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In a series of recent papers I have introduced a particular class of convex polyhedra in R", 
arising in the study of integer programming problems with n variables. In the present paper a 
detailed analysis of these polyhedra will be given for the case in which n = 3; the analysis is 
based on an unpublished theorem demonstrated several years ago by Roger Howe, which 
seems to have no immediate generalization to higher values of n. 

1. Introduction. In a series of recent papers [Scarf 1977, 1981, Part I; 1981, Part 
II], I have introduced a particular class of convex polyhedra in R n, arising in the study 
of integer programming problems with n variables. In the present paper a detailed 
analysis of these polyhedra will be given for the case in which n = 3; the analysis is 
based on an unpublished theorem demonstrated several years ago by Roger Howe, 
which seems to have no immediate generalization to higher values of n. 

The arguments of the paper are elaborate. It is possible, however, to state an 
important consequence without any reference to the details of these arguments, and 
this will be done in order to provide the reader with some appreciation of the scope of 
the paper. 

Let 

aol a02 a03 

A al a12 a13 
a21 a22 a23 

a31 a32 a33 

be a matrix with real entries. We shall be concerned with the set of integral vectors 
h = (hl,h2,h3) which satisfy the linear inequalities Ah > b, where b = (bo, b ,b2,b3); 
for each such b we assume that the cardinality of this set is finite. 

The set of solutions to a system of linear inequalities is a convex set when the 
variables are permitted to assume arbitrary real values. The property of convexity is 
indispensable in developing the simplex method for the solution of linear programming 
problems and in demonstrating the major theorems of linear activity analysis. The 
absence of convexity, when the solutions to the system of linear inequalities are 
required to be integral, is the basic difficulty in the study of integer programming 
problems. 

Our major conclusion will be to show that a very weak but useful version of 
convexity can be established for the integral solutions of Ah > b, when A has four 
rows and three columns. We shall demonstrate that each such matrix A has associated 
with it a family of parallel planes 1,hI + 12h2 + 13h3 = c with 1l,12,13 specific integers 
whose greatest common divisor is unity, and with c assuming arbitrary integral values. 

*Received July 7, 1982; revised April 20, 1984. 
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The planes will depend only on A and not on the right-hand side b; they will possess 
the following property: 

For any b, if the system Ah > b has integral solutions on each of the two planes 
/1h1 + 12h2 + 13h3 = c and l,h, + 12h2 + 13h3 = c', then the same system will have 
integral solutions on each intermediary plane lAh1 + 12h2 + 13h3 = c", with c" an 
arbitrary integer between c and c'. 

As we shall see, a knowledge of this family of parallel planes will permit us to solve 
the integer programming problems associated with A, by solving the corresponding 
two variable problems on each such plane. Specifically the solution on such a plane 
will permit us to say on which side of the plane the optimal solution to the original 
three variable problem lies. This is an unexpected form of decoupling which would be 
of great significance for integer programming if a suitable analogue could be found for 
higher values of n. 

Let us now introduce the class of convex polyhedra whose analysis forms the basis 
for the conclusion. 

1.1 DEFINITION. Let Z7 be the lattice of points with integral coordinates in Rn. A 
bounded convex polyhedron in R n is defined to be an integral polyhedron if its vertices 
are in ZE, and if it contains no members of 7Z" other than its vertices. 

The basic problem is to provide a characterization of integral polyhdera, up to a 
unimodular transformation, i.e. a linear transformation which preserves the lattice 7n. 
The following theorem provides an upper bound on the number of vertices of such a 
polyhedron. 

1.2 THEOREM. The number of vertices of an integral polyhedron is less than or equal 
to 2n. 

The proof of this theorem is based on the observation that if there are more than 2n 
vertices, then there will necessarily be at least one pair, say v1 and V>2, with v,/ 
- v2mod(2) for i = 1,2, . . . , n. The point (vI + v2)/2 will therefore be in the polyhe- 
dron, contradicting the definition. 

The unit hypercube in R is an example of an integral polyhedron with the maximal 
number of vertices. As we shall see, however, when n > 3, the typical integral 
polyhedron is much more complex and cannot be reduced to the unit hypercube by a 
unimodular transformation. In particular the volume of such a figure-which is a 
unimodular invariant-can be arbitrarily large. Our inability to draw on theorems 
from the Geometry of Numbers, which relate the volume of convex polyhedra to the 
number of lattice points they contain, is based on the fact that integral polyhedra need 
have none of the symmetry properties which are indispensable in this area. 

Integral polyhedra have a very simple characterization when n = 2 (see Scarf 1981, 
Part II). The number of vertices is either three or four; in the former case a necessary 
and sufficient condition that a triangle with integral vertices be an integral polyhedron 
is that it have an area of 1/2. Moreover it can be transformed by a unimodular 
transformation to the triangle of Figure 1. 

A planar polyhedron with four vertices is an integral polyhedron if and only if it is a 
parallelogram with integral vertices and unit area, therefore equivalent under a 
unimodular transformation to the unit square. Prior to such a transformation the 
parallelogram may take a more general form, as illustrated in Figure 2, where the 
vertices are given by 

(?0) (Y)' ( ) 
with (p,q) positive integers which are prime to each other, with (/3,,y) and (/3', ') 
nonnegative integers satisfying 8fq - yp = 1, and /3 + /3' = p, y + y' = q. 

404 

http://www.jstor.org/page/info/about/policies/terms.jsp


INTEGRAL POLYHEDRA IN THREE SPACE 

(Bl',') 

.Y) 

FIGURE 1 FIGURE 2 

When n = 3, the number of vertices of an integral polyhedron can be 4, 5, 6, 7 or 8. 
Figure 3 provides an example of such a polyhedron with eight vertices. Four of the 
vertices lie on the plane hi = 0, and form the vertices of the square; the remaining four 
vertices are those of an arbitrary parallelogram of unit area on the plane h1 = 1, say 
(1,0, 0), (1, /3, y), (1, /3', y') and (1, p, q), with the same notation as before. The convex 
hull of these eight points clearly contains no other lattice points. 

An easy way to see that this polyhedron is not equivalent to the unit cube under a 
unimodular transformation is to notice that it contains, as a proper subset, the 
tetrahedron shown in Figure 4 with vertices 

0, 1, O, p, 
10O 0, J1, q, 

whose volume is given by (p + q)/6. An alternative argument is that the number of 
faces of this polyhedron will, in general, be larger than the number of faces of the unit 
cube. 

Howe's remarkable result is that the polyhedra of Figure 3 are-up to a unimodular 
transformation-the most general integral polyhedra in 3-space. 

1.3 [HOWE's THEOREM]. An integral polyhedron with eight vertices in 3-space can, by 
a unimodular transformation, be brought into the form where the vertices are given by the 
columns of the following matrix: 

0 0 0 0 00 11 1 1 1 
0 1 0 1 0 3 /' p, 
0 0 1 1 0 y y' q 

with p, q positive integers which are prime to each other, and with (/3, y), ( /', y') 
nonnegative integers satisfying /Sq- yp = 1, /3 + /3' = p, y + y' = q. Moreover an inte- 
gral polyhedron with fewer than eight vertices is a subset of an integral polyhedron with 
eight vertices. 

An argument for Howe's theorem will be provided in ?3 of this paper. An equivalent 
statement of the theorem, given our description of planar integral polyhedra, is that 
there is a unimodular transformation which places the vertices of an integral polyhe- 

(1,p,q) 

(0,0,1) 

hl 1 (1,0,0) 
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dron in 3-space on the two planes h1 = 0 and h, = 1. It will be useful for us to describe 
Howe's theorem in a form which does not involve such a transformation; we introduce 
the following definition: 

1.4 DEFINITION. A plane in 3-space will be termed a lattice plane if it passes 
through three noncollinear lattice points. Two parallel lattice planes will be said to be 
adjacent if there are no lattice points between them. 

An alternative form of Howe's theorem is therefore 

1.5 [ALTERNATIVE FORM OF HOWE'S THEOREM]. The vertices of an integral polyhe- 
dron in 3-space lie on two adjacent lattice planes. 

The term characteristic plane will be used to describe the lattice plane (or one of its 
parallel translates) associated with a given integral polyhedron. Typically such a 
polyhedron will have a unique characteristic plane associated with it, though there are 
examples, such as the unit cube, with several characteristic planes. Howe's theorem 
gives rise to an obvious conjecture about the form of integral polyhedra with 2n 
vertices in n-space, i.e. that all of the vertices lie on two adjacent lattice planes of 
dimension n - 1. Unfortunately there are simple examples which show that this 
conjecture is false when n = 4, and the true nature of integral polyhedra in higher 
dimensions is not known. 

2. The collection of integral polyhedra associated with an integer program. Integral 
polyhedra arise in a very natural way in the study of integer programming problems. 
Let 

a01 o .. an 

al1 * * * aln 
A _ 

am1 .1 * .amn 

be an (m + 1) x n matrix and h = (hl, . . , hn) a typical lattice point in n-space. We 
make the following simplifying assumptions about the matrix A. 

2.1 ASSUMPTION. The entries in each row of A are independent over the integers, in 
the sense that the origin is the only lattice point satisfying any one of the m + 1 equalities 
,Eja,hj = 0. Moreover the set of lattice points satisfying the inequalities 

a01 * . . aon bo 

all ... aln bl 
a,, alnh > 

am *.* amn bm 

is assumed to be finite for any choice of the right-hand side. 

Consider a placement of these inequalities, given by a particular value of the 
right-hand side, so that the region defined by the inequalities is free of lattice points. 
Enlarge the region by relaxing the inequalities until no further relaxation is possible 
without introducing a lattice point. In this process some of the constraint planes may 
be relaxed to infinity; the remaining planes will be relaxed so that they contain a single 
lattice point. Clearly, the convex hull of the lattice points obtained by this process will 
be an integral polyhedron. Figure 5 illustrates the construction with five inequalities in 
2-space. The resulting integral polyhderon is given by the parallelogram of unit area 
defined by the dashed lines. 
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FIGURE 5 

The reader may easily verify that a variety of parallelograms arise when these 
inequalities are relaxed in a different order, or if the process begins with a different 
lattice free region. In n-space as well, the constraint matrix A will have associated with 
it a collection of integral polyhedra obtained by relaxation of the constraint planes 
from an arbitrary lattice free region. Many of these polyhedra will be equivalent to 
each other under translation; the number of equivalence classes will typically be finite 
but large. 

In order to describe the role played by the collection of integral polyhedra asso- 
ciated with the matrix A in the solution of integer programming problems, we 
introduce the following definition of neighboring lattice points. 

2.2 DEFINITION. Let the matrix A be given. Two lattice points h and k are defined 
to be neighbors if they are vertices of an integer polyhedron obtained by relaxing the 
constraint planes from a lattice free region. 

Consider an integer program of the form 

max aol0h + * * * + anhn 

allhl + * * * + alnhn > b1 

amlhI + ... + amnhn > bm 

with h = (hi, ... , hn) integral. An integral point h which satisfies the inequalities of 
the programming problem is said to be a local maximum if every neighbor of h either 
violates one of the inequalities, or yields a lower value of the objective function than 
does h. The following theorem is demonstrated in Scarf [1981, Part I]. 

2.3 THEOREM. For any value of the right-hand side, a local maximum to the integer 
program is global. 

It is of interest to inquire whether there are alternative definitions of neighborhoods, 
based on the matrix A, for which a local maximum is global. For each lattice point h, 
let N(h) be a finite set of lattice points called the neighborhood of h. We require such a 
neighborhood system to have the following two properties: 

1. N(h) =_ N(O) + h, 
2. The neighborhoods are symmetric in the sense that h E N(0) implies that 

-h E N(0). 
The first property states that neighborhoods associated with two different lattice 

points are translates of each other, and the second implies that if h E N(k), then 
k E N(h). Figure 6 illustrates a typical neighborhood of the origin that might arise 
from a matrix A with two columns. 

The following converse to Theorem 2.3 is also demonstrated in [Scarf, 1981, Part I]. 
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(0,0) 

FIGURE 6 FIGURE 7 

2.4 THEOREM. Let N(h) be a neighborhood system with the property that a local 
maximum to the integer programming problem is a global maximum, for all right-hand 
sides. Then N(h) contains all of the neighbors of h given by Definition 2.2. 

These two theorems imply that the collection of integral polyhedra obtained by 
relaxing the constraint planes from a lattice free region provides the unique minimal 
neighborhood system for which a local maximum is global for all integer programs 
obtained by specifying the right-hand side. This result motivates the study of the 
particular class of integral polyhedra which are associated with the specific matrix A. 

The second major result of the present paper-in addition to Howe's theorem-will 
be the demonstration that an important property is shared by all of the integral 
tetrahedra associated with a matrix A with four rows and three columns. This property 
will suggest a rapid computational procedure for integer programs with three variables 
and three inequalities. Before describing this result, however, it is useful to discuss the 
two variable problem drawing on the material presented in Scarf [1981, Part II]. 

If the matrix A has three rows and two columns the associated integral polyhedra 
are planar triangles of area 1/2. It can be shown that, up to translation, only two 
triangles arise, which may-by a unimodular transformation-be brought into the 
form displayed in Figure 7, i.e. the two triangles obtained by slicing the unit square 
along one of its diagonals. 

When A has four rows and two columns the associated integral polyhedra are 
triangles of area 1/2 and parallelograms of area 1. The collection of parallelograms 
exhibits a very specific structure. Consider a particular parallelogram with vertices 
given by the columns of the matrix 

0 f/ /' p 
0 y y' q 

with ,B + pf' = p, y + y' = q, and /fq - yp = 1. The two parallelograms obtained by 
replacing either (/,,y) or (/f', y') by their reflections through (p,q) will be called 
successors of the original parallelogram, as in Figure 8. The two parallelograms 
obtained by replacing (p,q) by its reflection either through (/3,y) or (/3', y') will be 
called predecessors of the original parallelogram. A chain of parallelograms is a linearly 
ordered finite sequence of parallelograms, with each parallelogram followed by one of 
its two possible successors. There are, of course, 2'-l different chains of length 1, 

( ', Y') (p,q) 

(0,0) (? ) , ) 

(0,0) (0,0) 

FIGURE 8 
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D-z7-- 
FIGURE 9 

starting with a specific initial parallelogram. Figure 9 illustrates a particular chain 
beginning with the unit square. Since the chain is linearly ordered there will be no 
ambiguity in using the terms right and left to refer to successors and predecessors. 

A proof of the following theorem may be found in Scarf [1981, Part II]. 

2.5 THEOREM. The integral polyhedra associated with a matrix with 4 rows and 2 
columns consist of triangles and parallelograms. Up to translations, the parallelograms 
form a chain. There are two pairs of triangles, the first pair obtained by slicing the initial 
(or leftmost) parallelogram through the diagonal not containing the origin, and the second 

pair obtained by slicing the final (or rightmost) parallelogram through the diagonal which 
does contain the origin. 

If the chain is given as in Figure 9, the two pairs of triangular polyhedra are as in 
Figure 10. Each of the triangles is obtained by relaxing the constraint lines from a 
lattice free region, with a particular line being relaxed to infinity. 

Now let us turn our attention to a matrix A with 4 rows and 3 columns. Each 
integral polyhedron associated with A will be a tetrahedron, and by Howe's theorem 
will have a characteristic plane so that the four vertices are contained on this plane 
and an adjacent plane. Two tetrahedra which are translates of each other will, of 
course, have parallel characteristic planes which are identified as being the same. 
There may however be a substantial number of nontranslation equivalent tetrahedra 
arising from the same matrix A, and there is no apparent reason to think that they 
share a common characteristic plane. But as the following theorem indicates they do 
indeed. 

2.6 THEOREM. The integral tetrahedra arising from a 4 x 3 matrix have a common 
characteristic plane. 

The proof of Theorem 2.6 is extremely lengthy, and will be given after Howe's 
theorem is demonstrated in the next section. Theorem 2.6, of course, implies Howe's 
theorem for tetrahedra, since any particular integral tetrahedron is the relaxation from 
a lattice free region of some system of four inequalities in three spaces. 

The theorem may be interpreted in terms of the minimal neighborhood system for 
which a local maximum is global when the integral program consists of three variables 
and three inequalities. It states that, after a unimodular transformation, the neighbors 
of any lattice point (h,h2, h3) will have their first coordinates equal to h1 - 1, h1, or 
h1 + 1. If the three variable problem is solved as a two variable problem on the plane 
h~ = a, a sufficient condition for optimality is therefore that no improvement be 
possible on the two planes h1 = a ? 1. 

FIGURE 10 
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3. Howe's theorem. We begin by demonstrating Howe's theorem for tetrahedra. 
We have the following preliminary lemma: 

3.1 LEMMA. An integral tetrahedron can, by a unimodular transformation, be brought 
to the form in which the four vertices are 

0, 1, 0, y, 
.0~ .00 ,1 ,z. 

with x > O, y > O0, z > 1. 

Take an arbitrary face of the tetrahedron, and by a unimodular transformation, 
bring it to the plane z = 0. The three vertices on this plane form an integral triangle 
which can therefore be put in the form 

0, 0, 1, 

and without loss of generality we may assume that the fourth vertex (x, y, z) has z > 1. 
For any integers a and b the transformation 

x' = x - az, 
y'= y-bz, 
z' = z, 

is a unimodular transformation which leaves the first three vertices unchanged. By an 
appropriate choice of a and b, we can make 0 < x' < z and 0 < y' < z. Without loss 
of generality we may therefore assume that the fourth vertex satisfies 0 < x < z and 
0 < y<z. 

If z < x + y, then 

I 0' 1 0 x 

1 =a 0 + a2 0 + a2 1 + a4 y 

with a4= l/z, 3 = 1 -y/z > 0, a2 = 1 - x/Z > 0, and a, = 1 - a2 - a3 - a4 
= (x + y - z - l)/z > 0, contradicting the assumption that the tetrahedron contains 
no lattice points other than its vertices. It follows that z > x + y. 

The unimodular transformation 

x' = x, 

Y= Y 
z' = -x-y+z+l1, 

brings the four vertices to the form 

1I 0 0 x 

0, 1, 0, y, 
.0, .0, J., 1z' 

with x > 0, y > 0, z' > 1. This demonstrates 3.1. 
Let the four vertices now be as in Lemma 3.1. These vertices will clearly lie on two 

adjacent planes if x or y is zero or one, or if z equals one. In order to demonstrate 
Howe's theorem it is therefore sufficient to show that there is a fifth lattice point in the 
tetrahedron whenever x, y, z are all strictly greater than unity. 

We do this in two steps: first we demonstrate that a certain function-whose 
definition is based on the integers x, y, z-must be a linear function of its argument if 
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there is no other lattice point in the tetrahedron. Secondly we show that the linearity of 
this function implies that one of the three integers x, y,z must indeed be equal to 
unity. 

3.2 LEMMA. Let a tetrahedron have the four vertices of Lemma 3.1 with x, y,z > 1. 
Let D = x + y + z - 1, andfor h = 1, . .., D-1 define 

f(h) = F 1 + F 1 + F 1 

where [t] is the least integer > t. Then, if the tetrahedron is an integral tetrahedron, it 
will be true that f(h) = h + 2, for h = 1, . . . , D - 1, and moreover that x, y, z are each 

prime to D. 

In order to demonstrate Lemma 3.2 we assume first that f(h) < h + 1 for some 
h = 1,2, ... ., D - 1. We can then define a lattice point (a, b, c) by 

and a + b + c = h + 1. But such a lattice point will be a convex combination of the 
vertices of the tetrahedron, since 

a,I 
1 0 0 x a2 

b = 0 1 0y with 
vc/ -0 0 1 z_ a4 

a, = a- xh > 0, a2= b-y >0, 03 = --c z- h > 0, 04-= 
h > 0, 

and j4aj = 1. It follows that if the tetrahedron is indeed an integral polyhedron, we 
must have f(h) > h + 2. 

To complete the proof of Lemma 3.2 we distinguish two subcases: 
1. x, y and z are all prime to D. In this case it is trivial to verify that f(h) + f(D - h) 

- D + 4. The simultaneous inequalities f(h) > h + 2, and f(D - h) > D - h + 2, 
therefore imply that each is an equality. 

2. One of the integers, say x, has a common factor with D. But then xh/D is an 
integer for some integral h with 1 < h < D - 1, and for that value of h we must have 
f(h) + f(D - h) < D + 3. It follows that either f(h) < h + 1 or f(D - h) < D - h + 1, 
and either one of these inequalities is sufficient to produce a fifth lattice point in the 
tetrahedron. Lemma 3.2 has therefore been demonstrated. 

We now turn to the second and more difficult part of the proof of Howe's theorem 
for tetrahedra by showing that the conditions f(h) = h + 2, and x, y,z each prime to 
D, are inconsistent with x > 2, y > 2, z > 2. Several arguments are available; we adopt 
one using elementary number theoretic considerations. Begin by constructing the 
table: 

h 

1 x y z 
2 2x 2y 2z 
3 3x 3y 3z 

D-1 (D-1)x (D- )y (D-1)z 

with all entries reduced modulo D. Observe that the sum of two rows in this table, or 
an integral multiple of any row in the table, when reduced modulo D, is either 
identically zero or equal to another row of the table. 

411 

http://www.jstor.org/page/info/about/policies/terms.jsp


412 HERBERT E. SCARF 

Since [hx/Dl = f(h - l)x/Dl + 1 if hxmod(D) < x, and [hx/Dl = [(h - l)x/Dl 
otherwise, it follows that in each row of the table (other than the first) precisely one of 
the three conditions (hx)mod(D) < x, (hy)mod(D) < y, (hz)mod(D) < z must hold if 
the function f(h) is to be linear. 

For example when (x, y, z) = (2, 3, 7), D = 11 and the table is given by 

h f(h) 

1 2 3 7 3 
2 4 6 3 4 

3 6 9 10 4 
4 8 1 6 6 

5 10 4 2 7 

6 1 7 9 8 
7 3 10 5 9 

8 5 2 1 11 
9 7 5 8 11 

10 9 8 4 12 

In each row an entry is underlined if it is less than the corresponding entry at the top 
of its column. As may be seen f(h) - f(h - 1) is equal to the number of underlined 
elements in row h. There are no underlined entries in row 3; this implies that f is not 
linear and the tetrahedron whose vertices are the three unit vectors and (2,3,7) 
contains an additional lattice point. 

Now let us turn to the details of the argument that x, y,z > 2, and each of these 
integers prime to D is inconsistent with the linearity of f(h). Since x, y,z are prime to 
D each column of the above table must be a permutation of 1,2, . .. ., D - 1. It 
follows that there are 3 rows of the table in the form 

D- 1 a2 a3 

bi D- 1 b3 

ci c2 D- 1 

Observation 1. If x, y,z > 2, the three rows are distinct. If this were not so, there 
would be an h with, say, hx -D - I mod(D) and hy -D - I mod(D). But then 
(D - h)x 1 mod(D), (D - h)y - 1 mod(D), and row D - h of the table would 
contain at least two underlined elements, contradicting the linearity of f(h). 

Observation 2. If x, y,z > 2, the entries in the above three rows are all different 
from 1. Suppose to the contrary that a2 = 1. But theny(D - l),y,ya3mod(D) is a row 
in the table. Since the entry y appears in the second column in the first row only, we 
must have y(D - 1) x mod(D), and therefore (x + y)- Omod(D). But D = x + 

y + z - I and this implies z = 1. 
Observation 3. If a2 <y then b3 < z and c, < x. Assume to the contrary that 

a2 <y and b < x. Then D- + bl,D- 1 + a2,a3 + b3mod(D), or bI - l,a2- 1, 

a3 + b3mod(D) is equal to hx,hy,hzmod(D) for some h, Since a2 - 1 7- 0, this is an 
actual row in the table with at least two underlined entries. This contradiction implies 
b3 < z, and a similar argument shows that c1 < x. 

Without loss of generality we may therefore assume that the underlined entries in 
these three rows are 

D- 1 a2 a3 

b1 D- 1 b3 

c, c, D-1 I z 
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Observation 4. bI + c, < D, a2 + c2 < D, a3 + b3 < D. To see this we again add 
the first two of these rows mod(D), and obtain b1 - I,a2 - 1,a3 + b3mod(D). But 

a3 + b3 < D- 1 + z. We cannot therefore have a3 + b3 < D, since this implies that 

a3 + b3mod(D) < z. The other two inequalities are verified by similar arguments. 
The final argument which contradicts x, y, z > 2 is obtained by adding the three 

rows together mod(D) and obtaining the row b1 + cI - 1, a2 + c2 - 1, a3 + b3 - 1. But 
b1 + c1 - 1 > x, a2 + c2 - 1 > y, a3 + b3 - 1 > z, a final contradiction. This demon- 
strates that at least one of the three coordinates x, y,z must be 0 or 1, and the four 
vertices of the integral tetrahedron lie on two adjacent lattice planes. We have 
therefore verified Howe's theorem when the integral polyhedron has four vertices.' 

One final observation before proceeding to the case in which the integral polyhedron 
contains more than four vertices: Let one of the coordinates, say x, of the fourth 
vertex, be equal to 0. Then 

constitute an integral triangle withy > 0, z > 1. We must therefore have (y, z) = (1, 1) 
or (0, 2). Since the volume of the tetrahedron with vertices 

~1' 0' '0' VI' 
0, 1, 0, v2, 
0 0 1 v3 

is IVI + v2 + v3 - 11/6 we see that in either case such a tetrahedron has volume 1/6. It 
follows that if the integral tetrahedron has volume > 1/6, all three of the coordinates 
x, y,z are > 1, and, of course, at least one of them is equal to unity. If, say, x = 1, 
then y and z must be relatively prime and the tetrahedron is as in Figure 4. 

We begin our analysis of integral polyhedra with five vertices: 

3.3 LEMMA. If four of the vertices of an integral polyhedron with five vertices lie in a 
single plane, then the fifth vertex lies in an adjacent plane. 

Without loss of generality we may assume that the four co-planar vertices are given 
by 

0, 1, 0, 1, 

and-assuming the lemma to be false-that the fifth vertex is given by x, y,z with 
x > 2. By subtracting suitable multiples of the first coordinate from the second and 
third coordinates (equivalent to applying a unimodular transformation) we may 
assume that 1 < y < x, and 1 < z < x. But if x < y + z - 1, then 

1' 0 0 0x a 
1 = 0 1 0y a2 
1J .0 0 1 Z a4 

with a, = (y + z - x - l)/x, a2 = l-y/x, a3 = 1 - z/x, a4 = l/x, and 4jaj = 1. 

(ADDED IN PROOF). An alternative proof of this version of Howe's theorem has recently been communi- 
cated to me by Reznick [1984]. 
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If, on the other hand x > y + z - 1 then 

T1 ~0 0 0 x a, 
a2 

1 = 1 1 0 Y a3 
J 1 0 1 Z a 

with a = (x-y-z + l)/x, a2=(z - 1)/x, a3=(y - )/x, a4- 1/x, and 24 a 
= 1. In either case we arrive at a contradiction which demonstrates Lemma 3.3. 

We now assume that no four vertices of the five vertexed integral polyhedron are 
co-planar, and demonstrate a lemma which permits us to draw upon our earlier 
analysis of tetrahedra. 

3.4 LEMMA. Consider an integral polyhedron with five vertices, no four of which are 

co-planar. Then there is a subset of four vertices, say v1, v2, v3, v4 with the following two 
properties: 

1. The volume of the tetrahedron generated by these four vertices is > 2/6, and 
2. The line joining the fifth vertex and one of these four vertices passes through the 

interior of the triangle formed by the remaining three vertices. 

4 

v 

v 

3 

FIGURE 11 

In order to demonstrate Lemma 3.4 we begin by finding a 1, a2, a3, a4, a5, not all 
zero, with 2a1 = 0, and 25ajv = 0. None of the a's are equal to 0, since otherwise the 
remaining four vertices are co-planar. If four of the a's have the same sign, say 
a2, . . . , a5 < 0 and a, > 0, then 

v1 = -(a2V22 +av3+ a4v4 + 05V5)/a1, 

and v, would be a convex combination of the remaining four vertices, contradicting 
the assumption that the five-vertexed figure is an integral polyhedron. It follows that 
three of the a's are of one sign, and the other two are of opposite sign, say 
a1, 02,3 > 0, and 04,a5 < 0. But then 

av4 + a5v5 alvI + a2V2 + a3V3 

04 + 05 a, + a2 + a3 

which demonstrates the second part of the lemma. 
In order to demonstrate the first part let us assume that the tetrahedra with vertices 

(v1, v2,v3, v4) and (v1, v2, v3, v5) both have volume 1/6. We may then employ the 

arguments of Lemma 3.1 to bring the first of these tetrahedra to the form 

1 0 0 v4 

0 1 0 v4 

0 0 1 V3 

with v, v >' 0 and v4 > 1. Since the volume of the tetrahedron is assumed to be 1/6 it 
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follows that v4 + v4 + v4 = 2, and V4 must be one of the following three vectors 

1' 'O' 
I ' 

0, 1, 0. 
1, I1. .2, 

The volume of the tetrahedron with vertices (v , v2,v3, v5) is also 1/6, and therefore 
vl + v2 + v3 = 0 or 2. But if the latter alternative were to hold, a convex combination 
of v4 and v5 could not pass through the triangle generated by the remaining three 
vertices. It follows that vI + v25 + v5 = 0 and 

(v4 + V5)/2 > 0, (v4 + v5)/2 > 0, (v4 + v5)/2 > 0. 

If v4 = (1,0,1) these inequalities imply vI > 0, v2 > 1, v > 0, contradicting v5 + v5 + 
5 = 0. A similar argument holds if v4 = (0, 1, 1), and finally if v4 = (0,0,2), we arrive 

at a contradiction because v > 1, v2 > 1, v3 > - 1. It follows that one of the two 
tetrahedra has volume > 2/6, and Lemma 3.4 has been demonstrated. 

We are now prepared to prove the following theorem which provides a canonical 
form for an integral polyhedron with five vertices. 

3.5 THEOREM. An integral polyhedron with five vertices, no four of which are 

co-planar, can be brought by a unimodular transformation, to the form 

1 0 0 1 0 
0 1 0 y 0, 

,0 0 1 z 0, 

with y and z positive and relatively prime. 

By Lemma 4.3 there is a unimodular transformation bringing four of the vertices to 
those of Figure 12 (with y and z relatively prime integers) and with the fifth vertex, 
whose coordinates are, say, (a,b,c) lying strictly in the cone with vertex (1, y,z). 
Algebraically this is equivalent to 

a 1 0 -1 -1 
b = y +a, -y +a2 1-y +a3 -y 

IcJ ,z, I-zI . -z , - z, 

with a, a2, a3 > 0. 
Let us begin by arguing that (a, b, c) < 0. First of all we have a = 1 - a2 - a3 < 1, 

and since a is integral we have a < 0. Also b = a2 + Y(1 - a1 - a2 - a3) < 1 - a + ya 
< 1, since a2 < 1 - a and 1 - a1 - a2- a3 < a. By a similar argument c is also < 0. 
But if (a, b, c) is not equal to (0, 0, 0), then 

0~ 
1 0 0 a~ I2 

0 = 0 1 0 b 23 
0 .0 0 1 cJ /3 

P]4 

(0,0,1) 

FIGURE 12 
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with fl =-a/A > 0, 32= -b/A > 0, /3= -c/A >0, /34= 1/A > 0, and with 

~1 jf = 1. The polyhedron therefore contains a lattice point different from its vertices. 
This contradiction demonstrates Howe's theorem for an integral polyhedron with five 
vertices. 

In order to complete the proof of Howe's theorem it is necessary to consider integral 
polyhedra with 6,7 and 8 vertices. The arguments are quite elementary extensions of 
our previous considerations; it will be sufficient to illustrate the basic ideas when the 
integral polyhedron contains six vertices. 

We consider, first, the case in which no four of the six vertices are co-planar. By 
Theorem 3.5 such a polyhedron can be put in the form 

V_1 V2 V3 V4 V5 V6 

0 1 0 0 1 v6 

0 0 1 0 y v6 
' 

0 0 0 1 z v3 

with y and z positive integers prime to each other. By an alternative application of this 
same theorem the vertices v2, v3, v4, v6 lie in two adjacent lattice planes. If, however, 

y and z are both strictly larger than one, the only adjacent lattice planes containing 
v 2, v 3, v4,5 are x = 0,1, and therefore v6 must be on one of these planes as well. On 
the other hand if y = 1 and z > 1, the four vertices also lie on the adjacent lattice 
planes y = 0, 1, but not on a third pair of adjacent lattice planes. It follows that v6 lies 
either on one of the pair x = 0, 1 or on one of the pair y = 0, 1; in both cases the six 
vertices lie on two adjacent lattice planes. Finally if both y and z = 1, three pairs of 
adjacent lattice planes are possible for v6. 

The argument is also quite simple if four of the six vertices are co-planar. By a 
unimodular transformation the co-planar vertices can be brought to the four vertices 
of the unit square in the plane x = 0. By Lemma 3.3 the fifth and sixth vertices lie 
on the planes x = ? 1. If both of them are on the same plane then all six vertices lie on 
two adjacent lattice planes. Assume therefore to the contrary that the fifth vertex is on 
the plane x = 1 (without loss of generality we may take it to be (1,0, 0)), and that the 
sixth vertex lies on the plane x = - 1, and is given by - 1, y, z. 

The four vertices of the integral polyhedron lying on x = 0, are extreme points of the 
polyhedron. By drawing supporting hyperplanes to the integral polyhedron through 
these four vertices, and examining the intersections of these hyperplanes on x = - 1 we 
see that either y or z = 1. In either case the six vertices lie on two adjacent lattice 
planes. 

(0,0,1), (0,1,1) 

//(O,0,0) (0,1,0) 

(1,0,0) 

FIGURE 13 

4. A sufficient condition. We now turn our attention to a 4 x 3 matrix A satisfy- 
ing Assumptions 2.1, and begin our very lengthy demonstration that all of the integral 
tetrahedra obtained by relaxing the constraint planes from a lattice free region share a 
common characteristic lattice plane. The argument is complex, and it will be useful to 
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FIGURE 14 FIGURE 15 

start with a description of a condition which permits us to recognize when a given 
lattice plane is indeed the common characteristic plane. 

Let the lattice plane be given by x = 0, and consider the collection of triangles and 
parallelograms obtained by relaxing the four inequalities from a lattice free region on 
this plane. Theorem 2.5 tells us that the parallelograms will, up to translation, form a 
chain, as illustrated in Figure 9. There will be an initial, left-most parallelogram, and 
each parallelogram in the chain will be followed by one of its two possible successors. 
One pair of triangles will be obtained by slicing the initial parallelogram along the 
diagonal not containing (0,0), and the other pair by slicing the final parallelogram 
along the diagonal which does contain (0, 0). 

Consider a particular parallelogram in the chain with the four constraint planes 
placed at their respective vertices. This involves a particular specification of the 
right-hand side of the inequalities Ah > b, so that each vertex of the parallelogram 
satisfies all four of the inequalities, and a particular one of them with equality. We say 
that the parallelogram has a lattice point in front, if there is a lattice point (hl,h2, h3) 
satisfying these inequalities with hI > 1, and has a lattice point in back if hI < - 1. The 
parallelogram is said to be doubled if there are lattice points in front and in back. 

If the relaxation is a triangle, as in Figure 15, three of the constraint inequalities are 
placed at the vertices of the triangle, and one of them is relaxed to infinity. Again if 
there is a lattice point (h1, h2, h3) satisfying the three inequalities it will be said to be in 
front if h1 > 1, in back if hi < - 1, and the triangle will be said to be doubled if it has 
lattice points both in front and in back. If the relaxation is a parallelogram, Lemma 3.3 
tells us that there will be a lattice point in front if and only if there is a lattice point 
satisfying the inequalities with h1 = 1, and similarly for lattice points in back. The 
situation is somewhat more complex for triangles. 

As we shall see, if a given lattice plane has the property that none of the relaxations 
on that plane are doubled, then it is, in fact, a characteristic lattice plane for all of the 
tetrahedra obtained by relaxing the four inequalities from a lattice free region in three 
space. 

4.1 THEOREM. Let the lattice plane x = 0 have no doubled relaxations. Let b = (bo, 
bl,b2, b3) be such that the inequalities Ah > b have a pair of integral solutions (hi, h2, h3), 
and (h',h',h') with h' > hI + 2. Then there are integral solutions satisfying the inequali- 
ties strictly for every x = h1 + 1, . . . , h' - 1. 

FIGURE 16 
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In order to demonstrate 4.1 we draw the intersections of the constaint equalities on 
the planes x = h', x = h , and on any intermediary plane. If no lattice points satisfy 
the inequalities strictly on the intermediary plane, then there will be a relaxation on 
that plane which is doubled, contradicting our assumption. 

Theorem 4.1 implies that x = 0 is a common characteristic plane for all of the 
tetrahedra arising from the relaxation of the four inequalities, starting with a lattice 
free region in three space. For if two vertices of such a tetrahedron had their first 
coordinates differing by more than 1, the relaxation would already have encountered a 
lattice point on some intermediary plane. We see therefore that the search for a 
common characteristic plane may be accomplished by finding a lattice plane on which 
no relaxation is doubled. It will therefore be useful for us to analyze in greater detail 
the relaxations appearing on an arbitrary lattice plane, allowing for the possibility that 
some of the relaxations are doubled. 

4.2 LEMMA. Consider a parallelogram P in the chain of relaxations on the plane 
x = 0, which contains no lattice points on the plane x = a. Assume that a relaxation of 
this lattice free region on the plane x = a is to the left of P. Then every parallelogram to 
the left of P on x = 0 is also free of lattice points on x = a, and has a relaxation on the 

plane x = a, which is to its own left. 

Let the parallelogram P on x = 0, have the vertices 

?) ( Y ) Y q 

with p,q positive and relatively prime, and with l3, y, f', y' nonnegative integers 
satisfying /B + 3' = p, y + y' = q, and fq - yp = 1. 

When the four inequalities are placed as in Figure 17, there are assumed to be no 
lattice points on the plane x = a, and the relaxation on this lattice free region is 
assumed to be to the left of P. Let us first consider the case in which this relaxation is 
a parallelogram-rather than a triangle-which, without loss of generality, we take to 
be the unit square. When the four constraint planes are placed on the vertices of P, 
their intersections on x = a are in Figure 18. 

The immediate predecessor of P is obtained by reflecting (p, q) either through (/3, y) 
or (/3', y'). There is no loss in generality in assuming that, as in Figure 17, (fl', y') 
> (/3, y); this assumption, in conjunction with the inequalities on the slopes of the four 
lines implied by the fact that the unit square is a relaxation, tells us that the 
predecessor of P has the vertices 

(0) P P 

as in Figure 19. We must show that this predecessor is free of lattice points on x = a, 
and that the relaxation on x = a is to the left of the unit square. 

The predecessors of the unit square, if they are not triangles, are obtained by 
reflecting the vertex opposite to (0,0) through one of the vertices adjacent to (0, 0). Let 

(p-l, q) (p, q) ( ' , t' ) 

x=a (e'- 8.e'-Y)X-y 

x(-- x- 0 . / 0 

(0,0)'' (0,0) (1,0) (0,0) 

FIGURE 17 FIGURE 18 FIGURE 19 
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(1,0) 

r> 

FIGURE 20 

us continue the sequence of predecessors until we first reflect through a vertex above 
(0, 0), as in Figure 20. We shall demonstrate that when the constraint planes are placed 
at the vertices of the immediate predecessor of P, on the plane x = 0, the region on the 
plane x = a is free of lattice points and has a relaxation with vertices 

0) (-) (0) (r + ) 

We make the following observations about the transition from Figure 17 to Fig- 
ure 19. 

1. The constraint plane through (0, 0, 0) has not been moved and it rejects the point 
(a,0,0). 

2. The constraint plane through (0, /8, y) has not been moved. Since it rejects (a, 1,0) 
it will certainly reject (a, 1, - r). 

3. The constraint plane through (0, p,q) originally rejected (a, 1, 1). When it is 
shifted to (0, 38', y') it will reject (a, 1 - f/, 1 - y), and therefore (a, 0, 1) since /3 > 1, y 
>0. 

4. The constraint plane through (0,/', 'y') originally rejected (a, 0, 1). When shifted 
to (0, /f' - , y' - y) it will reject (a, -/3, 1 - y). In order to show that it rejects 
(a, - l,r + 1) it is sufficient to show that it rejects (a, - 1, 1); this follows from the 
observation that this constraint plane, at its original position of (0, f', "y'), certainly 
rejects (0, p - 1, q) (see Figure 17). 

The above argument is predicated on the assumption that the chain of predecessors 
of the unit square continues until a parallelogram is reached by reflecting through a 
vertex above (0, 0). One alternative possibility is illustrated in Figure 22, in which the 
chain ends with the pair of triangles with vertices 

(0), (0), (r+11.) and (s) (I) (?). 

Arguments identical to those just given show that when the constraint planes are 

(-1, r+l) 

(0(1) 

-i.? (o.0) o (o o (o(o ) 

(-(,1-00 (0(l0,-r) 

r > 0 

419 

FIGURE 21 FIGURE 22 

http://www.jstor.org/page/info/about/policies/terms.jsp


HERBERT E. SCARF 

(o 1) (0,1) (1 ,1) 

(0,0) (0,0), ( 

) 

(1,-r-1) 

FIGURE 23 

placed on the vertices of the predecessor of P, the region on the plane x = a is free of 
lattice points and has a relaxation given by the first of these triangles. 

The chain may also end with the pair of triangles with vertices 

(0) (-) (I ) and (0) (- 1) (-,) 
as in Figure 23. When the constraint planes are placed at the vertices of the immediate 
predecessor of P, the region on the plane x = a has a relaxation given by the first of 
these triangles. 

One further argument is required to complete the demonstration of Lemma 4.2. We 
have assumed that when the inequalities are placed at the vertices of P, the lattice free 
region on x = a has a relaxation given by a parallelogram which we have taken to be 
the unit square. It is possible, however, that the relaxation is a triangle at the left-hand 
side of the chain. A similar analysis to that given above demonstrates that when the 
constraint planes are placed at the immediate predecessor of A (be it a parallelogram 
or triangle), the region on x = a is free of lattice points and has a relaxation given by a 
translate of that same triangle on the left-hand side of the chain. This completes the 
proof of Lemma 4.2, which has the following important implication for the structure of 
the relaxations appearing on a given lattice plane. 

4.3 THEOREM. Subject to a possible interchange of the words "back" and "front": 
1. If a relaxation is free of lattice points in front, then every relaxation to its left is free 

of lattice points in front, and 
2. If a relaxation is free of lattice points in back then every relaxation to its right is free 

of lattice points in back. 

Let us assume that there is a relaxation on x = 0, say the unit square, which has a 
lattice point in front, say (1,0, 0), and such that the predecessor of the unit square has 
no lattice points in front, as in Figure 24. In order to demonstrate the first part of 
Theorem 4.3 we must establish two facts: first that all predecessors of the unit square 
are free of lattice points in front, and secondly that all successors of the unit square do 
contain lattice points in front. The first argument is quite easy. From the fact that the 

(0,-1,1) (0,0,1) (0,0,1) (0,1,1) 

(01,0,) ,0) (1,) 

,-1 (1,,0,0) v !?\ (1,1,O ) 

(1,0,-1) (1,0,-1) 

FIGURE 24 
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immediate predecessor of the unit square has no lattice points in front, we can argue 
that the constraint plane through (0, 1, 1) must eliminate (1,0, 1) and (1, 1,0), and the 
constraint plane through (0, 0, 0) must eliminate (1, - 1,0) and (1,0, - 1). The predeces- 
sor of the unit square must therefore have a relaxation on x = 1 to its own left. From 
Lemma 4.2 all predecessors of the unit square are free of lattice points on the front 
plane. 

It is somewhat more subtle to establish that every successor to the unit square 
contains lattice points in front. What is clear is that as we move to the right of the unit 

square we cannot encounter a relaxation which is free of lattice points in front 
followed by a relaxation which does contain a lattice point in front; the argument we 
have already given rules out this possibility. But it does seem possible, without any 
additional argument, that several consecutive successors of the unit square do contain 
lattice points in front, and the remaining successors are indeed free of lattice points in 
front. To eliminate this possibility I will show that every successor of the unit square 
has its own successor which contains lattice points in front. 

In order to demonstrate this last fact we must examine the planes behind the plane 
x = 0. From Assumption 2.1 the immediate predecessor of the unit square on x = 0 
will be free of lattice points on the plane x = - a for some sufficiently large value of a. 
The relaxation on the plane x = - a will contain lattice points on the plane x = 0, and 
therefore must be to the right of the immediate predecessor of the unit square. It 
follows from Lemma 4.2 with left replaced by right, that the unit square and all of its 
successors on x = 0 are free of lattice points on x = - a, and have relaxations to their 
own right on this plane. Any such relaxation will, of necessity, have lattice points in 
front. This demonstrates that any successor of the unit square has its own successor 
with lattice points in front and concludes the proof of the first statement of Theorem 
4.3. The second statement follows from a similar argument. 

Theorem 4.3 suggests some very substantial simplifications in testing whether a 

given lattice plane is the characteristic plane for the collection of tetrahedra obtained 

by relaxing the four inequalities from a lattice free region in three-space. For example, 
if a single parallelogram on a given lattice plane has no lattice points either in front or 
in back, then there can be no doubled relaxations on that lattice plane and it is indeed 
the characteristic plane. Another way to state this is that if one of the tetrahedra is 

degenerate, in the sense of having all four vertices in the same plane, then that plane 
must be the characteristic plane. In the next section I shall describe a condition which 
implies the existence of a degenerate tetrahedron. 

Another sufficient condition for a given lattice plane to be the characteristic plane is 
the existence of a pair of adjacent parallelograms in the chain, one of which is free of 
lattice points in front, and the other free of lattice points in back. This observation will 
be used repeatedly in demonstrating the existence of a characteristic plane associated 
with the matrix A. 

5. A special case. In order to display the quality of the arguments developed in 
?4, let us examine a special case in which information about a single tetrahedron is 
sufficient to yield a characteristic plane for all of the integral tetrahedra associated 
with the matrix A. Let us assume that the tetrahedron has the four vertices 

0, 1, 0, p, 
Q., 0, 1, q q, 

of the type guaranteed by Howe's theorem. We shall make the additional assumption 
that p and q are both > 2. Moreover when the constraint planes are drawn through the 
four vertices they will be assumed to intersect the planes x = 0, 1 as in Figure 25. 

On the plane x = 0, the inequalities relax to the unit square; on x = 1, they relax to 
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p ^X (p,q) 

Co 
1 , S^ 

( 
~'y') B r;'- 

(Q, 0) 
* - > 

- 
0 ,) . 

x 0 ' x = 1 

FIGURE 25 

the parallelogram with vertices 

(?) (Y) (q) 
The immediate predecessor of this latter parallelogram is obtained by reflecting (p, q) 
either through (/, 3y) or ( /', y'). Without loss of generality we assume, as in Figure 25, 
that (/3, y) > (/', y') and that the predecessor is given by 

(?) (y-v'r Y-Y' ) 'Y 

Let us show that when the constraint planes are placed at the vertices of this latter 
parallelogram on x = 1, there will be no lattice points satisfying the inequalities on 
x =0. 

Observe first of all that in Figure 25, the point with coordinates (1, / - /', y - y' + 
1) lies above the line connecting (1,0,0) and (1, p,q) since y - y' + 1 > q/p(/ - /f') 
follows from py - py' + p - qf/ + q/f' = p - 2 > 0. This point is therefore accepted by 
the constraint plane through (0, 1,0). When this constraint plane is translated to 
(1, / - /3', y - y') it must therefore reject the point (0, 1 1), and any lattice points 
below and to the right of this latter point. In a similar fashion the constraint plane 
through (0,0, 1) when translated to (1, /3', y') must reject (0, - 1, 1) and any lattice 
points above and to the left of (0, - 1, 1). 

_ 
( ((1,-11) (',-' (-,0)) 1(0, 

x O x 1 

FIGURE 26 

The plane through (1,0,0) rejects (0,0, 0), and any lattice points below and to the 
left of (0, 0, 0). And finally the plane through (1, p, q) when translated to (1, /l, y) must 
reject (0,0,0) and any lattice points above and to the right of (0,0,0). This demon- 
strates that while the parallelogram with vertices 

(?0 (Y) (Y') (q) 
does have lattice points in back, its immediate predecessor-and therefore all prede- 
cessors-do not. 

In the same fashion the successors of the unit square are free of lattice points in 
front, and from the arguments of ?4, the lattice plane x = 0 is a characteristic plane for 
all tetrahedra obtained by relaxing the four inequalities from a lattice free region. 
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At first glance this argument seems very promising. It does, however, depend on the 
special assumption that there is at least one relaxation which yields a tetrahedron with 
a unique characteristic plane. The argument becomes extremely tedious when this 
assumption is not satisfied, and while it probably can be carried out I have chosen to 
select the alternative approach followed in the remainder of this paper. But I invite the 
interested reader, who may have come this far, to attempt to supply a more direct 
proof of Theorem 2.6. 

6. Perturbations of the matrix A. Let the matrix A satisfying Assumption 2.1 have 
the characteristic plane x = 0. This will be revealed by the fact that none of the 
relaxations on that plane-either parallelograms or triangles-has lattice points both in 
front and in back. If the matrix is perturbed slightly the same property will persist, and 
the characteristic plane is therefore locally constant. The disappearance of x = 0 as the 
characteristic plane will be revealed by the appearance of a doubled object, which may 
either be a new relaxation on x = 0, or one of the previous relaxations. In either case 
such a change can only occur when a constraint plane passes through more than one 
lattice point, an event which we call a singularity of the perturbation. 

Our argument for the existence of a characteristic plane associated with a matrix A 
satisfying 1.2 will be to select a different matrix A' which does have a characteristic 
plane, and perturb it until the original matrix A is reached. We shall show that, along 
the path of perturbations, a new characteristic plane appears whenever the previous 
characteristic plane is lost. 

The collection of lattice planes in three space, i.e. planes passing through three 
noncollinear lattice points, is denumerable; we can therefore assume that in this series 
of perturbations, none of the constraint planes is ever parallel to a lattice plane. We 
need only be concerned, therefore, with the change in characteristic planes that occurs 
when one of the constraint planes passes through a 1-dimensional line of lattice points. 
Moreover we may assume that his violation of Assumption 1.2 does not occur 
simultaneously for more than one constraint plane. Such a line of lattice points will be 
called a singular line. 

LEMMA 6.1. Let the characteristic plane immediately prior to a singularity be x = 0, 
and assume that the singular line is contained in this plane. Then x = 0 persists as a 
characteristic plane after the singularity. 

Let us assume, to the contrary, that after the singularity there is a tetrahedron with 
vertices h',h2, h3, h4-obtained by relaxing from a lattice free region-two of whose 
vertices have first coordinates differing by more than one unit. This tetrahedron must 
be lost, as a relaxation, when we reverse the perturbation, and that can only occur in 
one of the following two ways: 

1. The constraint plane passing through one of the vertices, say h', eliminates 
another vertex, say h2, or 

2. The constraint plane passing through one of the vertices, say h 1, admits a number 
of lattice points which are already accepted by the constraint planes passing through 
the remaining vertices. 

The first case is illustrated schematically in Figure 27; by assumption h and h2 have 
the same first coordinate. We obtain a different relaxation by pressing the constraint 
plane through h' to h2, leaving the constraint planes through h3 and y4 as they were, 
and relaxing the constraint plane through h2 until a new lattice point is reached, which 
is accepted by the other three constraint planes. This new tetrahedron will be of the 
second type, since after the perturbation the new constraint plane through h2 will 
admit h1. Of course, two of the vertices of this new tetrahedron will have first 
coordinates differing by more than one unit. 
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FIGURE 27 FIGURE 28 

The second case is illustrated in Figure 28, which is drawn immediately after the 
singularity under the reverse perturbation. If the constraint plane through h' is pressed 
in to the last point on the half-line of lattice points accepted by the remaining 
constraint planes (a point whose first coordinate is identical with that of h'), we obtain 
a tetrahedron which contradicts the assumption that x = 0 is a characteristic plane. 
This demonstrates Lemma 6.1. 

The lemma tells us that we need not be concerned with a change in the chain of 
triangles and parallelograms on the characteristic plane in examining the consequences 
of a perturbation. The only relevant concern is whether one of the previously 
undoubled objects becomes doubled in passing through a singularity. At such a 
singularity one of the constraint planes will be pivoting around a particular vertex of 
each relaxation and will suddenly admit a half line of lattice points either in front or 
behind the original characteristic plane; to be specific let this occur behind the original 
plane. It follows that some of the objects may gain lattice points in back and some 
may lose lattice points in front. 

We shall assume that the terms "back" and "front" are interpreted as in Theorem 
4.3, and we consider the left-most object in the chain which is doubled after the 
singularity. From the above argument we can say that a lattice point has just been 
introduced behind the original plane, and that the predecessor of this object has no 
lattice points in front. In the next section we shall show that a new characteristic plane 
is available after the singularity when the left most doubled object is a parallelogram, 
and then consider the case in which the object is a triangle. 

7. A doubled parallelogram. Let us assume that the left most doubled object after 
the singularity is the unit square on the plane x = 0, that it contains the lattice point 
(1,0,0), and that its immediate predecessor contains no lattice points in front. A 
particular lattice point will just have been introduced on the plane x = - 1. From 
Figure 29 we see immediately that the new lattice point must be of the form (- 1, p, 1) 
or (- 1, 1, q). Without loss of generality we may assume that the point is given by 
(-l,p,1) withp > 1. 

From the assumption that the immediate predecessor of the unit square contains no 
lattice point in front we can easily see that the constraint plane through (0,0, 0) must 
eliminate both (1,- 1,0) and (1,0,- 1); it must therefore accept (- 1, 1,0) and 
(- 1,0, 1). In the same way the constraint plane through (0, 1, 1) must accept (- 1,2, 1) 
and (- 1, 1,2). We are now prepared to exhibit the new characteristic plane, by a series 
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of arguments which breaks into three major cases depending on whether p = 1, p = 2, 
orp > 3. 

Case 1. p = 1. We shall demonstrate that the new characteristic plane is given by 
z = const. Let us begin by remarking that Figure 29 can be drawn with greater 
specificity, since the plane through (0, 0, 1) must eliminate (- 1,0, 1) and (- 1, 1,2), and 
the plane through (0, 1,0) must eliminate (- 1, 1,0) and (- 1,2, 1). The information in 
this figure can be translated to the two planes z = 0, 1, as in Figure 31. The constraint 
plane through (0,0,0) has been drawn with a dashed line to distinguish it from the 
plane through (0,0, 1) which has a similar slope. The shaded regions indicate lattice 
points which are eliminated by the various constraint planes. 

It is easy to see that all of the relaxations in this plane are triangles. The two 
triangles on z = 0 are free of lattice points on z = 1, and the two triangles on z = 1 are 
free of lattice points on z = 0. This concludes our argument for the case p = 1. 

Case 2. p = 2. We shall demonstrate that the new characteristic plane is either 
x + y = const. or z = const. Let us redraw Figure 29 with the additional information 
that (-1,2, 1) has just been accepted, and translate this information to the planes 
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x + y = 0, 1 in Figure 34. The slopes of the constraint planes permit us to select two 
adjacent parallelograms which are relaxations on this plane. Let us draw one of these 
on the plane x + y = 1, as in Figure 35. 

Consider the region to the lower right on the plane x + y = 0, consisting of lattice 
points (- a, a, - q) with a > 1, q > 0. All of these points must be eliminated by the 
original inequalities, as in Figure 34, since none of them lies on a possible line of 
singularities containing (- 1,2, 1). The constraint plane through (0, 1, 1) accepted all of 
these lattice points, each of which must therefore have been rejected by one of the 
other three constraint planes in their position in Figure 34. But these other three 
constraint planes have been compressed, or remained where they were, in making the 
transition from Figure 34 to Figure 35. Therefore all lattice points in the region to the 
lower right are rejected. 

Now consider a lattice point (a, - a, q) with a > 2, q > 1 in the region to the upper 
left on the plane x + y = 0. If this point is accepted by the plane through (0,0,0) 
translated to (1,0, 0), and by the plane through (0, 0, 1) translated to (0, 1, 1), then 

1. the plane through (0, 0, 0) accepts (a - 1, - a, q), 
2. the plane through (0, 0, 1) accepts (a, - a - 1, q), and therefore (a - 1, - a + 1, q), 
3. the plane through (0, 1,0) accepts (1,0, 0) and therefore accepts (a - 1, - a + 2, 0). 
Let us draw this information on the plane x = a - 1. It follows that the plane 

through (0, 1, 1) must reject (a - 1, - a + 1, q), since otherwise the predecessor of the 
unit square obtained by pressing in the plane through (0,0,0) will contain the point 

(-a+l, q)2 
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(a - 1,-a + 1,q) in front. But then the plane through (0, 1, 1) translated to (1,0, 1) 
must reject (a, - a, q). This permits us to conclude that the parallelogram on x + y = 1 
is free of lattice points on x + y = 0. 

Now let us draw the adjacent parallelogram on the plane x + y = 0. The only 
possible lattice points satisfying these inequalities on the plane x + y = 1 lie in the 
wedge with vertex (-2,3, 1). Aside from one special case these can be ruled out by 
considering which of the original constraint planes has just accepted (- 1,2, 1). For 
example if the plane through (0, 1, 1) has just accepted (- 1,2, 1), the only points in the 
wedge are very far from the vertex and they will be eliminated by the fourth inequality 
to the right of (- 3,4, 1). A similar remark is valid if (- 1,2, 1) has just been accepted 
by the plane through (0, 1,0). In both of these cases we have therefore demonstrated 
that the new characteristic plane is given by x + y = const. 

If the plane through (0, 1, 1) has just accepted (-1,2, 1), then when translated to 
(-2,2, 1), it will just have accepted (-3,4, 1). The only possible points on x + y = 1 
which might satisfy the inequalities are therefore (-2,3, 1) and (-3,4, 1). The first of 
these points can be eliminated, since if it were accepted by the translated planes, it 
would follow that the plane through (0, 1, 1), and the plane through (0, 1,0) both accept 
(-1,3, 1), which is impossible. The second possibility can, however, actually occur 
when the planes through (0, 1, 1) and (0, 1,0) both accept (-2,4, 1), and the plane 
through (0, 0, 1) has just accepted (- 1,2, 1). Aside from this special case we have 
demonstrated that x + y = const. is the new characteristic plane when p = 2. We shall 
show that in this special case the new characteristic plane is given by z = const., 
making use of a different argument which does not require a drawing on the new 
plane. 

Consider the three planes x = 1,0, - 1 as in Figure 38, drawn immediately before 
the singularity. From Figure 37 we see that the plane through (0, 1,0) translated to 
(- 1, 1,0) must accept (-3,4, 1) as well as (-2,3, 1). In its original position it must 
accept (-2,4, 1), and therefore rejects (2, -2, - 1). It must also accept (- 1, 3, 1). The 
plane through (0, 1, 1) must then reject (-1,3,1) and therefore accept (1,- 1,1). 
Moreover since this latter plane accepts (-2,4, 1) it must accept (-1,3,0) and 
consequently it must also reject (1, - 1,2). 

Now let us translate these planes as in Figure 39. Since the plane through (0, 1,0) 
rejects (1,- 1,0) when translated to (-1,2, 1) there are no lattice points strictly 
satisfying these inequalities on either of the three planes. Since x = const. is a 
characteristic plane there are no lattice points satisfying these inequalities on any other 
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plane x = const., just prior to the singularity. Immediately after the singularity the only 
possible lattice points satisfying the inequalities must lie on z = 1. But there are none 
on this plane and it follows that the parallelogram with vertices 

- 1, 0, 1 2 
1 1J. J. 1I, 

has no lattice points either in front or in back, after the singularity. The plane 
z = const. must therefore be a new characteristic plane. This concludes our argument 
forp = 2. 

Case 3. p > 3. We shall demonstrate that the new characteristic plane is given by 
z = const. or x + y = const. Let us redraw Figure 29 to show that the point (- 1, p, 1) 
has just been accepted. The point (- 1, p - 1, 1) must be rejected by the plane through 
(0,0, 1), the point (- 1, 1,0) either by the plane through (0,0, l1) or the plane through 
(0, 1, 0), and the point ( - 1, p + 1, l1) either by the plane through (0, 1, 1) or the plane 
through (0, 1,0). Consider the two configurations of Figure 41. Depending on the slope 
of the plane originally at (0,0,0) and now at (0,0, 1), at least one of these two 
configurations contains no lattice points strictly on the two planes x = 0, 1. Since 
x = const. was a characteristic plane prior to the singularity, the only lattice points 
satisfying the inequalities, immediately after the singularity, lie on the line of singulari- 
ties. If (- 1, p, 1) has just been accepted either by the plane through (0,0, 1) or the 
plane through (0, 1, 1) the line of singularities is in the plane z = 1 itself and the 
corresponding parallelogram is free of lattice points in front and in back. In either of 
these two cases z = const. is the new characteristic plane. 

o001 \o 

01> \ -> /o o ,lp-11 
000 010 -100 0 

x=0 x=l x=0 x=l 

FIGURE 40 FIGURE 41 

If (- 1, p, 1) has just been accepted by the line through (0, 1,0) the possible lattice 
points accepted by the inequalities are (- 2, 2p - 1,2), (- 3, 3p - 2, 3), . .. in the first 
figure, and (- 2, 2p - 2,2), (- 3, 3p - 3,3), ... in the second figure. In order to 
complete the argument it is necessary to consider several subcases. 

3.1. The plane originally through (0,0, 1) rejects (- 1, p,2). In the first figure the 
point (-2,2p - 1,2), and all subsequent points on the line of singularities, are 
eliminated by this plane translated to (- 1, p - 1, 1). In the second figure (-2, 2p - 2, 
2), and all subsequent points, are eliminated by this plane translated to (- 1, p - 2, 1). 
The new characteristic plane is therefore z = const. 

3.2. The plane originally through (0,0, 1) accepts (- 1 p, 2) and the plane through 
(0, 1, 1) rejects (- 1, p + 1, 1). In this case the first figure is free of other lattice points 
on x = 0, 1. The plane through (0, 1, 1) eliminates (-2, p + 2,2) and therefore (-2, 
2p- 1,2) if 2p - I > p + 2 or p > 3. The new characteristic plane is therefore z 
= const. 

428 

http://www.jstor.org/page/info/about/policies/terms.jsp


INTEGRAL POLYHEDRA IN THREE SPACE 

000 010 

x=0 x=l 

FIGURE 42 

3.3. The plane originally through (0, 0, 1) accepts (- 1, p, 2) and the plane through 
(0, 1, 1) accepts (- 1, p + 1, 1). We then draw Figure 42. Since the line of singularities 
lies in the plane x + z = 0, we can conclude that the parallelogram with vertices 

? 0 '-1 ' -1 
0, 1, p, p-l 
.0 .0 .1, 1, 

contains no lattice points on either side, immediately after the singularity. It follows 
that x + z = const. is the new characteristic plane. 

8. A doubled triangle. In this section we consider the case in which the left-most 
doubled object immediately after the singularity is a triangle, again making the 
assumption that lattice points have been introduced behind the characteristic plane 
x = 0, but not in front, and adopting the convention of Theorem 4.3. The following 
lemma will be useful in demonstrating that this doubled triangle must be one of the 
pair appearing at the right end of the chain. 

8.1 LEMMA. Consider the two triangles at either end of the chain on the plane x = 0. 
If precisely one of the pair has lattice points on the plane x = -a, with a -7 0, then it is 
doubled. 

Let the two triangles be as in Figure 43, and assume that the first of these triangles 
contains a point on the plane x = - a, say (- a, 0, 0). If the other triangle is to contain 
no lattice points on this same plane, then the configuration of Figure 44 must obtain, 
and the first triangle must contain at least three lattice points on x = a. 

Now let us assume that one of the triangles to the left of the chain on x = 0 is 
doubled immediately after the singularity. Since new lattice points are only introduced 
behind x = 0, that triangle must contain a lattice point in front prior to the singularity. 
If x = 0 is a characteristic plane, prior to the singularity, Lemma 8.1 implies that both 
triangles to the left have lattice points in front, and from Theorem 4.3 all relaxations 
on x = 0 have lattice points in front. Therefore none of them have lattice points in 
back, prior to the singularity. But it is easy to see that Assumption 2.1 is violated if 
none of the relaxations on x = 0 have lattice points in back. In such a case if the four 
constraint planes are placed so as to yield a lattice free region on x = 0, there will be 
no lattice points on any plane behind x = 0. Conversely if there is a lattice point 
satisfying the inequalities on any plane x = a, there will be lattice points on every 
parallel plane in front. This contradiction to Assumption 2.1 implies that if the 
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left-most doubled object, after the singularity, is a triangle it must be one of the two at 
the right end of the chain. 

Let us begin our analysis by assuming that the chain of relaxations on the plane 
x = 0 does contain some relaxations which are parallelograms, deferring to the next 
section the case in which all of the relaxations on x = 0 are triangles. Without loss of 
generality we may take the last of these parallelograms to be the unit square, and 
assume that the pair of triangles to the right are given by Figure 45. In each of these 
triangles the plane originally through (0, 0, 0) has been relaxed to - oo. We assume that 
the unit square contains no lattice points in front, and to be specific let us assume that 
the point (- 1, 1, 1) has just been admitted in the first of the above triangles as we pass 
through the singularity. Immediately after the singularity the configuration of Figure 
46 must obtain. It follows that when the dashed line is placed at (0,0,0) it must 
eliminate (1,0, 0) and therefore accept (- 1,0, 0). 

The argument which provides a new characteristic plane immediately after the 
singularity depends on which of the three constraint planes has just admitted the point 
(-, 1,1). 

Case 1. The plane through (0, 1, 1) has just admitted (- 1, 1, 1). Observe first of all 
that the plane through (0, 0, 0) in Figure 46 must eliminate (- 1,0, 0) since otherwise 
the other triangle has a lattice point in back prior to the singularity, and from Lemma 
8.1, it would already have been doubled. 

1.1. The plane through (0, 1, 1) eliminates (0,0, 2). We then have the configuration 
of Figure 47. In this figure the line of singularities lies in the plane z = 0, which is 
therefore the new characteristic plane. 

1.2. The plane through (0, 1, 1) accepts (0, 0, 2). In this case Figure 48 permits us to 
argue thaty = 0 is the new characteristic plane. 

Case 2. The plane through (0, 1,0) in Figure 46 just admits (- 1, 1, 1). Observe that 
the plane through (0, 1, 1) must reject (-1, 1,2) since otherwise the other triangle 
contains a lattice point in back prior to the singularity and from Lemma 8.1 it would 
already have been doubled. 

2.1. The plane through (0,0,0) accepts (-1,0,0). Consider Figure 49, drawn 
immediately after the singularity. Since the line of singularities lies in the plane 
x + z = 0, it follows that this plane is the new characteristic plane. 

2.2. The plane through (0, 1, 1) accepts (-1,2, 1), and therefore rejects (1,0, 1). 

o001 -101 

- O100 

x=0 x=1 x= 0 x= 1 
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When this plane is translated to (- 1, 1, 1), as in Figure 49, it will reject (0, 0, 1) and the 
parallelogram with vertices 

'O' 'O' '-1' '-1 
0, 1, 1, 0 

.0, ,0. 1 1 ,, 1 

will again be free of lattice points on the planes x = 0, 1. The line of singularities lies in 
the plane of this parallelogram and therefore x + z = const. is the new characteristic 
plane. 

2.3. The plane through (0,0,0) rejects (-1,0,0), and the plane through (0, 1, 1) 
rejects (- 1, 2, 1) and accepts (- 1,0, 2). Figure 50 illustrates this configuration immedi- 
ately after the singularity. We shall demonstrate that y = const. is the new characteris- 
tic plane. Let us translate the above information to the two planes y = 0, 1, as in Figure 
51. The slopes of the constraint planes permit us to recognize two adjacent parallelo- 
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grams which are relaxations on the planesy = const. We shall demonstrate that one of 
them is free of lattice points in front and the other in back. 

In Figure 52 one of these relaxations is drawn on the plane y = 1. The only possible 
lattice points satisfying these inequalities on y = 0 lie in the wedge with vertex (1,0, 2), 
and are of the form (a,0,c) with a > 1, c > 2. But such a lattice point must be 
eliminated by one of the four inequalities in their position in Figure 50. It cannot be 
eliminated by the plane through (0, 1,0), and is therefore eliminated by one of the 
remaining planes. These planes, however, are compressed, in the transition from 
Figure 50 to Figure 52, and there are, therefore, no lattice points on y = 0. 

In Figure 53 an adjacent relaxation is drawn on the plane y = 0. The only possible 
lattice point satisfying the inequalities on y = 1 is (2, 1, - 1). But the plane through 
(0, 1, 1) accepts (- 1,0,2), and therefore rejects (1,2,0); when translated to (1,0,0) it 
rejects (2, 1, - 1). This demonstrates thaty = const. is the new characteristic plane. 

2.4. The plane through (0,0,0) rejects (-1,0,0) and the plane through (0, 1, 1) 
rejects both (- 1,2, 1) and (- 1,0, 2). In this final subcase we consider the configura- 
tion of Figure 54, drawn immediately after the singularity. There are no lattice points 
on either of the planes x = 0, 1, and therefore the only possible lattice points satisfying 
the inequalities are on the line of singularities (- 1, 1, 1), (-2, 1,2), ... . But the plane 
through (0, 1, 1) eliminates (- 1,2, 1) and (- 1,0,2); it therefore eliminates (-2, 1,2) 
and we conclude that the new characteristic plane is given by z = const. 

Case 3. The plane through (0, 0, 0) has just admitted (- 1, 1, 1). Observe, first of all, 
that the plane through (0, 1,0) must reject (- 1, 2, 1) since if this were not true the other 
triangle at this end of the chain would contain a lattice point prior to the singularity, 
and from Lemma 8.1 it would already have been doubled. We also remark that prior 
to the singularity the unit square contains the point (-1, 1, 1) on the back plane and 
therefore none of the quadrilaterals in the chain are free of lattice points both in front 
and in back. We shall, following a suggestion by Philip White, consider three subcases, 
the first of which yields a new characteristic plane after the singularity, and the second 
and third of which yield a new characteristic plane prior to the singularity which 
contains a relaxation free of lattice points on both sides. If this latter plane is lost as we 
pass through the singularity we enter a case different from the present one. 

3.1. The plane through (0, 1, 1) accepts (-1, 1,2). Consider the configuration of 
Figure 55 drawn immediately after the singularity. Since the line of singularities lies in 
the plane x + y = 0, this plane is the new characteristic plane after the singularity. 
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3.2. The plane through (0, 1, 1) rejects (- 1, 1,2) but accepts (0,0,2). We consider 
Figure 56 drawn immediately prior to the singularity. We see that the parallelogram on 
the plane y = 1, with vertices 

'0' '-1 -1 0 
1, 1, 1, 1 

,0, 0, 0, , 1, 1, 

contains no lattice points on back or on front. The plane y = const. is also a 
characteristic plane prior to the singularity which, if it is lost, leads to a case other than 
the one currently being considered. 

3.3. The plane through (0, 1, 1) rejects both (-1, 1,2) and (0,0,2). We consider 
Figure 57, drawn immediately prior to the singularity, and conclude that z = 0 is also a 
characteristic plane prior to the singularity, but contains a parallelogram free of lattice 
points on both sides. 

Our argument for determining a new characteristic plane when the left-most 
doubled object is a triangle is now complete, in the case where the chain contains at 
least one relaxation which is a parallelogram. The final case, to be considered in the 
next section, involves the special case of a chain all of whose relaxations are triangles. 

9. The conclusion of the argument. As before we take x = const. to be the 
characteristic plane prior to the singularity, but address the final case in which all of 
the relaxations on the plane are triangles. Without loss of generality we may take them 
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to be the triangles of Figure 58. In the first pair of triangles the dashed line is relaxed 
to infinity, and in the second pair the solid line originally through (0, 1, 1) is relaxed to 
infinity. We assume that prior to the singularity there are no lattice points behind the 
first two triangles, and no lattice points in front of the second pair. We also assume 
that in passing through the singularity the triangle in the upper left of Figure 58 admits 
the point (- 1, 1, 1) on the back plane. Figure 59 describes the configuration immedi- 
ately after the singularity. The dashed line through (0, 1, 1) must reject (1, 1,0) since 
otherwise the lower left triangle of Figure 58 would contain this point in front. 

As before the argument which produces the new characteristic plane depends on 
which of the constraint planes has just admitted (-1, 1, 1) in passing through the 
singularity. 

Case 1. The plane through (0,0,0) just admits (- 1, 1, 1). In this case the plane 
through (0, 1,0) must reject (-1,2, 1) since otherwise the triangle in the upper right 
would contain a lattice point in back prior to the singularity. Moreover the dashed line 
through (0, 1, 1) must eliminate (1,0,0), and therefore accept (-1,2, 2). Consider the 
configuration of Figure 60, drawn immediately after the singularity. Since the line of 
singularities lies in the plane containing the parallelogram with vertices 

O, 1, 2, 1 
,0 O1, I 2, ,1 

we conclude that this parallelogram is free of lattice points on both sides after the 
singularity, and that y- z = const. is the new characteristic plane. 

Case 2. The plane through (0, 1,0) just admits (-, 1, 1). In this case the plane 
through (0, 1, 1) must eliminate (- 1, 1, 2) since otherwise the triangle in the upper right 

000; -21 
010 x-=1 

FIGURE 60 
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contains a lattice point in front prior to the singularity. Moreover the dashed line 
through (0, 1, 1) must eliminate (1,0, - 1) and therefore accept (- 1,2, 3). The informa- 
tion in Figure 59 may be translated to the two planes x - y + z = 0, - 1 as in Fig- 
ure 61. 

The slopes in this figure permit us to recognize a relaxation which is the parallelo- 
gram on the plane x - y + z = 0 as in Figure 62. This parallelogram contains no 
lattice points on the plane x - y + z = - 1. In order to verify that this plane is the new 
characteristic plane we must verify that an adjacent relaxation on x - y + z = - 1 is 
free of lattice points on x - y + z = 0. It is necessary to distinguish two subcases. 

2.1. The plane through (0,0,0) rejects (- 1, 1,2). In this case there is a parallelo- 
gram to the left of the one previously drawn. We see that the only possible lattice 
points satisfying these inequalities on the plane x - y + z = 0 lie in the wedge with 
vertex (1,0, - 1), i.e. points of the form (a, - b, -a - b) with a > 1, b > 0. The 
following argument shows that this is impossible when the four planes are translated to 
their position in Figure 63. 

(a) If the plane through (0,0,0) translated to (-1,2,2) accepts (a, - b, -a - b), 
then in its original position it accepts (a + 1, - b- 2, - a - b- 2) and therefore 
accepts (a, - b - 1, - a - b - 1). 

(b) If the dashed line through (0, 1, 1) translated to (0, 2, 1) accepts (a, - b, - a - b) 
then in its original position it accepts (a, - b - 1, - a - b). 

(c) Let the plane through (0, 1,0) accept (a, - b, -a - b). 

021 10-1 
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111. i 

/ / -122 133 -311 033 
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These three statements imply that if the constraint planes are drawn in their original 
position as in Figure 59, then the configuration of Figure 64 will arise on the plane 
x = a. The triangle to the lower right will therefore contain the lattice point (a, - b - 
1, -a - b) in front immediately after the singularity. Since lattice points are not 
admitted in front of x = 0 in passing through the singularity, we have a contradiction 
to our assumption that this triangle contains no lattice points in front prior to the 
singularity. We conclude that x - y + z = const. is the new characteristic plane in 
Case 2.1. 

2.2. The plane through (0, 0, 0) accepts (- 1, 1,2). In this case the relaxations to the 
left of the parallelogram previously drawn are the pair of triangles of Figure 65, which 
when drawn on the plane x - y + z = - 1 are free of lattice points on x - y + z = 0. 
This demonstrates that x - y + z = const. is the new characteristic plane after the 
singularity. 

Case 3. The plane through (0, 1, 1) just admits (- 1, 1, 1). In this case the plane 
through (0, 0, 0) must reject (- 1,0, 0) since if this were not so the other triangle of the 
pair would contain a lattice point in back prior to the singularity. Moreover the dashed 
line through (0, 1, 1) in Figure 59 must reject (1,0,0) and therefore accept (- 1,2, 2). 
We translate this information to the planes y - z = 0, 1, drawn immediately prior to 
the singularity. In this figure the plane through (0, 1,0) has been drawn with a dashed 
line since otherwise it may be difficult to distinguish from the plane through (0, 0, 0). 

A pair of triangular relaxations can immediately be recognized and are drawn on 
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the plane y - z = 1 in Figure 67. Neither of these triangles contains a lattice point on 
the plane y - z = 0. In order to conclude that y - z = const. is a characteristic plane 
prior to the singularity we distinguish two subcases. 

3.1. The plane through (0, 1,0) admits (1,0, - 1). In this case the relaxation on 

y - z = 0, given by the parallelogram of Figure 68, is free of lattice points on the plane 
y - z = 1, except possibly in the wedge with vertex (1,0, - 1), i.e. points of the form 
(a, - b, - b - 1) with a > 1, b > 0. But any such point must be rejected by the plane 
through (0,0, 0), the plane through (0, 1,0) or the dashed plane through (0, 1, 1) in 
Figure 59. In making the transition from the position of Figure 59 to that of Figure 68, 
two of these planes are unchanged and one of them has been pressed in. It follows that 

y - z = const. is a characteristic plane prior to the singularity. Since the line of 
singularities is contained in this plane, it persists as a charactertistic plane after the 
singularity. 

3.2. The plane through (0, 1,0) rejects (1,0, - 1). In this case there are no paral- 
lelograms which appear as relaxations on the plane y - z = const. In addition to those 
of Figure 67, there are the pair of triangles drawn on the plane y - z = 0 in Figure 69, 
which are free of lattice points on the plane y - z = 1. The plane y - z = const. is 
therefore a characteristic plane both before and immediately after the singularity. 

We have finally reached the conclusion of this extremely lengthy argument and 
demonstrated that if the matrix A is perturbed in such a way as to lose its associated 
characteristic plane, there always will be an alternative characteristic plane which is 
available after the perturbation. To conclude that an arbitrary matrix satisfying 2.1 has 
a characteristic plane it is therefore sufficient to exhibit a specific matrix with this 
property in order to initiate the perturbations. The reader may wish to construct such 
an example, or make use of the following simple observation: 

Let A have the sign pattern 
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and assume that Y1_ ja9 > 0 for i = 1,2, 3. Then x = const., y = const., and z = const. 
are all characteristic planes. 

10. An application to integer programming. Let us assume that the matrix A has 
been transformed so that x = const. is the characteristic plane, and consider the integer 
program 

max ao01h + ao2h2 + aO3h3 
a11h1 + ai2h2 + al3h3 > bl, 

a2,hl + a22h2 + a23h3 > b2, 

a31h1 + a32h2 + a33h3 > b3, hj integral. 

We consider the two-variable problem in which the first coordinate has been fixed at a 
particular value, say h, = a. When the objective function is placed at the optimal 
solution to this problem, and the constraints are drawn on the plane, the resulting 
region will contain no lattice points in its interior. The inequalities may be relaxed to 
yield a parallelogram in the chain or one of the triangles appearing at either end of the 
chain. 

FIGURE 70 

Since x = const. is a characteristic plane none of these objects will contain lattice 
points both in front and in back. If the relaxation is a parallelogram which is free of 
lattice points on both sides, the solution on the plane hI = a is, in fact, the optimal 
solution to the three variable problem, since there are no lattice points which satisfy 
the inequalities and yield a higher value of the objective function. If the relaxation has 
lattice points in front, the optimal solution must satisfy hI > a, since there are no 
lattice points with h, < a which satisfy the inequalities and yield a higher value of the 
objective. And similarly if the relaxation has lattice points in back the optimal solution 
must satisfy hI < a. 

We conclude that solving the two-variable problem on h = a provides us with 
information as to whether the first coordinate should be increased or decreased in 
moving to the optimal solution. Perhaps the simplest way to translate this observation 
into a working algorithm for the three-variable problem is by repeated bisection of the 
range of h1. 
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