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THE SHAPES OF POLYHEDRA*f

RAVI KANNAN,# LASZLO LOVASZ® aND HERBERT E. SCARF**

Let A4 be a real matnx of size (n + d + 1) X n We assume that all n X »n submatrices of A4
are nonsingular and define the condition number C = C(A) to be the ratio of the largest n X n
subdeterminant of 4 t the smallest in absolute value In addition we assume that there 15 a
posttive vector 7 such that #4 = 0 This implies that for any b, the body K, = {x|Ax < b} 15
bounded Let f(A) be the number of subsets of the rows of 4, of cardinality » + 1, for which
a posiuve linear combination equals zero

The Banach-Mazur distance p(Kj,, K,) for a paur of nonempty full dimensional bodies K,
and K, 1s defined as follows let A, be the smallest A for which K, € AK,, + §' for some ¢!
and X, the smallest A for which K, € AK, + £2 for some £2 Then p(K,, K,) = log(}A; - A5)

We show that for any € > 0, there exists a subset of the bodies K, of cardinality not larger
than f(A)[2log,(nC)/€]¢, such that every body 1s within distance ¢ from some member of the
subset

1. Introduction. Let 4 be a real matrix with n+ d+ 1 rows, numbered
0,1,...,n + d, and with n > 1 columns. We assume that all » X n submatrices of 4
are nonsingular and define the condition number C = C(A) to be the ratio of the
largest n X n subdeterminant to the smallest n X n subdeterminant of 4 in absolute
value. In addition we assume that there is a positive vector 7 such that #4 = 0. This
implies that for any b, the body K, = {x|4x < b} is bounded.

Two such bodies K, and K, are said to have the same shape if one of them is a
translation and expanston of the other, i.e. if there exist a vector £ and a positive scalar
A such that K, = AK, + £ We shall use a variant of the well-known Banach-Mazur
metric p(K,, K,) on the set of nonempty, full dimensional bodies which is unchanged
if either body is translated by an arbitrary vector or expanded by a positive factor; the
metric gives a distance of zero if and only if the bodies have the same shape. The
distance between two bodies will be small if their shapes are roughly the same. Our
main result shows that for an arbitrary positive ¢, there will be a finite subset, of small
cardinality, of these bodies such that every body is within distance e from some
member of the subset. The result will then be applied to a version of Lenstra’s
algorithm to determine whether a convex body contains a lattice point, to study those
bodies K, which are free of lattice points and to obtain some new conclusions about
neighborhood systems associated with the matrix 4 and Minkowski’s successive
minima for the family of symmetric bodies (K, — K).

We define a set S of the rows of 4 to be dual feasible if there is a vector 7 with
7w, >0 for 1 € S, m = 0 for the remaining rows and 74 = 0. Given our assumption
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that all » X n minors of 4 are nonsingular, the cardinality of a dual feasible set of
rows is at least n + 1. The body K, is a simplex if it is defined by a subset of n + 1 of
the inequalities whose corresponding set of rows 1s dual feasible; it is easy to see that
two simplices defined by the same subset of n + 1 rows are identical aside from
translation and scaling. We denote the number of distinct simplices, or equivalently the
number of minimal dual feasible sets of rows, by f = f(A4). Obviously

i< (" :fi 1) = 0(n?) for fixed d;

a more refined analysis, based on the Upper Bound theorem of McMullen (McMullen
and Shepard 1971), would permut us to assert that f= O(n%/?). In addition, we define
r = r(A) to be the number of rows of A such that the complementary set of n + d
rows is dual feasible.

Our variant of the Banach-Mazur distance p(K,, K,) for an arbitrary pair of
nonempty full dimensional bodies K, and K, is defined as follows:

1.1 (DEFINITION). Let A, be the smallest A for which K, € AK, + £' for some £!
and A, the smallest A for which K, C AK_ + £2 for some £2 Then p(K,, K,) =
log(A; - A,).

It 1s easy to see that the distance function satisfies the following elementary
properties:

1.2 (LemMA). 1. p(K,, K,) = 0 and 15 equal to O if and only if the two bodies are
identical aside from translation and scaling.

2. p(K,, K)) = p(nK, + & K,) for positwe p and arbitrary §.

3. The tnangle inequality: p(K,, K;) < p(K,, K,) + p(K,, K,).

ProoOF. 1. Since K, € MK, + &' for some &' and K, € M\,K, + &% we see that
K, S MM K, + (£ + A\ &%), Therefore A\, > 1 and is equal to 1 if and only if both
inclusions are equalities.

2. Using the same notation we see that K, C (A,/pw)(nK, + £) + {& — (A /w)é)}
and pK, + £ C ph\, K, + {p&* + £} and therefore p(pK, + £, K,.) < log(A; - A,) =
p(K,, K ). Equality 1s obtained by reversing the argument.

3. Let

K,cA, K +8&, K. Cc)\ K, +¢" and
K SN K+ &9 K ,Sh, K + &0
so that
p(K, K,) = IOg(}\b,c A, ) and p(K,., K,) = log(A. a Ao
But then

K, cA

b= b,

()‘(.de + ‘f"d) +¢h< and K, C Aa,c()\c,be + ‘fl’b) + 0
so that
p(Kp Ky) <log({Ny, - Aca) - (MaooAip)) = p(Kp K) + (K, K,). m
Two bodies in the family K, are identical, aside from translation and scaling, 1f their

Banach-Mazur distance is 0; they are similar in shape 1f the distance 1s small. The
major result of the paper will be to show that for any ¢ > 0, there exists a finite subset
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of the bodies K, of cardinality not larger than

f(4)[210g,(nC) /€]

such that every body is within distance ¢ from some member of the subset, using the
Banach-Mazur measure of distance.

2. The cone B. Let V' be the set of vectors b in R”*“*1 for which the body K, 1s
nonempty. ¥ is a polyhedral cone of dimension n + d + 1 which contains the linear
space L, of dimension n, spanned by the columns of 4. Any two vectors in ¥ whose
difference hes in L, yield bodies which are translates of each other. We define
B = V/L, ie., the set of equivalence classes of those b for which K, is nonempty,
with two vectors identified if they differ by a linear combination of the columns of 4.
Since n dimensions are removed by this identification, B is a closed polyhedral cone of
dimension d + 1. A single representative from each equivalence class may be chosen in
several ways: we may, for example, translate the bodies K, so that n particular
coordinates of b are equal to zero, or alternatively so that b is orthogonal to the
columns of 4.

The cone B lies in the vector space R"*¥*!/L . The dual of this subspace can be
thought of as the set of those linear functions, = - b, which are constant on each
equivalence class, 1.e., those linear functions with 74 = 0. The dual cone of B, denoted
B*, is the set of such linear functions with 7 - b > 0 for all b in B. It is easy to see that
B* = {7|mA = 0 and 7 > 0}. For if «, with 74 = 0, is nonnegative, then certainly
7 - b = 0 for any b such that the inequalities Ax < b yield a nonempty set, i.e., for any
equivalence class of vectors in B. Conversely for any b, if = - b > 0 for all nonnegative
7 for which 74 = 0 then, by the duality theorem, there is an x for which Ax < b and
b belongs to B.

2.1 (THEOREM). 1. B has f(A) facets. Each facet 1s defined by a dual feasible subset
S of n + 1 rows of A. The bodies corresponding to vectors b on this facet Fy are precisely
those bodies K, which may be translated so as to satsfy b, =0 for 1 € S and b, > 0 for
the remaining rows.

2. B has r(A) extreme rays. Each extreme ray corresponds to a row of A, say I, such
that the complementary set of n + d rows 1s dual feasible. The bodies corresponding to
vectors b on the ray R, are precisely those which may be translated so as to satisfy b, = 0
for all 1 different from | and b, = 0.

Proof. 1. For each S, the vectors in Fj, as defined above, form a subcone of B of
dimension d. To show that they all lie on the boundary of B we argue as follows: By
the definition of S, there exists 2 # with #4 =0, #,>0 for 1€ S and 7, =0
otherwise. Any vector x satisfying a,x <0 for : € S must then satisfy a,x = 0 for
these same rows and — by the nonsingularity assumption — 1s therefore the zero
vector. It follows that for b in F;, K, is the degenerate simplex defined by the n + 1
rows of S and satisfying the remaining d inequalities, some of them strictly. It is on
the boundary of B since a small perturbation will make this body empty. Fg is
therefore a facet of B.

Conversely, any body K, with b on the boundary of B must consist of a single
point, since otherwise arbitrary small perturbations of b would retain feasibility of the
system of inequalities Ax < b. Let this point be translated to the origin. But then at
least n + 1 hyperplanes, defined by a dual feasible set of the rows of 4, must pass
through the origin and the body is contained in at least one facet Fg. This demon-
strates that the union of the facets F; is the entire boundary of B.
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Let us now prove 2. An extreme ray { Ab|A > 0} must lie on the boundary of B and,
by the previous argument, must be contained in a facet Fg defined by a dual feasible
set of n + 1 rows of A. After translation of K, we may assume that b, =0 for: € §
and b, > 0 for the remaining coordinates. But if more than one of these remaining
coordinates 1s strictly positive, b can be written as a convex combination of two
nonproportional vectors in the same facet and is not an extreme ray of B. It follows
that only one of these remaining coordinates is strictly positive and the ray is as
asserted in the statement of Theorem 2.1. =

2.2 (THEOREM). B* has r(A) facets and f(A) extreme rays. Each facet of B*
corresponds to a row of A, say I, whose complementary set of rows is dual feasible. The
facet consists of those nonnegative 7’s with m, = 0 and wA = 0. Each extreme ray of B*
corresponds to a set of n + 1 rows of A which 1s dual feasible. The vectors on the ray are
those w with wA =0, m, > 0 fori € S and w,= 0 for 1 not in S.

Theorem 2.2 follows from standard arguments relating the facets and extreme rays

of a polyhedral cone to those of its dual.

3. An example. Let us consider, as an example, the following matrix with 4 rows,
numbered 0, 1, 2, 3, and 2 columns:

-» —q
-1 0

A=1 06 1|
11

with p > ¢ > 0. The matrix has two sets of 3 rows which are dual feasible: rows 0, 2
and 3 with the dual vector 7! = (1,0, p — ¢, p) and rows 1, 2 and 3 with the dual
vector 72 = (0,1,1,1). By Theorem 2.2 the dual cone B* has two extreme rays
generated by nonnegative multiples of these two vectors. The cone B consists of all b
for which 7! - b and 72 - b are both greater than or equal to zero. If we translate the
bodies K, so that b, = b; = 0, the vectors in B consist of all pairs (by, b;) 1n the
nonnegative quadrant. (See Figure 3.1.)

Figure 3.2 exhibits four examples of the bodies K, with the vectors b = (b, 1,0, 0).
If b, is taken to be a positive number different from 1, the bodies differ only by a scale
factor. If b, is greater than p, inequality 0 is irrelevant; all of the corresponding bodies
K, will be precisely the same triangle. The bodies will be simular triangles, different

(p_qv1) B’

(p.1)

FIGURE 31
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e

(-1.0)° K \(0,0) b Sl (0,0)

(0,0)

FIGURE 3 2

from the former one, if b, is less than p — g. The full set of bodies K, are, therefore,
obtained by considering all nonnegative multiples of the vectors b = (b, 1,0,0) with
P — q < by < p: the subcone B’ of Figure 3.1.

Let us calculate the Banach-Mazur distance between the pair of bodies B, and B,,
the first of which is given by b, = r and the second by b, = s with p — g < r <s <p.
If A, is the smallest A for which B, C AB, + £ for some £' and A, the smallest A for
which B, C AB, + £? for some £, then p(K,, K,) = log(A, - ;). Clearly B, is con-
taned in B, but not in any translated, scaled down version of the latter body;
therefore A, = 1. Also B, is contained in (s/r)B,, but not in any smaller multiple of
this body, even if translations are allowed, so that p(K,, K,) = log(s/r).

We remark that the maximum distance between any pair of bodies 1is
log( p/(p = q)). Moreover, if € > 0 1s given, two successive bodies in the sequence for
which

log(bo/(p = q)) =je forj=0,1,...,[log(p/(p — q)) /] — 1

will be within distance ¢ from each other, and any particular K, will certainly be
within distance e from at least one member of this subset of bodies. This conclusion
exemplifies the main result of the paper.

4. The cone of shapes. A body K, with b on the boundary of B consists of a
single point which may be taken to be the origin of R”. At least n + 1 hyperplanes,
defined by a dual feasible set of rows of 4, pass through the origin and the remaining
linear inequalities are satisfied by the origin. Aside from the vertex of the cone, every
vector on the boundary of B will therefore correspond to a system of inequalities some
of which are redundant in the sense that they are implied by the remaining inequalities.
Vectors close to the boundary will give rise to bodies which are full dimensional, but
which are also defined by proper subsets of the rows of 4. The distinct bodies K, for
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which none of the nequalities are redundant, are determined by the vectors b in the
following subcone of B:
4.1 (DEFINITION). B’ is defined to be the set of b € B for which

max{ax|x € K,} = b fori=0,1,...,n+d.
The set B’ is clearly a convex cone, for if b and ¢ are both in B’ then for A, u > 0,
Ab, + pc, > max{a, - x|x € Ky, }
> Amax{a, - x|x € K,} + pmax{a, - x|x € K}
= Ab, + pc,.

It follows that Ab + uc is also in B’. An important property of this cone is that for
two vectors b and ¢, which are selections from a pair of equivalence classes in B’,
K, c K, if and only 1f b <c. Figure 41 1s an illustration, with d =2, of the
intersection of the cones B and B’ with a hyperplane whose normal is interior to B*.

A body K, on the boundary of B’ will be arbitrarily close to bodies for which some
of the inequalities are redundant; it follows that a body on the boundary of B’ will
necessarily be described by a dual feasible proper subset of the inequalities with the
remaining inequalities defining supporting hyperplanes to the body. The boundary of
B’ 1s therefore the union of r(A4) subsets, B/, the 1th of which consists of those bodies
for which the :th mequality yields a supporting hyperplane. Except for simple
examples each of these subsets may contain interior vertices and not be a facet of B’. It
should be clear that a segment connecting an arbitrary point in B’ with a point on the
ith extreme ray of B will intersect B,".

Of particular interest are the simplices defined by a dual feasible subset of n + 1
inequalities with the remaining inequalities representing hyperplanes which support the
simplex at various of its vertices.

4.2 (THEOREM). Let S be a dual feasible set of n + 1 rows of A, and let b,, fori1 € S,
be selected so that the stmplex K defined by a,x < b, for 1 € S and b, = max{a;x|a,x
< b, for 1 € S} for I not in S, 15 nonempty. These bodies are scaled and translated
versions of a single simplex; the corresponding vectors b form an extreme ray of B’, which
we term a sumphcal ray.

B!

FIGURE 41
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3 3 o

FIGURE 42

PrROOF. Suppose, to the contrary, that b = Ac + pd with A and p both positive
and ¢, d € B’. Translate and scale each of the bodies K, and K, so that b, =c¢, = d,
for 1 € S. If K, 1s different from K then there must be at least one /, not in S, for
which ¢, < b, But this imples that d,> b, = max{a;x|a,x <d, for 1€ S} and
therefore K, 1s notin B’. =

4.3 (THEOREM). The maximum distance, according to the Banach-Mazur distance,
between any two ponts in B’ is attained at a pair of simplicial rays.

ProoE. Let ¢ be in B’. Theorem 4.3 will follow immediately if we show that the
maximum distance between ¢ and any vector in B’ is attained at a vector b whose
corresponding body K, 1s a simplex defined by some dual feasible set of n + 1 rows S.
For any b 1n B’, let A, be the smallest A for which K, € AK, + £ for some ¢! and A,
the smallest A for which K, C AK,+ ¢? for some £* so that p(K, K.) =
log(A, - A,). Since both bodies are in B’, the inclusion K, € AK,, + £ is equivalent to
¢ < Ab + A& and A, is the solution to the linear program

min A subjectto ¢ < Ab + AEL.

Assume that K, is scaled and translated so that A, =1 and £' = 0. Let 7 be an
optimal basic feasible solution to the dual linear program, i.e., 74 = 0, ab=1 7> 0,

max mc, with m,,..., 7, being basic variables and =,,,,...,7,,, nonbasic. Then
7= - =m,,,=0and ¢, < b, with equality for 1 = 0,1,..., n.

Define K, to be the simplex given by u,=¢, for i=0,1,...,n and u, =
max{a,x|a,x <c, for 1=0,1,...,n} for /=n+1,...,n+ d. Let us calculate the

distance between K, and K,. The linear program
min A subjectto ¢ < Au + AE.

has a feasible solution with A = 1. Using the same dual variables 7 as before we see
that the dual linear program

max 7¢ subject to

qu=1,
7A = 0,
7> 0,

also has a feasible solution with its objective function equal to 1, since 7, = 0 for  not
i S. It follows that the minimizing A in the first linear program is actually equal to 1.
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FIGURE 4.3

In order to calculate p(K, K,) we determine A, from the linear program
min A subjectto u < Ac + A%

But since u > b, the minimizing value of A, is not less than the value of A, used in
defining p(K,, K,). Therefore p(K_, K,) = p(K,, K;). This concludes the proof of
Theorem 4.3. =

Theorem 4.3 enables us to estimate the distance between an arbitrary pair of vectors
in B’ by considering the distances between pairs of simplices each obtained by
selecting a dual feasible set of n + 1 rows of 4. The following lemma will be used to
give an estimate of the Banach-Mazur distance between an arbitrary pair of simplicial
vertices in B’:

4.4 (LEMMA). Let A* and A? be two dual feasible (n + 1) X n submatrices of A.
Consider two simplices K' = {x]|A'x < b'}, each with nonempty interior. Define A| to be
the smallest N such that K* C AK' + x' for some x* and simlarly for \,. Then
AN, < n2C2 with C = C(A).

Proor. For each row i, maximize the sth linear function in A'x for x in K2 and
let ¢* be the vector of maxima as : ranges from 0 to n. Then A'x < c! is the smallest
simplex, obtained by translating the hyperplanes defined by the rows of A!, which
covers K2 Since all such simplices are similar, this is also the smallest multiple of K,
which when translated, covers K2, and therefore ¢! = \;b* + A'x! for some x'.

By the duality theorem the ith row of A' is a nonnegative linear combination of »
rows of A% and the ith entry in ¢! is that same linear combination of the entries in b2,
We may therefore write (A%, ') = UY(A42%, b?) with U' a nonnegative (n + 1) X (n + 1)
matrix with the property that each row of U! contains at least one zero entry. By
Cramer’s rule the entries in the i1th row of U! (the dual variables in the :th linear
programming problem) may be written as the ratio of two determinants; the denomi-
nator an n X n submatrix of 4%, and the numerator an n X n matrix composed of
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n — 1 rows of A2 and one row of A'. The entries in U! are therefore bounded by C 1n
absolute value.

In the same way (42, ¢?) = U?*(A', b*) with ¢? = X\,b? + A4°x? for some x?2, with the
same upper bound on the entries of U2 and again with the property that each row of
U? contains at least one zero entry. It follows that if £ = (A, x> + x!) /(A,A, — 1) and
b = b* + A% then

UU' = UU'(b* + 4%)

U*(c! + A'%)

Il

UMb+ 4'[x! + £])

= A\c? +A2(x1 +§)
= MA,02 + A2(Ax? + X' + §)
= AA,b.

Therefore A,A,|b|; < n?C? - |b|;. Since b 1s different from zero, this demonstrates
Lemma 44. =

The following estimate of the distance between an arbitrary pair of bodies is an
immediate consequence of the arguments of this section.

4.5 (THEOREM). p(K,, K.) < 2log(nC) for any pair of bodies K, and K .

ProoF. We simply apply Lemma 4.4 to a pair of simplices which maximize the
distance in B’; A is the subset of n + 1 rows of A corresponding to the first of these
simplices and A2 to the second. m

We conclude this section with another result which describes a measure of similarity
of the bodies K,. Let a = (a,,..., a,); we define the width of the body K, in the
direction “a” to be

w(a, K,) = max{ax|x € K,} — min{ax|x € K, }.

The width 1s invanant under translations of the body and satisfies w(Aa, K,) =
Aw(a, K,).

4.6 (THEOREM). Let a, and a, be an arbitrary pair of rows of A. Then for any b € B,
w(a, K,) <2C-w(a, K,).

Proor. Without loss of generality we demonstrate the theorem for j = 0. We may
assume that b € B’ so that b, = max{ayx|x € K,}. The minimum of a, over K, is
found by solving the Linear program

max —agyx subject to

ax<b fori=1,....n+4d,

and from the duality theorem, —a, is a nonnegative linear combination of n of the
rows of 4 for which equality holds in the linear program. Let us take these rows to be
1,...,n so that 0, 1,..., n forms a dual feasible set. Moreover, let us translate the
body so that this minimum 1s achieved at the orgin; after this translation we have

w(ay, K,)=by,>0and b,=0fori=1,...,n.
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The other widths are not decreased if K, is replaced by the simplex K defined by
inequalities 0, ..., n, with the remaining inequalities relaxed so as to take on their
maximum values in K. We will show that at each vertex v of K, we have |q, - v| < Cb,,
for every [, which is sufficient for our argument. Consider, without loss of generality,
the vertex defined by a,- x = b, for i = 0,1,..., n — 1. Then for any row / we have
a; = podg + +** +H1,_14,_, with g, equal to the ratio of two n X n subdeterminants
of A and therefore not larger than C, in absolute value. It follows that

la, - v = #olo - v+ Fpy 1@,y 0 = podo - 0] < Chy. n

5. The Hilbert metric. The major conclusion of the previous section is an upper
bound for the diameter of the cone B’, using the Banach-Mazur distance between pairs
of rays in this subcone. This same distance function can be used to define balls of size
e the set of rays which are within distance e from a given ray. Our primary goal is to
describe an upper bound for the number of e-balls required to cover the cone B’. This
is essentially an estimate of the Hausdorff volume of B’.

It will be useful for us to introduce the classic Hilbert metric, which is a distance
function for rays in the larger cone B. (See Kohlberg and Pratt 1982 for a discussion of
the Hilbert metric.)

5.1 (DEFINITION). We define the Hilbert distance between a pair of interior vectors
b and ¢ 1n B to be

h(b,c) = max log[(7' - b/m* - ¢) - (7% c/m*- b))

with the maximum taken over all 7!, 72 € B*.

The Hilbert distance clearly satisfies 2(Ab, pc) = h(b, c¢) for A, p > 0, so that it is
defined on rays 1n the cone B. It 1s a distance function; for if #' and 7* maximize the
above expression for b and d then

h(b,d) =log[(7' - b/x' - d) - (7 d/m® - b)]
= log[(#* - bya' - ¢) - (v ¢/m* - b)]
+ log[(7' - ¢/nt - d) - (7 - d/a® - c))
< h(b,c) + h(c,d).

The Hilbert distance has an elementary interpretation in terms of the projective
cross-ratio. Draw the intersection, with the cone B, of the two-dimensional plane
containing b, ¢ and the origin, as in Figure 5.1. Assume that the two points have been
scaled so that #b = mc for some 7 interior to the dual cone, i.e., so that the line joiming
them intersects the boundary of B at the two vectors a and 4. Then

h(b.c) =log(([a, c]/[a, b]) - ([4, b]/[d. c])),

with [x, y] the length of the line connecting x and y.

To see that the logarithm of the cross-ratio is indeed the Hilbert distance, we first
remark that the dual vector #* which maximizes (7 - b/7 - ¢), or equivalently mini-
mizes (7 - ¢/ - b), will be the normal to a supporting hyperplane to B at the
intersection of the line segment from b through ¢ with the boundary of B. For if 7% 1s
the dual vector which minimizes (7 - ¢/7 - b) it will also mimimize #[(1 + A)c —
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FIGURE 51

Ab)}/#b for any A > —1. If we select A > 0, so that d = [(1 + A)c — Ab] is on the
boundary of B, we see that the minimizing vector must satisfy #*d = 0 and therefore
be the normal to a supporting hyperplane to B at d. But then (#* - b/7n* - ¢) =
1d, bl/1d, c] using the similar right triangles.

We have the following relation between the Hilbert metric #(b, ¢) and the Banach-
Mazur distance:

5.2 (THEOREM). If b and ¢ are both in B', h(b,c) = p(K,, K,).

PrOOF. Define A, to be the smallest A such that K, € AK, + x* for some x', and
similarly for A,, so that p(b, ¢) = log A;A,. If all of the constraints are binding for
both K, and K, then a necessary and sufficient condition that K, C AK, + x! is that
¢ < Ab + Ax'. But then mc < Arb for all = in B*. It follows that A, > #%/#*b for
any 72 in B*. A similar inequality for A, tells us that p(K,, K,) = log A\, = h(b, ¢).

To obtain the converse mnequality, let

h(b, ) =log[(7* - b/mt - c) - (n? - c/m?- b)],

with 7! and #? selected so as to maximize the cross-ratio. Define t;, = 72 /7 ?b and

t, = m'b/m'c, so that h(b, ¢) = log t;t,. By definition #, > mc/mb, or w(t,b — ¢) > 0,
for all # in B*. Using the duality theorem we see that there is an x! such that
—Ax' < t;b — ¢, so that K, C t,K, + x' and therefore A; < ;. In the same fashion
A, < t,. This demonstrates Theorem 5.2. =

6. Approximation of the bodies K,. We are now prepared to demonstrate the
major conclusion of the paper.

6.1 (THEOREM). Let € > O be given. Then there is a subset of the bodies K, of
cardinality not larger than f(A)[21og(nC)/€]¢ such that every body with a nonempty
interior has a Banach-Mazur distance less than or equal to € from at least one member of
this subset.
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PrOOF. Let ¢ be an interior vector in B’ which will be kept fixed during the
argument. Let b be an arbitrary vector in B’ and consider the programming problem:

min A such that ¢ < Ab + AxL.

As 1n the proof of Theorem 4.3, we assume that K, has been scaled and translated so
that x! = 0 and A = 1. We shall cover the cone B’ by f(4) regions, each consisting of
those vectors b for which a given (n + 1)-tuple of the rows of 4 is an optimal dual
basis for the above linear program, ie., 74 =0, #b =1, o > 0, max #c has an
optimum solution vanishing outside these rows. For each such region, we shall
construct, a “dense” set separately.

Consider, for example, the region corresponding to the (n + 1)-tuple 0,1, ..., n. We
then have ¢, < b, with equality for 1 = 0,1,..., n. (See Figure 4.3.) We shall now select
a specific translate of K, which depends on the particular region and not on any other
property of the vector b. For each i = 0,1,..., n + d, let u, = max{a,x|a,x < ¢, for
I'=20,1,...,n}. Then u, > ¢, with equality for 1 = 0,1, ..., n and with strict inequal-
ity for the remaining coordinates, since ¢ is not interior to B’. Let A* > 1 be the
largest value of A such that the body {x|Ax < u — A(u — ¢)} is nonempty. This
limiting body will consist of a single point, which we translate to the origin so that the
origin is contained in each of the bodies K, ,_,, for 0 < A < A*. From this point
on, the coordinates of b, ¢ and u refer to this translation.

We have b, =¢, for1=0,1,...,nand 0 < ¢, < b,<u, for i=n-+1,....n+d.
This provides us with a d dimensional coordinate system for those bodies in B’ for
which the programming problem selects this particular dual feasible set of rows. Since
u — AN(u — c) = 0, it follows that u,/c, < A* /(A* — 1).

The vector (u — ¢) is different from zero and is on the boundary of B; it is in that
face determined by the particular dual feasible set of rows (0,1,..., n). It is therefore
easy to see from Figure 6.1 that log A\*/(A* — 1) = h(c, u) < 2log(nC), so that
u,/c, < n*C>

Consider the family of bodies with right-hand sides f, = ¢, for 1 =0, 1,..., n and
log f,/¢c, = je with j, =0,...,[2log(nC)/e] — 1, for i=n +1,...,n + d. Given the
vector b, let K, be the particular member of the family for which

log(f,/c,) = e <log(b/c) < (j,+ e fori=n+1,...,n+d.

For this f we have f, < b, < f,2¢ for all :. If we then calculate the Hilbert distance

FIGURE 61
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between b and f, we see that 1 < #b/7f < 2¢ for any «# in the dual cone B*. It follows
that the Hilbert distance between b and f is < e. Since f is in B’, the Hilbert distance
1s equal to the Banach-Mazur distance and therefore at least one body in the family is
within distance ¢ from X,, using the Banach-Mazur metric.

The number of bodies mn the family is f(A4)[2log(nC)/e]?. This demonstrates
Theorem 6.1. =

7. Lattice free bodies. In this section we shall apply our result on the approxima-
tion of convex bodies K, to those bodies which are free of lattice points. For our
purposes it is sufficient to restrict our attention to the ordinary lattice of integers Z"; a
general lattice in R” can be dealt with by an appropriate linear transformation. If a
convex body contains no non-zero lattice points and 1s also symmetric about the origin,
Minkowski’s Theorem asserts that its volume is not larger that 2”. There is, however,
no corresponding bound on the volume of a convex body if 1t contains no lattice points
but is not symmetric about the origin; it can have arbitrarily high volume and yet be
flat in some direction so as to avoid all lattice points.

The lattice width of the body K, is defined to be the minimum of

w(v, K,) = max{vx|x € K,} — min{ovx|x € K, }

as v varies over all nonzero integral vectors in Z *. Khinchine (1948) demonstrated the
existence of a universal function f(n) so that the lattice width of a lattice-point-free
convex body in R” 1s bounded by f(n). This idea was exploited by H. W. Lenstra, Jr.
(1983) 1n his polynomual algorithm for integer programming with a fixed number of
variables. In order to determine whether a convex body K, contains a lattice point,
Lenstra constructs a nonzero integral vector v, and a particular function f(rn), with the
property that if w(v, K,) > f(n) the body contains a lattice point which can easily be
determined. If, on the other hand, the width with respect to v is less than or equal to
f(n), the problem can be reduced to at most f(n) + 1 similar problems involving
n — 1 variables, each obtained by intersecting K, with the hyperplanes v - x = vy,
where v, takes on all integral values between the maximum and the minimum of v - x
in K,. The process continues, reducing the number of variables at each step, until a
lattice point is obtained or the lattice free character of K, is verified.

Lenstra’s original construction of the integral vector v was based on an algorithm
which is polynomial in the data of the problem if the number of variables was fixed;
his estimate of f(n) was on the order of ¢". Grétschel, Lovasz and Schrijver (1983)
showed that the same order of magmtude could be obtained by an algorithm which
was polynomial in n as well, and Babai (1985) mmproved the estimate of f(n) to a
linear exponential, again achievable in time polynomial in .

A considerable sharpening is available if the requirement of constructability in
polynomial time is relaxed. Based on the work of Lagarias, Lenstra and Schnorr
(1988), Hastad (1986) demonstrated the existence of an integral vector v such that the
width of a lattice free convex body, in the direction v, is less than n°/%; Kannan and
Lovasz (1987) improved this to c¢yn® In both of these latter arguments, determining a
lattice point 1n K, if the width is greater than the corresponding value of f(r), and
finding the integral vector v can be done in polynomial time only if the number of
variables n is fixed.

Lenstra’s algorithm, and its variants, can be cast in the form of a decision tree. The
data defining the body K, are entered at the upper node of the tree and a calculation is
performed which is relayed along each of the f(#) branches connecting the upper node
to the second level of nodes. Each of these nodes is connected to f(n — 1) branches
leading to a third level; the tree continues for n levels. The construction of the tree
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FIGure 71

requires an amount of work which is exponential in n, but the number of branches
emanating from each node is polynomial in » and once the tree has been constructed,
the computation at each node — the solution of a pair of linear programs, and the
determination of a lattice point in a body of large width — is polynominal in n as
well.

Theorem 6.1 permits us to assert that a single decision tree with these properties can
be constructed for all of the bodies K, arising from the same matrix 4 as long as
d + 1, the difference between the number of rows and columns of 4, is fixed. This is an
mmmediate consequence of the following theorem:

7.1 (THEOREM). There exists a set V of nonzero integral vectors, of cardinality not
larger than f( A)[2log(nC)1?, such that for every lattice free body K,,

w(v, K,) = max{vx|x € K,} — min{vx|x € K, } < 2¢yn?

for at least one v € V.

PROOF. Suppose that K, and K, are bodies with p(K;, K.) <1 and let v and u
be the nonzero integral vectors which minimize the lattice width for K, and K,
respectively. Then there are A, and A, with A\A, <2, K, € MK, + ¢ for some &'
and K, C A\, K, + £ for some £ It follows that

w(v, K,) < \w(v, K,) < Aw(u, K) < MAw(u, K,) <2w(u, K,)

so that v yields a lattice width for K, which is not more than twice the minimal lattice
width.

Now let us consider a set of bodies T of cardinality not larger than f(4)[2log(nC)]¢
such that every K, has a distance less than or equal to unity from at least one member
of the set, and let V' be the set of nonzero integral vectors which minimize the lattice
width for the bodies in 7. It follows that for every K, there is a v in ¥ such that
w(v, K,) 1s not more than twice the minimal lattice width of K. In particular, if K, 1s
free of lattice points, then w(v, K;) < 2¢cyn® This demonstrates Theorem 7.1. =

In the construction of the single decision tree for all of the bodies K, we associate
with the top node 2¢,n? branches for each v € V, for a total of 2¢yn? - f(A4)[2 log(nC)]¢
branches; and similarly for the nodes at lower levels. If the matrix A consists of
integers, log(C) 1s polynomial in the bit size of 4. The number of branches emanating
from each node as well as the computational work at each node is therefore polynomial
in the data, including 7, as long as d is fixed. Of course, the tree is difficult to construct
since finding the vectors v, which minimize the lattice widths for the bodies in T, can
be done in polynomial time only for fixed n.
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8. Neighborhood systems and successive minima. In order to study the family of
integer programming problems

min Zaojh, subject to

Ya, h <b

S

fori=1,...,n+d,

h, integral,
Scarf (1981a, b, 1986) introduced the concept of a neighborhood system { N(h)}. Each
lattice point A = (h,,..., h,) has associated with it a set of neighbors N(h) which is
arbitrary aside from the two conditions

1. N(h) = N(@©) + h, and

2. if k € N(h) then h € N(k).

Given a particular neighborhood system, a lattice point 4 is defined to be a local
minimum for the integer program if it s feasible and if all of its neighbors are either
infeasible or yield a strictly larger value of the objective function. The following
construction provides a neighborhood system depending on the matrix 4 alone, and
which has the property that a local minimum is a global minimum for all b.

Let h be a lattice point and define K* = {x[Xa, x, < max(0,Xa, h,) for 1=
0,...,n+ d}. K* is the smallest body K, which contains both # and the origin. % is
then defined to be a neighbor of the origin if K* contains no lattice points in its
interior. If the matrix is 1n general position — in the sense that for each row a, of 4
the only lattice point satisfying a,h = 0 is the origin — this system 1s the unique,
minimal neighborhood system with the property that a local minimum is a global
minimum for all values of the right hand side b. If this condition is not satisfied some
of the neighbors defined in this fashion may be superfluous (Scarf 1986).

Two special cases have been examined by Scarf (1981, 1985). If 4 is a 4 X 2 matrix
of integers, the neighbors of the origin N(0) are contained in the union of a polynomial
number of lattice lines; and if 4 is a 4 X 3 matrix the neighbors of the origin lie in the
union of three adjacent lattice planes, one of which passes through the origin. We have
the following generalization:

8.1 (THEOREM). The neighbors of the origin N(Q) are contained in a set of n — 1
dimensional lattice hyperplanes of cardinality not larger than 2con® - f(4)[21log(nC)H]%

The proof is an immediate application of Theorem 7.1, since the smallest body K,
containing 0 and & contains no lattice points in its interior. Again it should be
remarked that if A4 is a matrix of integers the number of lattice hyperplanes is
polynomial in the data, including the number of variables n, for fixed d.

In their previously cited paper, Kannan and Lovasz demonstrate a sharper version
of the theorem that a lattice free convex body K, has a lattice width not larger than
con?. They show that such a body either has a lautice width less than 2, or there exist
two linearly independent lattice hyperplanes with normals v,, v, such that for
J=12,

w(v, K,) < 2¢o(n + 1)’ log?(n + 1).

If the first of these alternatives is applicable to the smallest body containing 0 and a
neighbor of the origin 4, the lattice hyperplane which minimizes the lattice width of K,
will yield v-h =0 or 1. In the second case, these inequalities imply that K, is
contained in the union of no more than [2¢,(n + 1)*log*(n + 1)]? lattice planes of
dimension n — 2. Each of these planes can be extended to an n — 1 dimensional
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hyperplane which passes through the origin. With some attention to detail this permits
us to argue that the neighbors of the origin lie in the union of a polynomial number of
lattice hyperplanes of the form v - 2 = 0 or 1. It is an interesting conjecture that the set
of neighbors of the origin consists of those lattice points contained in the union of a
polynomial number of polyhedra.

As a final application of our arguments, we turn out attention to Minkowski’s
concept of the successive minima of the lattice of integers with respect to a symmetric
convex body. For each b in B’ the convex body (K, — K,) is symmetric about the
origin, and we may associate with it a distance function

F,(x) = min{A|lx/\ € (K, — K;)},

which is symmetric, convex and homogeneous of degree one. The successwe mimma,
A(B),..., A, (b), with respect to this distance function, are defined as follows: A (b)is
the smallest A such that the body {x: F,(x) < A} contains : linearly independent
lattice points. Alternatively, let 4'(b) minimize F,(h) over all nonzero lattice points,
h*(b) minimize F,(h) over all lattice points which are linearly independent of A'(b)
and generally let A'(b) minimize F,(h) over all lawice points which are hnearly
independent of A'(b),..., k' Y(b). Then A,(b) = F,(h'(b)). The successive minima
depend on the particular vector b defining the distance function; the vectors h'(b)
which realize the successive minima are not necessarily uniquely defined for a specific
b, since there may be several different vectors 4, independent of h'(b),..., k'~ (b),
which minimize F;(h). We have the following result which relates the vectors realizing
the successive minima to neighbors of the origin for the matrix A.

8.2 (THEOREM). For all b in B’, the lattice points h'(b) which realize the successiwe
nunmima are neighbors of the origin.

ProOF. Let h = h'(b) and let K* = {x[La,x, < max(0,Xa h)) for I =
0,...,n + d}. In order to demonstrate that & is a neighbor of the origin we need to
argue that K* contains no lattice points in its interior. By definition 4 will lie on the
boundary of the symmetric body S = A, (b)}(K, — K,) and any lattice point contained
in the interior of S will necessarily be linearly dependent on hl(b),..., h' " Y(b).

Let us first argue that K* — K* C S. Since h € § it follows that x and x + & both
lie in A (b)K, for some x. If we translate K, so that x = 0, the set S is unchanged.
But then max (0,Xa, k) < A,(b) b, forI=0,...,n + d, so that K* C A (b)K, and
therefore K* — K* C A,(b)(K, — K,) = S.

If & 1s not a neighbor of the origin there is a lattice point k interior to K*. Since §
contains (K* — K*) it follows that both k and h — k are interior to S; both of them
must be linearly dependent on A'(b),..., h*"(b) and as a consequence so is h. This
contradicts the definition of & = h'(b) and demonstrates the theorem. m

It is an immediate consequence of Theorem 8.1 that all of the vectors A'(d) lie 1n the
union of a set of n — 1 dimensional lattice hyperplanes, the set having a cardinality
not larger than 2¢yn? - f(A)[21log(nC)]?. Again, if 4 is a matrix of integers, the vectors
representing the successive minima lie in the union of a set of lattice hyperplanes,
whose cardinality is polynomial in the bit size of A4, for fixed 4. It 1s an intrigmng
conjecture that the set of h'(d) for 1 < ; lies in the union of a polynomial number of
J = 1 dimensional hyperplanes.
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