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NEIGHBORHOOD SYSTEMS FOR PRODUCTION SETS
WITH INDIVISIBILITIES'

By HERBERT E. SCARF

A production set with indivisibilities is described by an activity analysis matrix with
activity levels which can assume arbitrary integral values. A neighborhood system is an
association with each intsgral vector of activity levels of a finite set of neighboring vectors.
The neighborhood relation is assumed to be symmetric and translation invariant. Each
such neighborhood system can be used to define a local maximum for the associated integer
programs obtained by selecting a single commodity whose level 1s to be maximized subject
to specified factor endowments of the remaining commodities. It is shown that each
technology matrix (subject to mild regularity assumptions) has a unique, minimal neighbor-
hood system for which a local maximum is global. The complexity of such minimal
neighborhood systems is examined for several examples.

1 INTRODUCTION

I HAVE WRITTEN in this journal before on the subject of production sets with
indivisibilities [13, 14]. In the present paper I would like to present some sim-
plifications of the previous arguments, which I hope will make them more
accessible to the general reader, and to describe some recent work on this topic
by other authors and by myself.

Our inability to incorporate efficiencies of large-scale production and other
forms of nonconvexity in a conceptual framework which possesses the generality
of the Walrasian model, has long seemed to me to be a major deficiency of
economic theory. When I first became aware of the game theoretic concept of
the core it seemed to be ideally suited to the study of increasing returns to scale
in production. If the production possibility set is a convex cone a competitive
equilibrium will typically exist and be in the core. Moreover, when the number
of consumers is large (and when all coalitions have access to the same production
set), a feasible production and distribution plan, which is undominated by any
coalition, will be close to a competitive equilibrium. When the production possibil-
ity set displays increasing returns to scale, the grand coalition, which can employ
larger stocks of factors than those of a small coalition, is proportionately stronger
than in the case of constant returns to scale. Outcomes proposed by the collection
of all consumers would seem to have a lesser chance of being dominated by
smaller coalitions, and as a consequence the existence of a nonempty core seems
likely in the presence of increasing returns to scale.

This intuition is surely correct in the most elementary example in which
production involves a single input, say labor, producing a single generalized
output according 1o the production function y =f(I), with f(I)/! increasing in L

! This paper, which is based on the Presidential Address of the Econometric Society delivered at
Northwestern University and at Pisa in 1983, was supported by a grant from the National Science
Foundation. I am very much indebted to Andrew Caplin, Philip White, and Ludo Van der Heyden
for many stimulating conversations on the subject of this paper, and to one of the referees of the
paper for his insightful comments
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If the ith consumer has an initial endowment of labor given by I, and a utility
function which only values output, then the allocation

Y, =@- L, with I=Zl L,
is collectively feasible and undominated by any coalition.

Unfortunately the existence of a nonempty core is not guaranteed under more
general conditions. Let Y be a production possibility set in m dimensional
Euclidean space, with inputs represented by negative entries and outputs by
positive entries of the typical production plan y € Y. We shall require that Y be
a closed set, contain the origin, and satisfy the customary free disposal assumption.
Moreover, let Y be additive, in the sense that y', y*€ Y implies y'+y?€ Y; and
possess the property that {y € Y|y =~} be bounded for any nonnegative vector
w; all very mild assumptions.

The ith consumer (for i=1,...,n) will have the utility function u,(x) and
vector of initial holdings w". Let the productive knowledge available to an arbitrary
coalition S N ={1,2,..., n} be described by the same set Y. The coalition may
therefore achieve, by its own efforts, any utility vector u,, for i € S, with u, < u,(x"),
for some {x'} and y € Y satisfying

Y xX=y+ Y wh

1€8S €S
As usual a utility vector u,,..., u, is in the core if it is feasible for the grand
coalition N, and if no coalition S can achieve an alternative utility vector which
is strictly preferable for all of its members.

i

FIGURE 1.
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The following rather surprising conclusion may be shown to be correct. If Y
is not a convex cone, then it can be incorporated in an economy described by a
given number of consumers n, a distribution of strictly positive initial assets
{w'}.=1, » and an assignment of continuous, concave, and monotone utility
functions u, (i=1,...,n), each defined on the nonnegative orthant of R™, for
which the core of the resulting economy is empty (Scarf [12]).

I continue to find this result quite disturbing ever since I first came upon it
over twenty years ago. It is true that the counterexamples which yield an empty
core are somewhat unrealistic in that they involve utility functions which depend
on all of the goods and services in the economy, and initial distributions of assets
which are positive for all commodities. Certain restrictions on the generality of
the economy which do yield a nonempty core have been found by Sharkey [16],
Ichiishi [7], Quinzii [11], Ichiishi and Quinzii [8], and by myself [12]. But the
conditions are by and large artificial and they do not yield a fully satisfactory
cooperative solution to the general Walrasian model in the presence of increasing
returns to scale.

Economies of scale are the major economic argument for the existence of large
productive units, which by virtue of their size have an ability to influence the
prices at which outputs are sold. The strategic selection of prices and outputs by
economic agents may be analyzed by noncooperative game theory, an approach
which has been taken by many authors during the last decade in reexamining
theories of imperfect competition originally proposed some fifty years ago. But
in spite of this substantial body of work (an excellent survey may be found in
Hart [5]), a theory of imperfect competition with the range and generality of the
Walrasian model is not yet available, even in the case in which economies of
scale are absent.

The work of Brown and Heal [1, 2] is also concerned with increasing returns
to scale, but their analysis makes no use of game theoretic considerations. Their
contribution is to provide existence theorems for marginal cost pricing and average
cost pricing equilibria—less ambitious, to be sure, than a game theoretic approach,
but perhaps more satisfactory at this moment precisely because of its simplicity.

The general equilibrium model and its game theoretic counterparts place a
heavy reliance on an a priori designation of consumer preferences, which are
independent of the productive side of the economy. The efficiencies of large scale
production, however, may be realized largely in the provision of new goods and
services for which consumers have no measure of utility prior to their actual
availability. To take only one of many obvious examples, the degree to which a
typical consumer will substitute between the acquisition of computer services
and other commodities has been drastically changed by the remarkable technical
innovations in the computer industry during the post war period. The emptiness
of the core in an economic model based on stable preferences for computer
services may not be fully relevant in examining the consequences of increasing
returns to scale in this industry.

Theorists will have various motivations for attempting to extend or modify the
neo-classical paradigm so as to include nonconvex production possibility sets.
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To my way of thinking, the most significant feature of the Walrasian model is
its ability 1o evaluate the consequences—for a host of variables—of changes in
economic policy or in the environment in which the economy finds itself. At the
present level of development of economic theory, we simply do not have a
corresponding ability to engage in this form of comparative anaAys1s in the
presence of increasing returns to scale in production.

When the economy is in competitive equilibrium with the production side
described by a convex cone, the question, for example, of whether a newly
discovered activity may be used to provide an improvement in the utility of each
consumer, has a remarkably simple answer. Under mild technical assumptions
a necessary and sufficient condition that such an improvement be possible is that
the new activity make a positive profit at the old equilibrium prices. This con-
clusion has an important counterpart in the simplex method for the solution of
linear programming problems, in which prices are used to test whether a feasible
solution to a system of linear inequalities is indeed optimal. Given a basic feasible
solution, a vector of prices is determined which yields a profit of zero for each
activity in use. A necessary and sufficient condition that this solution be optimal
is that the remaining activities make a profit which is less than or equal to zero.

If, in the competitive model, a new activity is discovered which can only be
used at integral levels, its profitability at the equilibrium prices is no longer
sufficient to guarantee higher utility levels for all consumers. The analogous
conclusion for integer programming problems, in which all activity levels are
required to be integral, is that there need not exist prices which permit us to
conclude that a feasible solution is indeed optimal.

Consider the following example of an integer program:

max —4h,—3h,
2h,+h,=3,
h;,, h,=0

The constraint set is given in Figure 2, with the objective function denoted by a
dashed line. If the integrality condition were relaxed the solution of the corre-
sponding linear program would occur at the point (3/2, 0). If the prices associated
with the objective function and the inequality are 1 and 2, respectively, then the
profit of the activity in use is zero, and the profit of the second activity is —1.
The integer programming solution is at the point (1, 1), and there are no prices
which yield a zero profit for both activities.

Production sets with indivisibilities, and the related integer programming
problems that arise when an endowment of factors is specified, represent the
most extreme form of nonconvexities in production. Such production sets capture
some of the major features which give rise to the efficiencies of large scale
production: set up costs which must be laid out prior to the use of a particular
activity, and the construction of large, indivisible pieces of machinery whose
employment is economically merited only for high levels of output. My own
research has been to concentrate on integer programming problems, and to replace



NEIGHBORHOOD SYSTEMS 511

b,
hY
\
o \ o o o o
\\
o 0\ . o o o
\
\ ] ]
\\
o \\o o
\\
\\‘
o % o
\\
O KN hl
FIGURE 2.

the pricing argument for optimality by a search through neighboring lattice points
which are, in a specific sense, close to a given feasible activity vector. Instead of
prices we shall be concerned with quantity information in verifying that a feasible
plan is optimal.

Let the general integer program have the form

max ag hy+- - - +agh,

ayh+- - -+ah, = b,

am1h1+ st amnhn = bma

and h=(h,,..., h,) integral. Nonnegativity inequalities, to the extent that they
appear, will be assumed to be incorporated in the constraints of the problem. By
a neighborhood system we mean an assignment to each integral vector h=
(hy, hy, ..., h,) of a finite set of integral vectors N(h), satisfying the following
two conditions:

ConbITiON 1: N(h)=h+ N(0).
ConprrioN 2: If ke N(h), then he N(k).
The first condition states that the set of neighbors associated with different

lattice points are simply translates of each other, and the second condition that
the neighborhood relation is symmetric.
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A local maximum, with respect to a given neighborhood system, is a feasible
integral vector, all of whose neighbors are either infeasible, or yield an inferior
value of the objective function. A local maximum for a particular neighborhood
system need not be a global maximum to the integer program. We will shortly
show, however, under mild conditions on the technology matrix A, that a unique,
smallest neighborhood system will always exist, for which a local maximum is indeed
global. The minimal neighborhood system will depend on the technology matrix
alone and not on the factor endowment.

The demonstration that such a minimal neighborhood system exists is quite
elementary and is best illustrated by a specific example, such as that of Figure
2, in which the technology matrix is given by

-4 -3
1 0
0o 1|
2 1

We shall show that the neighbors of the origin for this example are given by the
six lattice points of Figure 3; the neighbors of other points are obtained by
translation.

In order to verify, for example, that the point (1, —2) is a neighbor of the origin
in the minimal neighborhood system, it is sufficient to show that there is a
specification of b = (by, by, b,, b3)' so that the only integral vectors satisfying the
inequalities

_4h1 _3h22 b(),

hl 2bla
h2Z b2)
2hl + hZ2 b39

FIGURE 3.
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(1,\—2)\

FIGURE 4.

are the points (0, 0) and (1, —2) themsélves. For if this were so, the constraints
of the integer program

max —4h,—3h,
h, =b,,
h,=b,,
2hi+ hy=b,,

would be satisfied by (0,0) and (1, —2) (with the latter point giving the higher
value of the objective function). No other lattice point would both satisfy the
constraints and yield a value of the objective function greater than 0. If (1, —2)
were not in the neighborhood system, (0, 0) would, therefore, be judged incorrectly
to be optimal.

To see whether there is a specification of the inequalities for which (0, 0) and
(1, —2) are the only feasible lattice points, we ask whether the smallest convex
body—obtained by parallel movements of the inequalities—which contains these
two lattice points, will contain any other lattice points. This smallest convex body
is the set in Figure 4. The absence of other lattice points from this body verifies
that (1, —2) is a neighbor of the origin in the minimal neighborhood system.

Figure 5 displays the minimal convex bodies containing (0,0) and (—1,1),
(0, —1), respectively. Since both of these bodies are free of other lattice points,
(=1,1) and (0, —1) must each be neighbors of the origin in the minimal neighbor-
hood system. In Figure 6 we see that (2, —3) is not a neighbor of the origin.

(-1,1) (0,0)

(0,0)
(0,-1)

FIGURE §.



514 HERBERT E SCARF

(0,0

\ @

FIGURE 6.

Notice first that (2, —3) yields a higher value of the objective function —4h, —3h,
than does (0, 0). If the right-hand side of the integer program is specified so that
(0, 0) is a feasible solution, then the feasibility of (2, —3) will certainly imply that
(0,0) is not an optimal solution. But the feasibility of both (0, 0) and (2, —3)
implies the feasibility of a lattice point we have already verified to be a neighbor
of the origin, (1, —2), and this lattice point also yields a higher value of the
objective than does (0,0). Therefore (2, —3) need not be examined in order to
decide on the optimality of (0, 0). This argument can be used to show that no
lattice points other than those appearing in Figure 3 are neighbors of the origin.
For a general technology matrix A, two lattice points k and k' will be neighbors
of each other if the smallest convex body—obtained by parallel movements of
the linear inequalities—which contains k and k’ contains no other lattice points.
Conditions on A which are somewhat stronger than necessary to guarantee the
existence of a unique, minimal, finite neighborhood system are the following:

AssuMPTION 1.1: For each b= (by, by, ..., b,,)" the set of integral vectors h for
which Ah = b is finite.

NoON-DEGENERACY ASSUMPTION 1.2: Foreachi=0,1,..., m, the origin is the
only integral vector satisfying Z;;l ayh, = 0.

Assumption 1.2, which is not valid in our previous example, can be obtained
by perturbing the coefficients of the matrix A, or by a lexicographic tie-breaking
rule to order the components of y = Ah as h ranges over the integers in R".

Given these two assumptions the proof of existence of the unique, minimal
neighborhood system is quite straightforward. For each integral vector k, different
from 0, define

Sk={xeR" a,,k,),fori=0,...,m}.

Sy is the smallest convex set obtained by parallel movements of the inequalities
which contains both 0 and k. Then define a partial ordering of the nonzero lattice
points by k=< k' if S, < S;.. From Assumption 1.1, each lattice point is preceded

n n
Y a,x,=min (0, Y
J=1 J=1
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FIGURE 7.

by a finite number of lattice points in this ordering, and from Assumption 1.2
k=<k'and k'< k imply k= k'. The lattice points which are minimal with respect
to this ordering form the neighbors of the origin in the minimal neighborhood
system for which a local maximum is global.?

If the entries in the technology matrix are perturbed slightly the minimal
neighborhood system will be unchanged unless Assumption 1.2 is violated. Figure
7 illustrates such a case (based on a matrix with three rows and two columns)
in which either of the lattice points k or k' can be included in a minimal
neighborhood of the origin. This arbitrariness can be removed by the lexicographic
tie-breaking rule. Finiteness of the minimal neighborhood system is also guaran-
teed by the lexicographic rule [13], or, as Philip White has shown in his thesis
[17], by the assumption that all n X n minors of A have rank n, in conjunction
with Assumption 1.2.

It is important to remark that considerations of degeneracy can be avoided
completely if we are willing to settle for a neighborhood system which is not
necessarily minimal. When degeneracy is present the ordering of lattice points
given above may not be simple: there may be pairs k and k' for which k<k'
and k'=< k. A lattice point k is minimal with respect to this ordering if any k'< k
must also satisfy k=< k'. It is then easy to see that, as long as Assumption 1.1 is
satisfied, the set of lattice points which are minimal with respect to this ordering
will form a neighborhood of the origin in the following sense: Let the right-hand
side (b, b,, ..., b,,)' be selected so that 0 is feasible. If there is any lattice point,
different from 0, which is also feasible and the value of whose objective function
is nonnegative, then at least one of the lattice points in this neighborhood of the
origin will have the same property.

Precise knowledge of the neighborhood system associated with a matrix A
would yield an obvious algorithm for integer programs based on a specification
of the factor endowment b. When a feasible lattice point is given, its neighbors
are examined to see whether one of them satisfies the constraints and yields a
higher value of the objective function. If there is such a neighbor we move to it
and iterate; if not the current feasible lattice point is optimal.

In the next section I will present some specific examples of neighborhood
systems associated with certain classes of integer programming problems. As we
shall see, the cardinality of the set of neighbors of the origin may be quite high
when compared to the magnitude of the coefficients in the matrix A. This
cardinality is the most immediate measure of the complexity of an algorithm

2 This argument is due to Andrew Caplin and Philip White.
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based on iterated neighborhood searches. It specifies the number of alternative
lattice points that are required to be examined in order to verify the optimality
of a particular feasible solution.

On the other hand, the set of neighbors of the origin may have sufficient
structure so that each of its members need not be considered independently. For
example, the determination of whether a particular linear inequality is satisfied
by some member of a finite set of lattice points may be simplified considerably
if the set can be decomposed into a small number of linear segments. Each of
our examples will display structural properties of this type permitting the develop-
ment of an algorithm which proceeds much more rapidly than might be imagined
by simply counting the number of neighbors of the origin. If the approach taken
in this paper is to lead to efficient algorithms for integer programming it will be
necessary to extend these structural simplifications from our examples to the
general problem.

A possible conjecture concerning the structure of minimal neighborhood sys-
tems may be phrased using the language of complexity theory (an excellent
introduction to this very significant topic may be found in Garey and Johnson
[4]). Assume, to be specific, that the entries in the technology martrix A are
themselves integral. A measure of the complexity of A is given by the number
of binary bits required to store all of the entries of A (including their sign) in a
computer; a quantity which may be shown to be

S=Y Y (1+[log, (1+|a,)1),

with [x] defined as the least integer greater than or equal to x. An algorithm for
solving integer programs based on A is then said to be polynomial if the number
of iterations of its basic steps—or more precisely its running time—is bounded
from above by a polynomial function of S (to be accurate S should be increased
by the number of bits required to store the vector of factor endowments specifying
the particular program). If the algorithm is not polynomial, it may lead to
“exponential” searches which rapidly become infeasible to carry out.

Using techniques of the Geometry of Numbers, Lenstra [10] has demonstrated
the remarkable result that there is a polynomial algorithm for all integer programs
in which the number of variables is fixed in advance. It is easy to show, by means
of examples [14], that the cardinality of the set of neighbors of the origin is
definitely not polynomial in the data, but Lenstra’s result suggests the very
interesting and difficult conjecture that the minimal neighborhood system has
sufficient structure so that it can be described in a polynomial fashion.

I feel that such a result, if correct, might be capable of interpretation in terms
of the internal organization of a large firm whose production possibility set
involves significant indivisibilities. Such a firm, faced with the necessity of revising
its decisions because of changing factor endowments, may construct a mode of
organization—an algorithm, if you will—in which the examination and testing
of alternative plans can be carried out in the most efficient way. But at the present
time, I am far from being able 10 provide a convincing argument which relates
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the structure of neighborhood systems to the administrative arrangements that
might be undertaken by a large industrial enterprise.

2 EXAMPLES OF NEIGHBORHOOD SYSTEMS

In the present section I shall present several examples of technology matrices
whose minimal neighborhood systems can easily be described. In each of these
examples the neighborhood structure can be exploited so as to yield rapid
algorithms for the correspondirig integer programming problems.

A. A Special Leontief Matrix

Let the technology matrix consist of m+1 rows and n columns. Row zero will
have all of its entries negative, and the remaining m rows will be partitioned into
n subsets Iy, I, ..., I, with the property that a,>0if i< I, and a, <0 otherwise.
We make the special assumption that ¥, a,>0 for rows 1,..., m. This last
condition is restrictive; because of the assumption of integral activity levels the
multiplication of the columns of A by arbitrary scalars is not permitted. As we
shall see, the neighbors of the origin consist of all nonzero vectors h=
(hy, h, ..., h,) whose entries are zero or ones, or the negatives of these vectors.
The argument begins by establishing the following well known lemma.

FIGURE 8.

LeMMA 2.1: Let the vector b=(by, b,, ..., b,,)" be selected so that the m+1

inequalities Ah = b are satisfied by the two vectors k and k'. Then the same inequalities
are satisfied by k"= (min (k, k}), ..., min (k,, k},)).

Notice first of all that Y, a,k = b, for i€ I, implies that a,k,=b,—} _, a,k =
b,-Y, ., a, min (k, k), since a, <0 for j# L Replacing k by k' yields a similar
inequality so that a, min (k, k)=b,—Y ., a, min (k, k). This verifies that
inequalities 1,2,..., m are satisfied by k”. The zeroth inequality is certainly
satisfied by k", establishing Lemma 2.1.

This conclusion may be described geometrically by saying that the smallest
convex set obtained by parallel movements of the inequalities, which contains k
and k', will also contain k”. But that immediately implies that the two lattice
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points k and k' will not be neighbors of each other unless one of them is, in fact,
equal to k", i.e. unless k< k' or k'<k. It follows that a neighbor of the origin
must have all of its coordinates greater than or equal to zero, or less than or
equal 10 zero.

Now let k= (k,,..., k,) =0 be a neighbor of the origin; we shall demonstrate
that k, <1 forall j, as a consequence of the assumption Y, a,>0forrows1,..., m.
By this assumption the vector e=(1,1,...,1) will satisfy Y, ae,>0=
min (0, Z} a,k)fori=1,..., m and from the arguments of Lemma 2.1, it follows
that Y a, min (k, ¢)=min (0, 2, a,k) for these values of i Since
2, 4o, min (k, ) =¥ aok =min (0, agk,) it follows that min (k, e) must be in
the smallest convex set (obtained by translating the m+1 inequalities) which
contains 0 and k. This eliminates the possibility that a neighbor of the origin has
some coordinates greater than one.

The possible nonnegative neighbors of the origin are therefore vectors e’ =
(e7,€3,...,e5) with e’ =1if je Sand e’=0if j¢ S, with S an arbitrary subset
of (1,2,..., n). To show that such a vector is indeed a neighbor of the origin it
is sufficient to show that no other vector e is in the smallest convex body,
obtained by translations of the inequalities, which contains 0 and e°. This is
equivalent to showing that for any other subset S’ the inequalities

Y a,e’ =min [O,Za,,ejs], for i=0,...,m
7 7

are not all satisfied. But %, a,e; is positive for all ie I, if e S and negative
otherwise. The above inequalities fori =1, ..., m therefore imply that $'> S and
this is inconsistent with ¥, aye;’ =Y, aqe’. We have therefore demonstrated the
following theorem.

THEOREM 2.2: The neighbors of the origin consist precisely of those vectors whose
coordinates are 0’s and 1’s and their negatives.
Consider the integer program

max ), agh,  subject to

J
Za,}"b?b, (i=1,2,...,m),
J

with by, b,, ..., b, aspecific right-hand side. A direct application of neighborhood
searches may lead to an extremely slow algorithm if the initial feasible solution
is far from the optimum. As we shall see, there is an alternative algorithm which
reaches the optimum solution in a number of steps which is bounded above by
some function of n, independently of the entries in the matrix A. Let us begin
by solving the associated linear program

max ), a,x subject to
J

Ya,x=b, for i=1,2,...,m,
7
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with optimal solution x=x*. For simplicity of notation we shall assume that
0<x¥=<1forj=1,...,n; this can be achieved by a suitable translation of the
right-hand side.

Our first observation is that the optimal solution to the integer program must
then satisfy h, <max;., b+ 1. Suppose, to the contrary, that (hy, h,,..., h,) is
the optimal solution and that h,;=h,+2 for j=2,..., n. But then the neighbor
(hy—1,hy,..., h,) will certainly satisfy all of the inequalities in rows
L, I, ..., I,. In order to show that the inequalities in I, are also satisfied by
(hy—1, h,, ..., h,) we begin by observing that the vector (x§+h,—2, x¥+h,—
2,...,x5+h,—2) is feasible, since (x§, ..., x¥) is feasible, h; =2, and Y, a,>0.
But (hy, hy,...,h,) is also feasible, and we may therefore use Lemma 2.1 to
conclude that (xf+h,—2,h,,..., h,)=min ((hy, hy,..., h,), (x¥+h ~2, x¥+
hy=2,...,x¥+h,—2)) is feasible. Since xF+h, —2<h,—1, we see immediately
that the inequalities in I, are also satisfied by (h,—1, h», . .., h,) and h is therefore
not optimal.

It follows from this argument that the optimal solution must have a pair of
coordinates, say h, and h,, whose difference is either +1, 0, or —1. If this pair
were known the two variables h, and h, could be replaced by a single variable
t with one of the following conditions holding:

hj=t, hk=t;
h]:t, hk=t+1;
h1=t+1, hk=t.

The original integer program would then be reduced to three integer programs
involving n—1 rather than n variables. Moreover the new technology matrix
would be obtained by adding together columns j and k, and would therefore
satisfy precisely the same conditions as the original problem. In order to initiate
the next stage of the algorithm, each of the three new linear programs would be
solved.

Of course, the precise pair j and k is not known in advance. But there are
n(n—1)/2 such pairs; when all of these are considered at each step, we obtain
an algorithm whose running time is bounded above by a function of n, indepen-
dently of the remaining data.

The neighborhood system may be considerably more complex when the crucial
assumption ¥, a,>0for j=1,..., m is relaxed. In this more general case there
will be a smallest positive integer vector h¥,..., h} satisfying ¥ a,h¥ >0, and
the nonnegative neighbors of the origin will ke a subset of {h|0< h=< h*}. But
substantially more analysis seems necessary in order to develop an algorithm
which is polynomial in the data.

B. The Transportation Problem

As our second example we shall consider the classical Hitchcock-Koopmans
transportation problem. We are given m sources of a single homogeneous com-
modity and n destinations. The unit cost of shipping from source i to destination
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J is a positive number c,. The available supply at source i is denoted by s, for
i=1,..., m, and the demand at'destination j by d, for j=1, ..., n; it is typically
assumed that }, 5, =} d,.

Let x,, =0 be the amount shipped from source i to destination j. Such a shipping
plan will be feasible—consistent with the available supplies and the demands—if
Y, X, <s, and ¥, x,>d,. The goal of the transportation problem is to select a
feasible shipping plan which minimizes the total cost ¥, % c,x, As such the
problem is an ordinary linear program involving m - n variables x, and m+n
linear inequalities in addition to the nonnegativity requirements on the variables
themselves. It can be solved in a most expeditious fashion by the simplex method.

The problem becomes an integer program when the variables x, are required
to be integral. But even in this form the problem is elementary since it may be
shown that the optimal solution to the linear program will yield variables x,
which are integral if the supplies s, and the demands d, are themselves integral
(Dantzig [3]).

Our purpose will be to exhibit the neighborhood system for the integral
transportation problem and to show that an accelerated neighborhood search is
identical to the simplex method. For this problem the technology matrix A will
consist of 1+n+m-+m-n rows and m- n columns. The matrix will map a vector
of integral activity levels {h,} into a production plan

y=—LXchy,
t g
4 =Z hxla
tn =z hl'l)
u ==y hlp
7
Uy = _Z hmja
7
h11=h11,
hmn= hmn:

with y the negative of the shipping cost, ¢, the total quantity shipped to destination
J, and —u, the quantity shipped from source i.

It is useful to introduce the graph G associated with the transportation problem
which has as its set of nodes, the m sources and »n destinations, and as its arcs,
all simple paths from a source to a destination. A cycle of the graph is a sequence
of arcs (ny, ny), (ny, n3),...,(n, ny) each of which connects a source and a
destination, beginning and ending with the same node.
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FIGURE 9.

The transportation problem is degenerate in the sense used in Section 1 of this
paper and our neighborhood system will not necessarily be minimal. We shall
assume that ¢, >0, ¢, # c,, for j; # j, and Y, ¢,e, #0 around any cycle.

A typical neighbor of the origin will be an integral vector {h, } whose coordinates
may be of mixed sign. Such a vector will be a neighbor of the origin if there is
no other integral vector {h;} with min (0, y") = min (0, y), min (0, ¢;) = min (0, £,)
for j=1,...,n, min(0,u;)=min(0,4) for i=1,...,m, and min (0, h,)=
min (0, k) for all i and j, unless all of these inequalities are equalities. Let us
begin our analysis by considering a potential neighbor of the origin for which
one of the 1’s, say t,, is different from zero. Since the negative of a neighbor is
also a neighbor there is no loss of generality in assuming that ¢,>0. But then
one or more of the coordinates h,; must also be strictly positive, say h,«; > 0. The
integral vector {h;} defined to be

h,=h, for all (i,j)# (i*1),
h:*1=ht*l—l’

will yield a production plan {y', ¢, u’, h'} which differs from {y, t, u, h} in only
four coordinates:

y'=ytem,
ti=t-1,
U= Ut 1,
By =Ry —1.

Since ] and h;+; are both >0, this new production plan will certainly be in the
smallest convex body containing 0 and h, obtained by translating the inequalities
of the transportation problem: h'=< h, and of course it is not correct that h< h'.
For h to be a neighbor, h’ must therefore be the zero vector, so that h is a plan
which ships a single unit from source i* to destination 1. All other neighbors of
the origin must satisfy ¢, =0 for j=1,..., n.
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As the next step in our analysis we let {h,} be a neighbor of the origin for
which u,=% h,=0and t, =} h,=0 for all i and j. Assume, for specificity, that
hy;>0. It follows that h,, <O for some i, say i;. As a consequence h,,>0 for
some j, say j;. By continuing in this fashion we shall find a cycle along which
the corresponding h,’s alternate in sign. We define {¢,} to be +1 if (i, j) is in the
cycle and h, >0, to be —1if (i, j) is in the cycle and h, <0, and to be 0 otherwise.
The production plan {e,}, illustrated in Figure 10, consists of shipping a single
unit of the commodity around the arcs of a cycle.

Let us assume that the cost ).}’ ¢ e, associated with this elementary shipping
plan is positive. If we then define hj, = h, —e,, it will be true that y'>y, ¢, =0,
and u; =0 for all (i, j), that h;, = h, for h, <0, and that h; =0 for h, > 0. It follows
that A’ is in the smallest convex body containing 0 and h, obtained by translating
the inequalities of the transportation problem; h'< h, and it is not correct that
h=<h'. h will therefore be a neighbor of the origin only if it is equal to the
elementary shipping plan e. If, on the other hand, the cost }, Y, c,e, <0, consider-
ation of the plan h'=—h+e will also show that h is equal to e. We conclude
that a neighbor of the origin for which u, and ¢ are all 0 is an elementary plan
consisting of shipping a single unit in some direction around a cycle.

To complete our analysis we consider those neighbors of the origin for which
t,=0,forj=1,..., n, and for which one of the u, say u,, is negative. Since u; <0,
it follows that there is some j, say j;, for which h,, >0, and as a consequence
there will be some i, say i, for which h,; <0. There is no loss in generality in
assuming that u, >0, since if this were not so the argument could be continued
to find h,,,>0 and h,,, <0, etc., and must terminate with a positive u, since a
cycle is ruled out by precisely those arguments which have just been employed.

If ¢, > c,,,, the plan

hy=h, forall (i j)# (1, ) or (i, ju),

{]l = h111 - 1’
hilll = hll]l + 1’
is in the smallest translated convex body containing 0 and h, and we conclude
that by, =1, h,, =—1 and is otherwise 0. If ¢, <¢,,, —h’ will lie in the smallest
4,
+1
5
-1
d
+1
$2
[+ d3

FIGURE 10.
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FIGURE 11.

translated convex body containing 0 and —h, and the same conclusion follows.
We have therefore demonstrated the following theorem.

THEOREM 2.3: The neighbors of the origin for the transportation problem are of
three types: shipping a single unit from a source to a destination (or its negative),
shipping a single unit around a cycle, and replacing the shipment of a single unit
from a particular source to a destination by the shipment of a single unit from a
different source to the same destination.

Now let h, be a feasible solution to the transportation problem with a given
set of supplies s, and demands d,; we shall assume that ), s, =Y, d,. (We shall also
make the standard nondegeneracy assumption of the transportation problem that
the sum of the supplies is different from the sum of the demands for any proper
subset of nodes.) In this case the neighbors of a feasible plan h obtained by
shipping one more (or less) unit along a given arc will not be feasible, nor will
those obtained by shipping one more unit along a given arc and one less from
a different source to the same destination. We need only concern ourselves with
neighbors that arise by shipping one unit around a cycle.

Let us suppose that the feasible solution is positive for a set of arcs which
contain a cycle and let e be the plan which ships one unit around that cycle,
with the orientation selected in such a way that }, ¢,e, <0. Then h + e will remain
feasible and yield an improvement in the objective function. But this neighbor-
hood search can easily be accelerated by adding the largest integral multiple of

+1

I1

FIGURE 12.
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e to h which retains feasibility; in so doing we shall obtain an improved feasible
solution containing fewer positive arcs than the previous solution.

Repeated application of the same procedure will yield an improved solution
for which the set of positive arcs forms a tree: a subgraph of G containing no
cycles. And given the nondegeneracy assumption of the transportation problem,
this tree is maximal in the sense that adding any arc to the tree will yield a
subgraph containing precisely one cycle. The reader familiar with linear program-
ming will know that at this point we have reached a feasible basis for the
transportation problem.

In order to see whether h+ e remains feasible, where e is a plan which ships
a single unit around any particular cycle, we need only select an arc which is
not in the tree. If h + e ships a positive amount along this arc and remains feasible,
the cycle—and its orientation—will be uniquely determined. Once the cycle is
known we evaluate the cost Y, c,e,. If this cost is positive this particular neighbor
should not be selected, since it results in a worsening of the objective function.
If the cost is negative, we add to h the largest possible multiple of e which retains
feasibility, yielding a new tree containing the new arc and with one of the arcs
of the original tree deleted.

FIGURE 13.

This movement from one feasible basis to an adjacent one with an improvement
in the objective function is precisely a pivot step of the ordinary simplex method.
As we see an accelerated neighborhood search is identical to the simplex method
for the transportation problem. A similar conclusion is undoubtedly correct for
other types of network flow problems as well.

C. The Knapsack Problem with Two Variables

The problem of minimizing a linear function of nonnegative integral variables
subject to a single linear inequality is known as the knapsack problem. It is an
extremely difficult problem and undoubtedly does not possess an algorithm which
is polynomial in the data when the number of variables is considered as well as
the coefficients of the two linear inequalities. In this section we shall provide a
complete description of the neighborhood structure when the number of variables
is equal to two and verify that an accelerated neighborhood search does lead to
a polynomial algorithm.
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A polynomial algorithm for the two variable knapsack problem was first
provided by Hirschberg and Wong [4]. This was followed by a generalization to
a larger class of integer programs involving two variables by Kannan [7], and
extended 'to the general two variable problem by myself [12].> The analysis of
the neighborhood structure for the two variable knapsack problem can be applied
with minor modifications to the general integer program with two variables; the
knapsack problem has been selected in order to simplify the exposition.

The technology matrix A for the knapsack problem has the form

+ o=
+ - o

The middle two rows of A express the nonnegativity constraints, the top row the
objective function (we are minimizing a linear function with positive coordinates),
and the last row states that a positive linear function of the two variables is
greater than or equal to a preassigned right-hand side. We adopt the lexicographic
tie breaking rule which stimulates that a 0 coordinate in the vector y = Ah is to
be considered positive if and only if the vector y is lexicographically positive.
With this convention the 0’s in A are interpreted as being negative.

The analysis of the neighborhood system is greatly facilitated by the following
elementary observation.

LEMMA 2.4: Let the matrix A have the sign pattern
.+. —_
— 4|
+ +

Then (1,0), (0, 1), and (1, 1) are neighbors of the origin.

When the four linear inequalities, corresponding to the four rows of A, are
placed on the vertices of the unit square, as in Figure 14, the resulting convex
body will contain no other lattice points. Therefore the smallest convex body—
obtained by translating the four linear inequalities—containing the origin and
any one of the other three lattice points will be free of additional lattice points.
This demonstrates Lemma 2.4.

Now let us assume that the difference between the two columns of A has the
same sign pattern as one of the columns; for example that a'— a® has the same
sign pattern as a', where a’ denotes column j. But then Lemma 2.4 can be applied

3 As previously mentioned, Lenstra has demonstrated the existence of a polynomial algorithm when
the number of variables is fixed at any value
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FIGURE 14,

to the matrix B given by

Aoy — Aoy Ay
1 0
-1 1]
a3 —4dz; Q43

and we conclude that a'—a®= B- (§) is a neighbor of the origin for the matrix
B. But as h and h' range over the lattice points in the plane, B-h’ and A- h
generate the same set of vectors, and it follows that (1, —1) is a neighbor of the
origin for the original problem.

This process of subtraction may be continued. If k, is the largest integer such
that a' — k,a” has the same sign pattern as a', then (1, ~1), (1, =2), ..., (1, =k,)
will all be neighbors of the origin. Letting a®>= a'—k,a®, the result of these
repeated subtractions will be a matrix

a® a’

ap1 — k1o, ap
Al= 1 0
- k1 1

ay —kiay, ay

whose sign pattern is identical to that of the original matrix.

It will no longer be correct that a® — a’ has the same sign pattern as a®, but it
is possible that a’— a’ has the same sign pattern as a>. If this is so we let k, be
the largest integer such that a*=a*— k,a® has the same sign pattern as a®. This
produces a new linear sequence of neighbors (—1,1+k,), (-2,1+2k,),...,
(—ky, 1+ kyky), and a final matrix A®> whose columns are given by a, a*.

The process moves through a sequence of matrices A'=A, A%, A3, ... A""!
each having the same sign pattern as A. A’ has columns (a’*!, @’) if j is even
and (&, @’"") if j is odd, where @' =a’ "'~ k,_,a’; k,_, is the largest integer such
that @’*' and a’~' have the same sign pattern. The process terminates at the
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matrix A"*! which has the property that neither column difference has the same
sign pattern as one of the columns. In moving from A’ to A’*' a new set of k,
neighbors is determined:

(@i—ai", dy—ay™),..., (di—kal", ab—kal™) = (a]"?, ai"™).

As is quite apparent, this set of neighbors, which we denote by S, is linear.

I shall reserve for the next section the proof that all of the neighbors of the
origin—aside from sign—are obtained by this procedure. Assuming this con-
clusion to be correct, the neighbors of the origin are partitioned into S, = {(1, 0),
(0,1), (1, 1)} and n linear subsets—an observation which permits a considerable
acceleration of the repeated neighborhood search for an optimal solution.

An example may be useful at this point. Let the knapsack problem be

min 329 h,;+103 h,
195 h+ 61 h,=b

subject to

with h, nonnegative integers.

The sequence of matrices A!, A% A® A*is then given by

~329 -103 ~20 -103 ~20 -3 -2 -3
1 0 1 0 1 =5 31 -5
0 1|’ -3 1|’ -3 16| -99 16|’
195 61 12 61 12 1 6 1
with neighbors (1, 0), (0, 1), (1,1) and

(1,-1) (-1,4) (6,—-19)
(1,-2) (-2,7) (11, ~35)
(1, -3) (-3,10) (16, —51)
(—4,13) (21, -67)
(-5, 16) (26, —83)
(31, -99).

In S, for j=1, the neighbors are W/ (t)=(a}—tal"’, ab—ta}"™") with t=
1,2,..., k. If j is odd then R{(#)>0 and is monotonically increasing, h}() <0
and is monotonically decreasing; moreover h}(k,) < h;"*(1) and hj(k)> h5"(1).
The sign patterns and inequalities are reversed if j is even. The values of the
constraint function at this sequence of neighbors are given by

a; - W (t)=a}~tal!

fort=1,..., k, with a§> a4"' > 0. The sequence a; - I’(t) is positive and decreas-
ing from a} when =0 to a4 when t =k;. It follows that a, - h'(t) = a}" = a}"!
fort=1,2,...,kand I<j—1.

Now let h be a feasible solution to the knapsack problem for a particular value
of the right-hand side b, i.e. h=0 and a, - h = b. As we shall see, a single division
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is required to determine whether one of the neighbors of the origin in S, for
Jj=1, can be subtracted from h (addition of one of these neighbors will worsen
the objective function) and still retain feasibility.

LeMMA 2.5: Let h be a feasible solution, and define t* to be the smallest positive
integer such that

a,-(h—HK(t))=ay- h—d}+tay'=b.

If h— W (t) is feasible for somet=1,2, ..., k, then h— I’ (t*) is feasible. (If t*> k,
then h— I (t) is infeasible for all t=1,2,... k)

The proof of the Lemma is quite direct. If h—h’(¢*) is not feasible, then
h,~hi(t*) <0 for i =1 or 2. Assume, to be specific, that j is odd, so that #,(¢)>0
and increasing in ¢ This implies that h, — | (t*) <0 and therefore h, — b (1) <0
for ¢t>1t*. On the other hand, for ¢<t* we have a;-(h—H(t))=
a; - h— a}+ta}"' < b. This demonstrates Lemma 2.5.

We see that at most n computations (plus some trivial ones associated with
subtracting (1, 0), (0, 1) and (1, 1) from h) are required to test for the optimality
of a given feasible vector h. But even more can be said. Let h be an arbitrary
feasible vector such that neither h—(1, 0) nor h— (0, 1) are feasible. Then at most
2n steps are required to pass from h to the optimal solution if at each step we
subtract the largest multiple of a neighbor of the origin from a feasible vector
S0 as to retain feasibility.

To establish this assertion, let j be the smallest integer (assume that j=2) such
that S, contains a neighbor h’/(t) with h— h’(t) feasible. By Lemma 2.5 it will be
correct that h'=h—h’(+*) is feasible with ¢* the smallest positive integer such
that ay - (h— W (1)) =a, - h—a}+ta}"' = b. Consider first the case in which £*> 1.
In this case a; - h'=a; - h—a}+t*a}"' <b+al"". Since a;- h'(t)=a}" for I=
1,2,...,j—1and any t=1,2,..., k, it follows that the only neighbors of the
origin which can be subtracted from A’ with feasibility retained must lie in
S, 8415+ - - » Su. Moreover, since a; - W (1)>a%"! for t=1,2,...,k~1 the only
possible neighbor in S, that can be subtracted is the last one, #’ (k). If we subtract
the largest possible multiple of A’ (k) which retains feasibility then no further
subtractions are available in any of the sets S,,..., S,

To complete thie argument We consider the case in which *=1. But then I
claim that

ay- (h—K(1))=a,- h—al+ai <aj™ +b.

)

If this were not so then a; - h= b+ a}. Since a, - h’"z(kj_z) = dj it follows that
ay - (h—h"*(k,_,)) = b. From the fact that the positive coordinate of #'~*(k,_,)
is less than the same coordinate of #'(1), we see that h— I ~*(k,_,) is feasible,
contradicting the assumption that S, is the first set containing a neighbor which
can be subtracted from h. It follows that even in the case in which t*=1,
as -+ h'=a; - (h— K (1)) < b+ a}and the only subsequent subtraction in S, is H' (k).
Again we subtract the largest possible multiple of #’(k,) which retains feasibility,
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and are left with the situation that all subsequent subtractions are from
Sy+1, -+, Sy This demonstrates that the optimal solution may be found in no
more than 2n steps.

Consider the problem

min 329 h,+103 h, subject to
195 hy+ 61 hy= 6999
with h, nonnegative integers,

whose neighbors have been determined above. The feasible solution h = (28, 26)
yields a value of the constraint of 7046. The only neighbor in S; which can be
subtracted is (1, —3). Subtracting this neighbor three times yields h’'= (25, 35)
with a value of the constraint function given by 7010. The only neighbor in S,
which can then be subtracted is (=5, 16). Subtracting this neighbor twice yields

"=(35, 3) with a value of the constraint given by 7008. No subsequent subtraction
is possible and we have reached the optimal solution.

The number of binary bits required to store a positive integer a is f(a)=
[log, (a+1)], with [x] the smallest integer greater than or equal to x. The function
satisfies the identity f(2a) = f(a)+1.

It is elementary to argue that n, the number of linear subsets into which the
neighborhood system is partitioned, is no larger than f(al)+ f(a3), the number
of bits required to store the coefficients of the constraint function. To see this,
define T, = f(a})+ f(a4™"). Then

T, = T =f(a4) - f(as") =1,

since a}= a4 = al*?, and a}=al"?+kal" = a}?+ a}t =242 It follows that
T, decreases by at least unity for each linear subset of neighbors; the number of
such subsets is therefore not larger than T,. In the terminology of complexity
theory the accelerated neighborhood search leads to a linear algorithm for the
knapsack problem. As I have previously mentioned, virtually identical arguments
can be applied to the general integer programming problem with two variables.

D. The Totality of Neighbors for the Knapsack Problem

We shall demonstrate that the procedure of Section 2C finds all of the neighbors
of the origin for the two variable knapsack problem. It is easy to see that the
only neighbors in the nonnegative quadrant are (1,0), (0,1) and (1, 1); other
than the negatives of these three, all other neighbors are in the second or fourth
quadrant.

Let h=(q,, —g,) be a neighbor in the fourth quadrant, with g,, g, nonnegative
integers, and consider the smallest convex body—obtained by translating the
four inequalities—containing h and the origin. In Figure 15 I have made a
particular assumption—which will be maintained throughout the argument—
about the way in which the linear inequalities relate to these two points; the
small number of alternative assumptions can be dealt with by analogous argu-
ments.
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(0,0)

(qla _qZ)
™

FIGURE 15.

Figure 15 implies that

—+

Cask 1: ¢,> gq;. We have
0< qia}—qa5=g\(aj—a})—(g—q;)a3,  and
0>%atl)"%agzQ1(a(1)_ag)—(‘I2'“Q1)ag~

The first of these inequalities implies a—a3>0 and the second ag—ag<0. It
follows that the matrix A’ with columns (a'—a?, a*) has the same sign pattern

as A, and that (g,, —g,+ q,) represents the same neighbor of the origin when A
is replaced by A'.

CaskE 2: ¢,<¢q,.
In this case we write

‘Ila1 - q2a2 =(q;— qz)al _‘I2(02_ a')

so that (g, — q,, —g,) represents the original neighbor of the origin when A is
replaced by A’, the matrix with columns (a', a>—a"). To verify that A’ is the
matrix arising in the computations of Section 2C, we need to verify that a3—a3>0
and a%—al<0. The first of these inequalities arises from the fact that (1, —1)
does not satisfy inequality 3 when it is placed through the origin, and the second
from the observation that (q,—1, —gq,+1) does not satisfy inequality 0 when it
is placed through the point (q;, —¢s).
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(g1—1,~¢,+1)
o

(91, —92)

K

In either case when the smaller of the two numbers is subtracted from the
larger we obtain a new representation of the same neighbor with A replaced by
A'. Since the pair of integers gq,, g, are relatively prime, a continuation of the
process will ultimately representthe original neighbor using weights (1,0) or
(0, —1) with A replaced by a matrix arising in the computation of Section 2C.
We have therefore verified that the neighbors of Section 2C are—aside from
sign—all of the neighbors of the two variable knapsack problem.

FIGURE 16.

E. Integer Programs with Three Variables and Three Inequaliiies

In this section I will briefly describe some recent work on neighborhood systems
associated with a technology matrix A with four rows and three columns. The
matrix is assumed to satisfy Assumption 1.1.

A matrix U is defined to be unimodular if it has integral entries and a
determinant of 1. If U is unimodular the transformation h'= U 'h maps the
set of lattice points in three space onto itself. Since Ah=AUU 'h=AUR it
follows that the two technology matrices A and AU generate equivalent integer
programs, and we are free to select the unimodular matrix U in a way that
simplifies the description of the neighborhood system.

In [15], I have shown that there is a unimodular transformation U, with the
property that all of the neighbors of (0, 0, 0), associated with A'= AU, lie on one
of the three planes h,=—1, h,=0, h, =+1. This implies that in testing for the
optimality of a feasible solution h = (h,, h,, h;) to the integer program

max ag - h subject to
al-h=b, (i=1,2,3)
and h integral,

it is sufficient to solve the three two variable integer programs obtained by fixing
the first variable at h,—1, h,, h,+1. Each one of these problems has, of course,
a polynomial algorithm by the arguments of the previous example.
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In fact, something more can be demonstrated. When the two variable integer
program, obtained by fixing the first variable at any level, is solved, the information
available at the solution is sufficient to tell whether the optimal solution to the
three variable problem has a higher or lower value of its first coordinate. This is
a very surprising conclusion which, unfortunately, does not seem capable of
generalization to problems with more than three variables.

Yale University

Manuscript received November, 1984; final revision received August, 1985.
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