x*), this can only happen if x* =f,(x*), for i=1,..., n. This
concludes the proof of Brouwer’s theorem.

Let us now show that the existence of equilibrium prices for a model of
exchange follows directly from Sperner’s lemma without using Brouwer’s theorem
as an intermediary tool. We consider the continuous excess demand functions
§(m),.... &, (7) defined on the unit price simplex

S={r=(m.....7,)|m =027, =1},
and satisfying the Walras Law
2aé(7)=0.

S is subjected to a simplicial subdivision of fine mesh, with vertices
gl wt w1 . 7% We shall label a vertex 7 of this subdivision with an
integer i for which &, <0.

In order to satisfy the hypothesis of Sperner’s lemma we must show that for
any price vector 7 there is at least one coordinate with 7, >0 and ¢,(7)<0. This
will provide us with a labeling consistent with Lemma 3.4, But this is certainly
correct since otherwise every coordinate ; with #, >0 would have &.(w)>0,
violating the Walras Law,

We may therefore conclude that there is a simplex with distinct labels. If the
subdivisions are refined we may select a subsequence of these completely labeled
simplices whose vertices tend, in the limit, to a price vector 7*. Since the excess
demand functions are continuous §,(7*)<0, for all i. #* is indeed an equilibrium
price vector.

We shall conclude this section by demonstrating an alternative combinatorial
lemma, which may be viewed as a dual form of Sperner’s lemma. As before we
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Figure 3.10.

consider a simplicial subdivision of the simplex $ many of whose vertices lie on
the boundary. The vertices v/ which are interior to the simplex will be given an
arbitrary integer label £(¢/) selected from the set (1.2,....n). As distinct from
Sperner’s lemma, however, a vertex on the boundary will be given an integer label
associated with one of its coordinates which is equal to zero (see Figure 3.10).

In order to guarantee the existence of a completely labeled simplex, the
subdivision must be sufficiently fine. For example, if there is only one simplex in
the suybdivision, the simplex S itself, then the vertices can clearly be labeled,
consistently with the above rule, and with some label omitted.

3.5, [Lemma]

Assume that no simplex in the subdivision has a non-empty intersection with
every face x, =0. Let £(v) be an arbitrary member of the set (1,2,....n)ifvis a
vertex which is interior to S. If v is on the boundary then {(v) is equal to one of
the indices i for which v, =0. Then there exists at least one simplex all of whose
labels are distinct.

As in the proof of Sperner’s lemma, we embed § in a larger simplex S with
vertices s',..., s”. The simplicial subdivision is extended to a restricted subdivi-
sion as before, i.e. we consider n—r vertices on the face defined by x, =0, for i in
some index set T (with t=|T'|), and which lie in a single simplex of the original
subdivision. We then augment these vertices by the ¢ vertices s/, for i€ T.

The vertices s',..., 5" will be labeled according to the rule f(s')=1, differing
from the rule used in the proof of Sperner’s lemma. Lemma 3.3 is then applied to
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this restricted subdivision so as to produce a completely labeled simplex. In order
to demonstrate Lemma 3.5 we must show that none of the vertices s',..., " 1s
contained in the completely labeled simplex.

Assume, to the contrary, that the simplex contains s, for i€T, and n—1t
vertices of a simplex in the original subdivision lying on the face x, =0, for i€ 7.
Since s’ bears the label i, the n—1 vertices must bear all of the labels in 7¢. But
these vertices all lie on the boundary of S, and their reason for bearing a given
label must be that the corresponding coordinate is equal to 0. It follows that the
convex hull of these n—1r vertices has a non-empty intersection with each face
x;=0, for i=1,2,..., n. This contradicts the assumption of Lemma 3.5.

Lemma 3.5 may be used as a substitute for Sperner’s lemma in proving
Brouwer’s theorem or in demonstrating the existence of equilibrium prices in a
model of exchange. In the latter problem a price vector = which is a vertex of the
subdivision interior to S is given a label i for which §,(7) is maximal. The price
vectors on the boundary receive a label corresponding to a zero coordinate. A
completely labeled simplex is then found for each of a sequence of subdivisions
whose mesh tends to zero. Consider a subsequence of completely labeled sim-
plices all of whose vertices tend to the common price vector w*=(=f,...,7¥). For
any coordinate / with #7* >0 we must have £ (7*)> £ (7*) for all j. It follows that
§,(m*) are all equal to some common value ¢ for those i with #*>>0, and that
§(m*)<cif »*=0. But from the Walras Law,

0= S g, () =c.

and #* is indeed an equilibrium price vector.

4. The non-retraction theorem

Brouwer’s theorem is frequently demonstrated by an appeal to a well-known
topological theorem, the non-retraction theorem, which asserts that there is no
continuous mapping of the unit simplex which carries all points in the simplex
into the boundary, and which maps each boundary point into itself [Hirsch
(1963)]. It will be instructive for us to see the relationship between these two
theorems and to interpret our combinatorial Lemma 3.3 as an example of the
non-retraction theorem.

To see that Brouwer’s theorem follows from the non-retraction theorem let
x—f(x) be a continuous mapping of the unit simplex into itself. If the mapping
has no fixed points we can define a continuous retraction to the boundary of S in
the following way (see Figure 4.1)
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Figure 4.1.

For each x draw the straight line originating at the image f(x) and passing
through x. The straight line will intersect the boundary of the simplex at a point
which we call g(x). Clearly, g(x) is a continuous function of x, and for any x on
the boundary of the simplex g(x)=x; g is therefore a continuous retraction of x
onto the boundary. Since this cannot be, the original mapping must have a fixed
point.

Conversely, Brouwer’s theorem may be used to demonstrate the non-existence
of a continuous retraction g. We simply compose g with a continuous mapping of
the boundary of the simplex onto itself which has no fixed points. [For example,
the mapping (x, x5,..., x,)—=(x,.X|,....x,_;).] The composite mapping will
have no fixed points and therefore contradicts Brouwer’s theorem.

Now let us return to the situation described in Lemma 3.3. The unit simplex is
given a restricted simplicial subdivision with vertices v',..., v", v"1,..., v All of
these vertices, aside from the first n, are assumed to be strictly interior to the
simplex. In addition, each vertex is given an integer label f(v), which is selected
without restriction from the set (1,2,..., n), aside from the requirement that
{(v/)=j, for j=1,..., n.

These integer labels may be used to define a continuous piecewise linear
mapping g(x) of the unit simplex into itself. For each vertex v in the subdivision
we define g(v)=0""); in other words, to be that one of the first n vertices whose
label agrees with that of v. We then extend the mapping linearly throughout each
simplex in the subdivision. If a simplex in the subdivision has vertices
v/t v/2, ..., v/, then a point in the simplex has the form

X=o vl et + L el
with @, >0, 2o, =1. We then define

g(x)=a,g(v")Farg(v)+ ... +a,g(v").
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The mapping g is clearly continuous, and, as a consequence of the assumption
that the subdivision is restricted, g{x)=x. for every boundary point of the
simplex. This follows from the observation that a boundary point of S is a convex
combination of a subset of the first n vectors, each of which is mapped into itself
by g.

If Lemma 3.3 were false, no simplex in the subdivision would have a full set of
labels. But the n vertices of a simplex for which, say, the label 1 is missing would
all be mapped, under g, into that face of the boundary of § given by x, =0. Every
point on such a simplex would also be mapped. by our construction, into the
same face. We see therefore that the absence of a simplex with a complete set of
labels permits us to construct a continuous piecewise linear retraction of the
simplex into itself.

The constructive argument given for Lemma 3.3 may also be interpreted in
terms of g(x), as first suggested by Hirsch (1963). Let ¢ be a vector on the
boundary of S, whose first coordinate is zero, and whose remaining coordinates
are strictly positive. We shall demonstrate that there exists a continuous path x(r)
which is linear in each simplex of the subdivision of the simplex through which it
passes and which satisfies g(x(#))=c. Moreover, the path will have one end point
at ¢, the other end point in a completely labeled simplex, and trace out precisely
that sequence of simplices which appear in the proof of Lemma 3.3.

The simplices arising in Lemma 3.3 have the property that their n vertices bear
the n—1 labels 2,3,..., n. One of these labels will appear on two distinct vertices.
Two faces of the simplex can be constructed by dropping either one of these two
vertices; the n—1 vertices on each of these faces will have a full set of labels
2,3,...,n. It follows that there is an interior point on each of these two faces for
which g(x)=c. Since the mapping is linear, the straight line segment connecting
these two points will also satisfy g(x)=c (See Figure 4.2).

This continuous piecewise linear path starts at the boundary point ¢ and passes
through a sequence of simplices bearing the n—1 labels 2.3...., n. It terminates
upon reaching a completely labeled simplex since such a simplex would have no

2 3

Figurc 4.2.
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other face on which g(x)=c has a solution. This does in fact provide an
alternative proof for Lemma 3.3 since if there were no completely labeled simplex
the path could never terminate.

The relationship between fixed point theorems and the solution of systems of
equations will be explored below.

5. A specific subdivision

The algorithm described in Section 3 approximates a fixed point of a continuous
mapping by moving systematically through a sequence of simplices in the
simplicial subdivision. At each iteration we are given a particular simplex with
vertices, say, v/, ..., v/, Depending on the particular assignment of integer labels,
a specific vertex in the simplex is removed. We move to that unique simplex in the
subdivision which has n—1 vertices in common with the remaining vertices of the
original simplex. If the method is to be implemented effectively on a computer
the simplicial subdivision must be such that this replacement operation is easy to
carry out. Moreover, the vertices of the simplicial subdivision must be scattered
with some regularity throughout the unit simplex so that the degree of approxima-
tion 1s independent of the region of the simplex in which the approximate
fixed point happens to lie. The particular subdivision, which was brought to the
attention of researchers in this field by Hansen (1968) and Kuhn (1968) solves
these two problems admirably.

We'begin our discussion by describing this particular simplicial subdivision for
n-dimensional Euclidean space. The 7 unit vectors will be denoted by ', e2,..., e".
With this notation a simplex will have n+1 vertices ¢', v',..., v", which will
consist of the points in R” with integral coordinates.

5.1. [ Definition]

A typical simplex in the subdivision will be defined by an integral point b (called
the base point) and a permutation (¢,,...,q,) of the integers 1,2,...,n. The
vertices are then given by

o° =b,
ol =00 +e%,

vi=v' +e®,

" :Dn—l + %,

Figure 5.1 illustrates this simplicial subdivision for the plane. The shaded
simplex has the base point »=(1,0) and the permu;ation (9, 9,)=(2,1). Its
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Figure 5.1

vertices consist therefore of
v'=b =(1,0),
o' =0 +e?=(1,1),

oP=v'+e!' =(2,1).

/

Figure 5.2.
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There are two distinct types of simplices in the plane: one for each of the two
permutations of (1,2). In general there will be n! distinct simplices with every
simplex in the subdivision equivalent under translation to one of them. Figure 5.2
illustrates the six distinct simplices for n=3.

Let us consider a simplex with vertices

DO :b.

o' =0 +e®,

i
v/ =v/ —’—e(pj’

i+ — j
v/ __DJ+€¢/<1,

v =p" 4 e¥n,

and inquire about the replacement for a given vertex v/, for the moment we
assume that 0<<j<n. The new simplex will contain the vertices v°, v',..., v/, In
order to bring this about it 1s sufficient to have the same base point » and to have
the new permutation ¢,,¢,,..., ¢, agree with the old as far as its first j—1
members are concerned, 1.e. §; =@ ,....§_ | =@,

In order not to have v/ in the new simplex we must have ¢ #@,. But
o/ =0/ 14+ e% +e%1, Since v/*' must remain in the new simplex it follows
that (q‘oj,ti)j+,):((pj+,,q>j). In other words, the adjacent simplex with the same
vertices, other than v/, is found by taking the same base point b and the
permutation in which ¢, and ¢;., are transposed. The replacement ¢/ is then
given by

ﬁf:v./"] +e%ir
=pl T it =yl

This is a remarkably simple description of the replacement which can be pro-
grammed for the computer with great ease.

If ¢ is being replaced, then we consider the new base point 5=+¢', and the
permutation

(G120 B)= (9200 9, 91
resulting in the vertices

0

=

fi
=,

:Dl’

T=00 + 6% =p! +eP2=¢?

il
(o)}

D )

B =g e =T =
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and
e =0"" +ebi=p" +e%,
We see that in this case the replacement for v° is given by
" +ePr=¢" +p' =0,
A similar argument shows that the replacement for v" is given by v +v" ™! — ",
These rules may be summarized by the following theorem:
5.2. [Theorem]
Let the vertices of a simplex in the simplicial subdivision be given by v°, v, ..., v",
according to Definition 5.1. The replacement for an arbitrary vertex v/ is given by
T
with the superscripts interpreted modulo ».

In practice, we store the vertices of the current simplex as columns in a matrix,
When a given column is removed it is replaced by the sum of its two adjacent
columns minus itself, with the interpretation that columns O and » are adjacent.
The following examples illustrate this remark.

0 1 1 1]
0 0 1 1
0 0 0 1]
¢

o 1 1 1]
0 0 0 1
o 0 1 1]
¢

(2 1 1 1
1 0 0 1
10 1 1]

¢

(2 2 1 1]
1 1 0 1
1 2 1 1]

From the point of view of numerical computation, nothing more than this
explicit rule for the replacement operation is really required. To be complete,
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however, it may be useful to present the details of an argument which verifies that
we have indeed constructed a simplicial subdivision of R". We begin by showing

that an arbitrary vector x=(x,,..., x,,) is contained in at least one simplex of the
subdivision.

5.3 [Theorem]

A necessary and sufficient condition that x be contained in the simplex defined
by the base 0 and the permutation ¢,..., ¢, is that

= = = = =
l/xq)l/x%/.../x%/o.

If x is a convex combination of the vertices v°, v',..., v" defined by Definition
5.1, with =0, then

and therefore that

— = = el —
Xg, T Xg,, Ty 20, for{=1,...,n—1.

Also, x, =a, >0 and, in addition, 1>2{_ o, =x, . We must therefore have

l>xq)|>x%>...>xq) =0.
n

On the other hand, if this inequality is satisfied then defining

oy =xgy ~Xg ., fort=1,..n—1,
& =Xg,»

and
ag=1—x,
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will provide us with a set of weights which represents x as a convex combination
of the vertices ¢%,..., v". This demonstrates Theorem 5.3.

We see that an arbitrary vector in the unit cube will be contained in at least one
simplex. By adopting a different base point a simplex can be found which
contains an arbitrary vector in R".

Each of the n! permutations ¢, ..., ¢, defines a simplex in the subdivision lying
inside of the unit cube, to consist of those vectors with

= = = = =
l/)C(p1 /X‘Pz/ /x%/O.

A vector is interior to a particular simplex if all of the weights a; are strictly
positive, i.e. if all of the above inequalities are strict. It follows therefore that no
two simplices in the subdivision have interior points in common.

In order to demonstrate that we have a simplicial subdivision we must show
that the intersection of any two simplices is a full face of both of them. A face of
one of our simplices is obtained by setting a particular subset of the a’s equal to
zero and letting the remaining «’s range over all non-negative values summing to

1. This is equivalent to insisting that a particular subset of the n+ 1 inequalities
1 >X‘P| >X‘P2> Tt >X‘Pn>0

be equalities.

The intersection of two simplices in the unit cube, one defined by the
permutation ¢,,..., ¢, and the other by ¢,,..., ¢,, will consist of those vectors in
the unit cube which simultaneously satisfy the above inequalities and

XA =X = =y, =
l/x(p]/x%/.../x%/o.

For example, if n=4, p=(4,3,2,1) and $=(3,2,4,1), then the intersection con-
sists of those vectors in the cube which simultaneously satisfy

1Zx,2x,2x,2x,20
and

1Zx,2x,=x,2x, 20
Together these imply

lz2x,=x3=x,2x,20

defining a full subface of each simplex. This argument, when posed in general
terms, demonstrates the following theorem:
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5.4. [Theorem]
The collection of simplices defined by Definition 5.1 is a simplicial subdivision of
R".

In order to implement our constructive approach to fixed point theorems, we
require a simplicial subdivision of the unit simplex

S:{X:(XO""’xn)lxi>O’ EXizl}s
0

and with two vectors in the same simplex close to each other. We shall construct
such a simplicial subdivision with vertices (k, /D, &k, /D,....k, /D), where D is a
large positive integer and k,,...,k, are non-negative integers summing to D. To
do this we simply modify the definition given in 5.1 by letting the base point b be
an integral vector in R""' whose coordinates sum to D, and by redefining

el,...,e" to be the n vectors in R"*' given by

e'=(1,-1,0,...,0),

e2=(0,1,—1,...,0),

e"=(0,0,0,...,1,—1).

The simplices defined by

KO=b,
K'=kO +e%,
kn =k 4 e,

will have all of their vertices on the plane 2jk ;=D and will form a simplicial
subdivision of this plane since they are obtained from our previous subdivision of
R" by a linear transformation.
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We notice that the ith coordinate of any two vertices of the same simplex are
etther equal or differ by 1. This implies that none of the coordinate hyperplanes
x; =0 intersects any of the simplices in an interior point; we can therefore select
those simplices which are unambiguously in the non-negative orthant. After
division by D this provides us with a simplicial subdivision of the unit simplex
with the property that two vectors in the same simplex x and x’ satisfy |x, —x[|<
1/D for all i.

It should be noticed that the replacement operation described in Theorem 5.2
holds in precisely the same form for this simplicial subdivision. A sequence of
replacements is illustrated in Figure 5.3.

In this figure D=4; the numerators of the vertices in the sequence of simplices
are as follows:

(4 3 3
0 0 1
0 1 0]
¢
(2 3
1 0 1
1 1 0]
)
(2 2 3]
1 2 1
1 0 O]
¢
[2 2 1]
1 2 2
1 0 1]
!
(2 1 1
1 1 2
B 1]
!
[0 1 1
2 1 2
2 2 1
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Figure 5.3.

6. A numerical example

In this section I shall give an example of a general equilibrium model which 1
shall solve by the use of Lemmas 3.4 and 3.5 and the particular simplicial
subdivision of the preceding section. The previous discussion of Sperner’s lemma
involved embedding the unit simplex in a larger simplex and extending the
simplicial subdivision to a restricted subdivision of the larger simplex (see Figure
3.9). Since the new subdivision will not be of the type described in the previous
section, the very elementary replacement operation cannot be employed without
some modification. Before presenting the numerical example I shall describe
Kuhn’s method [Kuhn (1968)] for initiating the algorithm, which avoids this
difficulty and, in addition, permits one to start the calculation at any boundary
point of the simplex.

Let the unit simplex S={x=(x,,..., x,)|x; =0, 2"_ x, =1} be given a simpli-
cial subdivision of the type described in the previous section. We select a large
positive integer D and consider as vertices in the subdivision the points
(ky/D,....k,/D) with k|,..., k, non-negative integers summing to D. The
numerators of the vertices of any particular simplex in the subdivision can be
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written as the columns in an » X »n matrix

k' ko

k! k2
The arguments of the previous section imply that the columns of K can be
ordered in such a way that k/=k/714¢%, where e’ is a vector whose (i— 1)st
coordinate is + 1, whose ith coordinate is —1 and whose remaining coordinates
are 0. Moreover @,,..., @, is a permutation of the set (2,..., n). In other words,
each column is identical with its predecessor (interpreted modulo ») except for
the entries in two successive rows, the first of which is a single unit higher and the
second a single unit lower than the entries in the preceding column.

The vertices k//D are given an integer label {(k/) taken from the set (1,2,..., n)
and subject to the requirement that a vector receive a label corresponding to one
of its positive coordinates. Let us attempt to initiate our search for a completely
labeled simplex at a point (0, k%,..., k) on that face of the simplex whose first
coordinate is 0.

We begin by extending the simplex to include those vertices whose first
coordinate is given by k, = —1 (see Figure 6.1). These additional vertices will be
given an integer label, from the set (2,..., n), in such a way that there is a unique
simplex in the extended subdivision which consists of a single vertex with k, =0,
(n—1) vertices with k; = —1, and with the latter set of vertices bearing all of the
labels 2,..., n.

6.1. [ Labeling rule|

A vertex given by (— 1, k,,..., k,), with k,=0, for i=2,...,n and EZkJ:D+ 1,
will be labeled with the first integer for which &k, >k,

The columns of the matrix

o TR | -1 0
k% Kkt ki+l k%
kx k¥ vl k¥ kr
k*+1 k* kx ke

represent a simplex in this extended subdivision. The first n—1 vectors bear the
labels n, n—1,...,2; the final vector bears a label different from 1. The algorithm
can be initiated at this simplex and can only run into difficulty if it encounters
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Figure 6.1.

another simplex

-1 .. —1 0
K, Kk
K, Kk

whose first n—1 columns bear all of the labels n,...,2, say in that particular
order. For this to be true, however, we must have

kﬁ_j+|>kjf_j+], forj=1,...,n—1.
Since no two entries in the same row of this matrix differ by more than unity,

kizk¥, forj=1,...,n—landi=2,..., n.

1 1

But X7 k/=2" k¥ +1, and it follows that the second matrix is identical to the

one initiating the algorithm.
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Table 6.1.
Consumer Initial stock of commodities
1 0.6 0.2 0.2 200 0.1 2.0 9.0 5.0 5.0 15.0
2 0.2 11.0 12.0 13.0 14.0 15.0 16.0 5.0 5.0 9.0
3 0.4 9.0 8.0 7.0 6.0 5.0 4.0 5.0 7.0 12.0
4 1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0
5 8.0 1.0 22.0 10.0 0.3 0.9 5.1 0.1 6.2 11.0

Let us now consider an example of an exchange economy involving 5 types of
consumers and 10 commodities. The ith consumer will own, prior to trade, a
specific vector w', as given by Table 6.1.

The ith consumer’s demand functions will be derived from a C.E.S. utility
function

10
w(x)= 3 alftix)
J=1

Table 6.2 describes the parameters a,, for each consumer. The parameters b are
given by: 1,2.0; 2,1.3; 3,3.0; 4,0.2; 5,0.6.

The problem was solved by selecting D=200, and initiating the algorithm at
the center of the face x; =0. After 6063 iterations the following matrix, whose
columns are the numerators of the vertices of a completely labeled simplex, was
found:

3 39 39 39 40 39 39 39 39 39
22 22 22 22 22 23 22 22 22 22
19 19 19 19 19 19 20 19 19 19

g 8 8% 8 & § 8 9 8 38
23 023 23 23 23 23 23 23 24 23
15 15 15 15 15 15 15 15 15 16
24 23 23 23 23 23 23 23 23 23
21 22 21 21 21 21 21 21 21 21
20 20 21 20 20 20 20 20 20 20
9 & 9 10 % 9 9 9 9 9]

Each of these columns, after division by 200, may be used as an approximate
equilibrium price vector, yielding a vector of excess demands which is fairly close
to zero. A better approximation is obtained by averaging these prices, using a
variation of Newton’s method, to yield

7=(0.187,0.109,0.099,0.043,0.117,0.077,0.117,0.102,0.099,0.049).

At this price vector the excess demands are equal to zero for two decimal places.
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Table 6.2.
Consumer Utility parameters
1 1.0 1.0 3.0 0.1 0.1 1.2 2.0 1.0 1.0 0.07
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 9.9 0.1 5.0 0.2 6.0 0.2 8.0 1.0 1.0 0.2
4 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
5 1.0 13.0 11.0 9.0 4.0 0.9 8.0 L0 20 10.0

The algorithm underlying Lemma 3.5 can also be used to solve this problem. In
this latter algorithm a vertex of the subdivision k//D receives a label correspond-
ing to one of its zero coordinates if it is on the boundary of the unit simplex and
otherwise a label corresponding to that commodity with the largest excess
demand. To be specific, we shall agree on the following convention:

6.2. [ Labeling rule for the second algorithm]

The label associated with a vertex on the boundary of the simplex will be the first
coordinate which is equal to zero.

Our earlier arguments for this version of the algorithm involved embedding the
unit simplex in a larger simplex to which the simplicial subdivision is extended.
The particular form of our simplicial subdivision, however, permits us to work
directly with the unit simplex and to show that the algorithm never leads us
outside of the simplex.

Let, us define d=D—n+2. The columns of the following matrix represents a
simplex in the subdivision:

d d+1 d+1 ... d+1 d

| 0 | 1 |

| | 0 1 |

| 1 1 0 0
L0 0 0 0 1]
Labels n 2 3 .. n—1n-1

According to our labeling rule, the label 1 does not appear, all of the remaining
labels do appear, and the label n—1 1s associated with the last two columns. If the
nth column is removed we are carried outside of the unit simplex; we begin the
algorithm, therefore, by removing column n— 1.

The algorithm can only run into difficulty if we encounter another matrix
which contains a row (0,0,0,...,0,1) and if the last column is to be removed
because it shares a label with one of the other columns. If, however, this row is
the ith row in the matrix, and i<n, then each of the first n—1 columns will
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receive a label <i. The label n can only appear in the last column, which,
consequently, will not be removed.

We can therefore assume that the row (0,0,0,...,0,1) is the nth row in the
matrix. If the last column is to be removed, the first n— 1 columns of the matrix
will bear the labels 2,3,..., n, and since each one of these columns is on the
boundary of the simplex, the corresponding label will be borne because it is the
first coordinate equal to zero in that column. It follows that each row of
the matrix, other than the first, must have a zero entry, and therefore that these
rows are composed entirely of zeros and ones.

The column bearing the label » must then be given by

d
1
1
1
1

0

i.e. the first column in our initial matrix.

The column bearing the label 2 must have at least two zero entries in it, one in
the second row, and one in the last. Since the entries in rows 2,3,..., n are zero or
one, if there were a third zero entry it would follow that the entry in row 1 would
be >d+2. Since this is impossible we see that the column bearing the label 2
must be the second column in our original matrix.

If this argument is continued, we see that the first n— 1 columns of the matrix
leading us outside of the simplex must be identical with those of our initial
matrix. But this face can be completed to a simplex in the subdivision only by the
addition of the last column of the original matrix. It follows that an exit from the
unit simplex can only occur by returning to the initial simplex; this is impossible
from the general arguments of Section 3.

When this version of the algorithm was applied to the previous example, again
with D=200, termination was achieved in 2996 iterations, with the completely
labeled simplex whose numerators are displayed below:

36 36 36 35 36 36 36 36 36 36
22 22 22 22 02V 22 22 2 22 22
20 20 20 20 20 19 20 20 20 20
9 9 9 9 9 9 8 9 9 9
23 23 23 23 23 23 23 22 23 23
16 16 16 16 16 16 16 16 15 16
24 24 24 24 24 24 24 24 24 23
20 2t 21 21 21 21 2t 21 21 21
20 19 20 20 20 20 20 20 20 20
10 10 9 10 10 10 10 10 10 10
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The more rapid termination of this version of the algorithm is entirely attribut-
able to the fact that the vertex (1,0,...,0) is a better approximation to the true
equilibrium price than the vector initiating the previous algorithm and not to any
inherent superiority of this version.

Both algorithms require a fairly substantial amount of computation in order to
yield modest accuracy. In the following sections I shall describe a number of
variations of the basic algorithm which provide a dramatic improvement in
computational speed, in addition to extending the class of problems to which
these methods can be applied.

7. Vector labels

The algorithms with which we have been concerned associate with each vertex of
a simplicial subdivision an integer label selected from the set (1,2,...,n). When
applied, for example, to determining equilibrium prices for a model of exchange
the excess demands §(7),...,§,(7) are evaluated, and the associated label
corresponds, say, to that commodity with the largest excess demand.

It is clearly inefficient from a computational point of view to replace the vector
of excess demands, whose evaluation may in itself be quite time consuming, by a
single integer. The vector labeling procedures to be discussed in this section
permit us to utilize all of the information in the excess demand vector with the
expectation of greater accuracy in less computing time. In addition they are
applicable to a large class of problems, including, for example, the approximation
of a fixed point implied by Kakutani’s theorem, to which the earlier methods
cannot readily be applied.

Let us consider, as in Figure 7.1, a restricted simplicial subdivision of the unit
simplex, with vertices v',..., 0" v"“ ., o%. Each vertex v/ will have associated
with it a label £(v/), which is a Vector n n-dimensional space. In the applications
of the vector labeling algorithms these labels will depend on the particular
problem being solved. For the moment, however, the labels are arbitrary, aside
from the stipulation that the unit vectors defining the simplex receive the labels
f(v/)=v’, for j=1,2,..., n. We shall also be given, in advance, a specific positive
vector bin R".

Our previous algorithms attempted to determine a simplex in the subdivision,
with vertices v/, v/2,..., v/ and whose labels ((v/), E(v”/?),..., E(v/") were dis-
tinct. By a solution to the vector labeling problem we mean the determination of a

simplex with vertices v/,. .., v/, for which the system of linear equations
B+ ()b,
has a non-negative solution y; ,..., ;. The following theorem provides sufficient

conditions on the labels E(U) for the problem to have a solution.
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Figure 7.1.

7.1. [Theorem)

Consider a restricted subdivision of the wunit simplex with vertices
o',...,v" 0" ! .., v*. Bach vertex v/ has associated with it a label f(v/) ER"; the
first n vectors have as labels {(v/)=v’. Assume that

K
S 3101 <0,
J=1

and y;=0, for j=1,..., k, implies y, =0, for all j. Then for any positive vector
bER", there is a simplex in the subdivision with vertices v/1,..., v/, such that

S yj(ﬁ(vf‘ )=b
i
has a non-negative solution.

Theorem 7.1 has an interesting geometric interpretation which illuminates the
method we shall provide for determining a correct simplex. Let us define a
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mapping g(x,,...,x,) from the non-negative orthant of R” into R”" in the
following way:

7.2. | Definition]
g(x) is defined to be the unique mapping satisfying

() g(o/)=I[(v’) for each vertex in the subdivision,
(2) g(x)1is linear in each simplex in the subdivision, and
(3) g(x) is homogeneous of degree 1, i.e. g(Ax)=Ag(x) for A=0.

To determine g(x) for any non-negative x (different from 0) we find that A for
which A x is on the unit simplex, and therefore contained in a particular simplex
with vertices v/, ..., v/». We then write

}\x:yj]vf" +oty 0l
with y20 and summing to 1, and define
g(Ax)=y,t(o/)+ -4y E(v/).

With this interpretation we see that Theorem 7.1 is equivalent to asserting the
existence of a vector x* with g(x*)=5b. The validity of this assertion is a
consequence of the following two properties which are immediate from the
definition of g(x):

7.3. [ Properties)

(1) g(x)=x, for x on the boundary of the positive orthant, and
(2) g(x)=<0, implies x=0.

The mapping g(x) is piecewise linear. The non-negative orthant of R” is
partitioned into a finite set of polyhedral cones — each one of which has »
extreme rays through the origin - and such that g is linear in each cone.

Let P=R" X][0,1], the product of the non-negative orthant and the closed unit
interval. The set P is naturally subdivided into a finite number of “wedges”
(products of cones and the unit interval) as Figure 7.2 indicates for n=2.

We shall extend g to a mapping G of the set P into » space in such a way that G
1s linear in each wedge.

7.4. [ Definition]

Let ¢ be a vector in R", strictly larger than b in each coordinate. For (x,,..., x,, 1)
€ P we define

G(x,t)=g(x)+zc.
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Figure 7.2.

With this definition a solution to the vector labeling problem is a vector x* for
which G(x*,0)=5. The mapping G will permit us to trace out the one-dimensional
family of solutions to G(x, )=~ and to show that there is at least one member of
the family with ¢=0.

The boundary of the set P consists of a number of hyperplanes: the two
hyperplanes given by t=0 and =1, and the » hyperplanes defined by x, =0. Let
us ask whether there are any solutions to G(x,7)=b on the boundary of P -
other than r=0.

A solution on the upper boundary would require g(x)+c¢=»5 and since ¢>bh
this implies g(x)<0, contrary to the second property in 7.3. To examine the
solutions on that part of the boundary defined by x; =0, we make use of the first
property in 7.3, i.e. that g(x)=x on the boundary of the non-negative orthant.
For such points G(x,t)=»b is equivalent to x+rc=5~. These equations have a
solution obtained by selecting that typically unique index, say i*, for which
(b; /c;) 1s minimal, setting t=b,, /¢;» and x=b—ct (Figure 7.3).

We see that there is a unique solution to the equations G(x,z)=»b on the
boundary of P, other than that part of the boundary on which ¢r=0. The
algorithm for finding x* consists simply of following the piecewise linear path
defined by G(x,7)=»b from this particular boundary point until it intersects a
point on the boundary with 1=0.
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/‘b
-
~
<
//
b-tc 3
Figure 7.3.
Fach wedge is defined by a simplex in the subdivision with vertices v/,..., v/~
If
x:yj]vfl + o +y/,,vjn’

then

glx)=yb(v/ )+ -ty (o).
In this wedge the equations G(x, r)=b therefore take the form
y (o) 4 - 4y U(v/) +1e=b,

with y; >0 and 0=<z=<1. The path enters the wedge on a particular boundary face
of the wedge for which one of the y variables 1s equal to zero and exits when
another variable is equal to zero. The precise determination of these two faces can
be facilitated by adopting the terminology of linear programming. Let us define a
matrix L with » rows and with £+ 1 columns, where k is the number of vertices in
the simplicial subdivision. The jth column of L (for j<k) is the vector f(v/).
Column k+1 is defined to be c.

Assume, to be specific, that the path enters the wedge at a point where y; =0.
This corresponds to the statement that columns ( j,,..., j,. k+1) form a feasible
basis for the system of linear equations Ly=45. The path will exit at a point where
Y;,=0 and some other variable is set equal to zero; but this is precisely the same
as bringing the column f(v/') into the feasible basis and removing one of the
columns in the basis by an ordinary linear programming pivot step. If the column
f(v/) is removed the adjacent wedge is found by replacing the vertex v/ in the
simplex defined by v/',..., v/~ If the (k+ 1)st column is removed the algorithm
terminates since at this point we obtain a solution with r=0,
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To summarize, at each stage of the algorithm we are given a specific simplex
with vertices ©/', ..., v/». The columns of L associated with #n— 1 of these vertices
and the vector ¢ form a feasible basis for Ly =5b. We proceed by bringing into the
basis the column associated with the missing vertex, replacing the vertex whose
column has been eliminated from the feasible basis and continuing. The injtial
configuration is the simplex ¢,..., v" with v" absent and say v’ included, since
these n—1 vertices form a feasible basis along with column c¢. The algorithm
terminates when column c¢ is removed from the feasible basis by the pivot step.

To be completely tidy about our argument for Theorem 7.1, two observations
are in order. First of all the pivot steps which are required can always be carried
out. For if not the path would contain an infinite half-line in a single wedge. The
variable ¢ would necessarily be constant along this line so that g(x) would be
constant along a half-line extending to infinity, violating the second property of
7.3. Secondly, any degeneracy in the system Ly =5 must be avoided by one of the
devices of linear programming. Degeneracy means that the exit from a given
wedge may lead to more than one adjacent wedge with a bifurcation (as in Figure
7.4) of the piecewise linear path.

It should also be remarked that the parameter 7 need not be monotonic along
the path and that the set of solutions to G(x,7)=5 may contain piecewise linear
components other than the one constructed by our algorithm. These matters are
discussed in detail in Eaves and Scarf (1976).

In order to utilize the vector labeling algorithm it must be adapted to the
regular simplicial subdivision introduced in Section 5. We do this by associating
with a vertex v, on the boundary of the unit simplex, the vector label #(v) equal to
the ith unit vector in R” if v, is the first coordinate equal to zero. The algorithm
begins, as in Section 6, with the simplex, the numerators of whose vertices are
given by

d d+1 d+1 d
1 0 I 1
1 1 1 I
1 0 0
1 O 0 0 1]
Labels e” €2 st enl

*

and whose associated vector labels are all unit vectors. The vector labels associ-
ated with the first (n—1) vertices form a feasible basis, along with the vector c,
for the system Ly=b, if ¢ is selected so that b, /¢, <b, /c,. The first step is to
pivot into the basis the vector associated with the last column. We remove the
vertex associated with column n—1, find the new simplex, and continue. The
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Figure 7.4.

arguments of Section 6 may be used to show that we never depart from the unit
simplex and terminate after a finite number of iterations with a simplex whose
associated vector labels form a feasible basis for Ly=5.

8. The general equilibrium model with production

The methods of the previous section provide an exceptionally flexible technique
for the numerical solution of a wide variety of problems. They can be used to
approximate equilibrium prices in a general Walrasian model — with or without
production, to approximate fixed points of an upper semi-continuous point to set
mapping, to solve non-linear programming problems, and to determine a vector
in the core of an n-person game. Limitations of space make it impossible to
describe anything other than the application of vector labeling methods to the
determination of equilibrium prices, and even in this example we shall be forced
to restrict our attention to one of the many approaches which have been
suggested. The reader who is curious about other applications can consult Scarf
(1973) or other items in the bibliography at the end of the paper.

Consider a general equilibrium model specified by a strictly positive vector w of
assets prior to production, a set of market demand functions x(7) (assumed
continuous, homogeneous of degree 1, and to satisfy the Walras’ Law 7 x(7)=
7-w), and an activity analysis matrix

- 0 a;
= 0 0 as;
0 —1 a

We make the conventional assumption that Ay=0, y=0, implies y=0. A price
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vector #* and a non-negative vector of activity levels y* will be a solution to the
general equilibrium problem if

(1) x(#*)=w+Ap* and
(2) 7*A<0.

The following assignment of vector labels to the vertices of a simplicial
subdivision of the price simplex will provide an approximate solution:

8.1 [ Labeling rule]

Let 7 be a vertex of the simplicial subdivision. If 7 is on the boundary of the
simplex then {(7) is the i th unit vector where i is the first coordinate of 7 equal to
zero. If 7 is interior to the simplex we find that column a/ in the activity analysis
matrix for which 7+ ¢/ is maximal. If 7-a/>0, then {(7)= —a/. If 7-a/ <0, then
E(7)=x(7). Moreover, the vector b is defined to be w.

In order to apply Theorem 7.1 we must verify that the vector labels {(7/)
satisfy the condition that Eyjﬁ(vrf)so, y;=0 implies y;=0, for all j. This can
easily be shown to be a consequence of the assumption made about the activity
analysis matrix plus the fact that for each price vector 7, x(7)=0, and is positive
for at least one coordinate.

When the algorithm is applied we determine a simplex with vertices 7/,..., 7/s,
Several of these vertices will have associated vector labels which are the market
demand functions evaluated at the corresponding price; the remaining vertices
have labels which are the negatives of certain columns in the activity analysis
mattix. With an obvious change in notation the equations Ly=5 can be written as

2yx(n))= Zyid' <w.

The Labeling Rule 8.1 permits us to make the following statement. In the above
inequality ;>0 implies that at prices 7/ all activities make a profit <0, and
y; >0 if for some vertex of the final simplex a’is the activity which makes the
largest profit, and it is positive. Moreover the ith row will be an equality unless
some vertex of the final simplex has its ith coordinate equal to zero.

It may be shown that the activity levels y; and a suitable average of the prices
in the final simplex are an approximate equilibrium in the sense that the two
defining properties are approximately satisfied. This is a rather tedious argument,
however, which can be circumvented by imagining that the problem has been
solved for an infinite sequence of grids whose mesh tends to zero. We then select
a subsequence of solutions, whose vertices tend to a price vector 7* and whose
activity levels tend to a vector y*. The above inequalities become

y*x(m*)— Zyfa'<w.
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The labeling rule now provides us with the following information:
8.2 [Consequences of the labeling rule]

(1) If y*>0, then 7*4<0.

(2) If pF >0, then a' is a column which maximizes profit at prices #*, and
7*a' =0.

(3) If m* >0, then the ith row in the above inequality is, in fact, an equality.

In order to show that 7* and { yf} form a competitive equilibrium we begin by
demonstrating that y*>0,
If y*=0, we see that —2 y*a'<w and as a consequence of (3):

— DyEn*at=a*w,

But this is impossible since the right-hand side is positive and the left non-positive,
We see that y*>0 and therefore 7*A4<0. In conjunction with (2) we can now
argue that 7*-a' =0 for any activity with y# >0. It follows that 2 y}n*-a"' =0,
and as a consequence

yro*ex(w*)=n*-w.

Making use of Walras’ Law, y* is therefore equal to 1, and our imequalities
become

x(m*)sw+ D yrd,

with equality if the /th price is positive. This concludes the argument that 7*, y*
are an equilibrium solution.

In order to illustrate this algorithm we consider an example, discussed in detail
in Scarf (1967a), of a general equilibrium model with production. There are six
commodities which can be described as follows:

(1) Capital available at the end of the period.

(2) Capital available at the beginning of the period.
(3) Skilled labor.

(4) Unskilled labor.

(5) Non-durable consumer goods.

(6) Durable consumer goods.

The activity analysis model of production is given by the following matrix, in
which the six columns representing disposal activities have been omitted.
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Activities

Commodity 7 8 9 10 11 12 13 14
I 4 4 1.6 1.6 1.6 0.9 7 8
2 —53 -5 -2 ) -2 —1 -4 =5
3 -2 -1 -2 —4 -1 0 -3 =2
4 —1 —6 —3 —1 -8 0 -1 -8
5 0 0 6 8 7 0 0 0
6 4 3.5 0 0 0 0 0 0

In addition to the specification of production possibilities, we assume that there
are five consumers who, at the beginning of the period own positive quantities of
goods 2,3,4,6 according to Table 8.1.

Each consumer will be assumed to have a C.E.S. utility function, of the type
used in Section 6 and with the set of parameters shown in Table 8.2.

The parameters b are given by:

Consumer b
1 1.2
2 1.6
3 0.8
4 0.5
5 0.6

To solve this problem a denominator D=200 was selected, and the Labeling
Rule 8.1 was used. After approximately 2200 iterations the simplex whose

Table 8.1.
Consumer Commodity
2 3 4 6
1 3 5 0.1 1
2 0.1 0.1 7 2
3 2 6 0.1 1.5
4 1 0.1 8 1
5 6 0.1 0.5 2
Table 8.2.
Consumer Utility parameters
1 4 0 0.2 0 2 3.6
2 0.4 0 0 0.6 4 1
3 2 0 0.5 0 2 1.5
4 5 0 0 0.2 5 45
5 3 0 0 0.2 4 2
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numerators are given by the columns of the following matrix was obtained:

44 44 44 44 44 45
47 48 48 48 48 47
35 34 35 35 35 35
12 12 11 12 12 12
22 022 22 21 22 R
40 40 40 40 39 39

Five of these six columns have associated vector labels which are the negatives
of activities 7, 9, 10, 11 and 13. The corresponding weights Y/ can be used as
approximations to the equilibrium activity levels. In order to obtain an approxi-
mate equilibrium price vector the columns were averaged, to obtain:

Equilibrium prices

0.220833 0.238333 0.174167 0.059167 0.109167 0.198333

These prices were used to calculate the table of profitabilities (Table 8.3) and to
evaluate the consumer market demand functions (Table 8.4).

As can be seen, the approximation is not exceptionally accurate; in particular,
the discrepancy between supply and demand is fairly large for certain commodi-
ties. An improvement in accuracy can be obtained by selecting a much finer grid,
but this is a very expensive procedure since it requires us to initiate the algorithm

Table 8.3.
Activity Level Profit
7 0.468253 0.006000
8 0.0 —(.143333
9 3.127146 0.005833
10 0.188899 —{0.005833
11 0.165613 —0.006667
12 0.0 —0.039583
13 0.365860 0.010833
14 0.0 —0.246667
Table 8.4.
Commodity Demand Supply
1 11.188389 10.004686
2 0.0 1.191501
3 1.099712 2.090414
4 2.731755 3.970645
5 23.079518 21.433357
6 9.705318 9.373014
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at a vertex of the simplex and to discard the information we have already
obtained as to the approximate location of the equilibrium price vector. Alterna-
tively there are numerical methods ~ essentially adaptations of Newton’s method
to systems of non-linear inequalities — which can be used to improve the current
approximation. But neither of these approaches are remotely as good as the
algorithms of Merrill and Eaves which are described in the next section.

9. The algorithms of Merrill and Eaves

The computational methods we have discussed in the previous sections have two
major drawbacks. First of all they require the algorithm to be initiated at a vertex
of the unit simplex - or, as in Kuhn’s version of integer labeling, at a boundary
point of the simplex. If an answer is obtained with a fixed grid, whose accuracy is
inadequate for the problem at hand, the algorithm must be restarted with a finer
grid and the results of the previous calculations discarded completely. The
algorithms introduced by Merrill (1972) and Eaves (1972) permit the computation
to be initiated at an arbitrary point on the simplex and allow a continual
refinement of the grid. They yield a vast improvement in computational speed
over the earlier algorithms which require a fixed simplicial decomposition and are
used in virtually all practical applications of fixed point methods.

Merrill’s method, which is essentially identical to the “sandwich” method
subsequently introduced by Kuhn and MacKinnon (1975), is particularly simple
to describe. In order to introduce the basic idea of Merrill’'s method, let us
consider the case in which the unit simplex is one-dimensional and where the
basic problem is to be solved by integer labeling techniques. The interval
{(xy, x3)|x; =0, x, +x, =1} is subdivided with some preassigned grid size D. The
vertices in the subdivision will be of the form (k,/D, k, /D) with k, and k,
non-negative integers summing to ). The numerators of the vertices of a typical
simplex in the subdivision will be given by

k, k +1

ky ky—1|
The vertex defined by (0, D) will be given the label I and (D,0) the label 2. The
customary integer labeling methods starts at one of these extreme vertices and
moves into the simplex until we first encounter a vertex with the other label.

Let us imagine that we have an initial guess as to where the true answer lies,

given by the vector (kf /D, k¥ /D), with k¥, k% non-negative integers adding to
D. Merrill’s algorithm incorporates this additional information by drawing the

simplex k, +k, =D—1, and subdividing the resulting two dimensional figure (see
Figure 9.1).
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Figure 9.1.

In Figure 9.1, D=6, and the integer labels on the upper simplex are assumed to
be derived from the problem at hand. The integer labels on the lower simplex will
be based on the initial guess (¥, k%) which in this particular example we assume
to be (3,3). On the lower level the pair (k,, k;) will be given the label ;, if i is the
first coordinate for which &, <k }*.

Merrill’s algorithm moves through a sequence of two-dimensional simplices,
each defined by three vertices. We begin at the simplex

k¥ k-1 k?
ks kr o kr—1|

two of whose vertices are on the artificial level and one vertex on the original
simplex. The initial simplex has been constructed in such a way that the two
vertices on the artificial level bear the labels 1 and 2, one of which is shared with
the vector (k¥, k%). We remove that vertex on the artificial level with the doubled
label and continue until we are forced to exit through the original face of the
“sandwich”. At that point we have found a completely labeled simplex whose
labels derive from the original problem. If the accuracy which has been achieved
is not adequate we repeat the calculation, with say a doubled grid size, and with
the new guess given by a choice of one of the vertices in the completely labeled
simplex. Since the grid size grows exponentially we can expect a high degree of
precision in a relatively small number of iterations.

The layer which is subdivided is part of a two-dimensional simplex, obtained
by introducing an additional coordinate k,=D—k —k,. With this notation the
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initial simplex may be represented by

0 ! 1
kP oki—1 kb
ko kr kil

This permits us to make use of the regular simplicial subdivision based on the
vertices (kg, k|, k,) with 25k, =D, and, in particular, to exploit the simplicity of
the replacement step. Of course, vectors on the artificial level will have k, =1,
and those on the original level &k, =0.

Let us generalize these observations by considering a problem of size n, and by
making use of vector labeling. We are concerned with the set of mon-negative
mntegers (k|,.... k,) summing to D. Each such vector has associated with it a
vector label [(k) in R", derived from the problem at hand, and satisfying the
condition that (k) is the ith unit vector in R" if k;, is the first coordinate equal to
zero. We wish to determine a simplex in the subdivision such that a non-negative
linear combination of the associated vector labels equals a preassigned positive
vector b. In addition, we are given an initial guess (k¥,..., k¥) as to the solution.

The set of vertices is enlarged by considering an additional coordinate &, and
the regular simplicial decomposition based on the set of vertices (kg, k,,..., k)
with k,>0, 20k, =D. Only those vertices with k,=0,1 are relevant for the
computation and these are associated with vector labels in R" (not R"*!)
according to the following rule:

9.1. [ Labeling rule for Merrill’s algorithm)|

A vector k=(kg, k..., k) will, if k; =0, receive the label {(k,...., k,). If ky =1
the vector label is the /th unit vector in R” if / is the first coordinate for which
k,<kF.

The initial simplex is given by the columns of the following (n+1)X(n+1)
matrix:

0 1 I
Kkt k-1 Kt
kiook: ki

If the rows and columns of this matrix are indexed from 0,..., n, we see that
columns 1,..., n have as vector labels the » unit vectors in R”. These vector labels
form a feasible basis for the system Ly=5. The vector label associated with the
zeroth column derives from the original problem.
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Figure 9.2.

The first step of the algorithm is to introduce this latter vector into the feasible
basis, by a pivot step. One of the other vectors i1s eliminated and its replacement
found by determining an adjacent simplex. The vector label associated with the
new vertex is brought into the feasible basis, and we continue.

The algorithm terminates when the simplex contains n vectors whose coordi-
nate is 0 (i.e. vectors whose labels come from the original problem) and a single
vector whose zeroth coordinate is 1 and whose associated column has just been
removed from the feasible basis by a pivot step. The labels associated with these #
vectors therefore form a feasible basis for Ly =bh, and we have obtained a
solution to the original problem. If the accuracy is not adequate the algorithm is
repeated with a higher value of D.

The argument for the second algorithm of Section 6 can be used to show that
we never depart from the “sandwich” other than through the top face. Demon-
strating that the algorithm cannot cycle is also a simple application of the types of
analysis used in previous sections.

Merrill’s method may be viewed in terms of homotopy theory. We take the
product of the unit simplex and the closed unit interval [0, 1] and subject it to a

—t

e
~
~

Xg

Figure 9.3.
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simplicial subdivision all of whose vertices lie on one of the two bounding planes.
We construct a piecewise linear mapping of this product into the unit simplex
which approximates the true mapping on the face x, =0. On the face x, =1 the
mapping is chosen so as to have a unique fixed point. Merrill’s method essentially
traces the fixed point from one face to another, as in Figure 9.2.

Eaves’ method, on the other hand, involves a simplicial decomposition of the
product of the unit simplex and the half line [0, c0) with the grid becoming finer
as the coordinate x, increases (Figure 9.3). Eaves’ method has the distinct
advantage that the vector labels obtained at the previous level are retained. This
means that the Jacobian of the mapping is utilized rather than a single estimate of
the fixed point. Eaves’ method does, however, require the construction of a
simplicial decomposition of the product space with exponentially decreasing grid
size and this is rather complicated to work with.

In applying Merrill’s algorithm to the general equilibrium model of the last
section we began with a small value of D and an initial estimate of £*=(9,9, 8, 8, 8).
The grid size was then tripled a total of nine successive times. In roughly 2000
iterations — essentially the same as that required by a fixed grid size of 200 — the
following simplex was obtained:

216827 216827 216827 216827 216827 216828
247077 247077 247077 247078 247078 247077
158471 158472 158472 158471 158471 158471
54073 54072 54072 54072 54073 54073
104398 104398 104399 104399 104398 104398
203304 203304 203303 203303 203303 203303J

Any of these columns can be taken as an estimate of the equilibrium price vector,
after division by the sum of the entries in the column,

Equilibrium prices

0.220319 0.251057 0.161024 0.054943 0.106080 0.206578

Table 8.6.
Activity Level Profit
7 (.463533 —0.000003
8 0.0 —0.141668
9 3.939607 —0.000001
10 0.006050 —0.000002
11 0.0 —0.007615
12 0.0 —0.052769
13 (.438389 —0.000006

14 0.0 —{.254323
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Table 8.7.
Commodity Demand Supply
1 11.234238 11.235904
2 0.0 —0.001595
3 1.155703 1.154355
4 2.974338 2.973208
5 23.682987 23.686038
6 9.354235 9.354134

These prices may then be used to calculate the profits shown in Table 8.5 in
which the activity levels are derived from the weights in the final feasible basis.

Table 8.7 illustrates the relationship between supply and demand based on
these prices and activity levels. As can be seen the degree of approximation has
been substantially improved — with no increase in computational cost — over the
answer based on a fixed grid size.
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