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This paper, which 1s based on the remarks offered during a plenary address at the May 1989 CORS/TIMS/ORSA
meeting in Vancouver, discusses the analogy between economic institutions and algorithms for solving mathematical
programming problems. The simplex method for solving linear programs can be interpreted as a search for market prices
that equilibrate the demand for factors of production with their supply. A possible interpretation in erms of the internal
orgamzation of a large firm is offered for Lenstra’s integer programming algorithm.

I would like to take this opportunity to describe my
own very personal thoughts about the relationship
between mathematical programming and economic
theory. These two topics were intimately linked during
the marvelous initial burst of activity in mathematical
programming some 40 years ago. Some of the major
figures in the early development of our field—Arrow,
Leontief, and Koopmans—were themselves econo-
mists. Others, such as Kuhn and Tucker, Kantorovich,
Gomory, Dantzig, and, certainly, von Neumann were
sufficiently close to economics to be alert to the rela-
tionship between mathematical programmng and the
problem of the optimal allocation of resources, which
is at the heart of economic theory. Since that time,
however, the two subjects have drifted so far apart
that many scholars in the field are unaware of their
historical connections, the similarity of their basic
themes, and their enormous potential for fruitful
mutual stimulation.

Microeconomic theory studies tae interaction of
individual economic agents with private and fre-
quently competitive goals. The subject deals with the
institutions of private property, the benefits of decen-
tralized profit maximization, the distribution of
income arising from the provision of goods and serv-
ices, and the role played by prices in equilibrating
supply and demand.

The primary topic in mathematical programming
seems, at first glance, to be quite different. Mathe-
matical programming is concerned with developing
algorithms for the efficient numerical solution of dis-

crete and continuous maximization problems, and, as
such, is apparently unrelated to the institutional con-
siderations of economic theory.

What I will do in this paper is to try to bring these
two subjects together and remind readers of their
common features. In particular, I will stress the close
relationship between algorithms and economic insti-
tutions, suggest that it may be fruitful to view eco-
nomic institutions as highly specialized computational
procedures, and to view numerical algorithms as the
analogs of economic activity engaged in by individuals
or firms.

1. THE THEORY OF ECONOMIC EQUILIBRIUM

One of the major themes of microeconomic theory is
that the producing and consuming units of the econ-
omy respond—in a decentralized fashion-—to prices
that are determined in competitive markets. In con-
ventional economic analysis, we typically divide the
basic units in the economy into two classes. One class
consists of consumers, who own all of the assets of the
economy either directly or indirectly through the own-
ership of financial claims or shares in manufacturing
entities. The second class of economic agents are
producers, whose business is to transform productive
inputs into those goods and services that are valued
by consumers themselves .or used as intermediary
goods by other producers.

There may be many ways for a given producer to
take his factors of production—Ilabor of varying skills,
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capital, a great variety of raw materials, energy and
other inputs—and transform them into outputs. Food
can be produced on small plots with primitive imple-
ments, or on large farms that make use of the most
advanced forms of agricultural machinery. Steel can
be produced in plants of varying sizes, either operating
independently or integrated with enterprises using
steel as inputs. During the Great Leap Forward in
China, it was even proposed that steel be manufac-
tured in individual backyards. How are these choices
to be made?

Economic theory usually makes the assumption that
the individual producers in the economy are faced
with competitive prices for all of the factors of pro-
duction and with competitive prices for the outputs
of production. If all of the input and output prices are
known by the firm, then any particular production
plan will have a profit associated with it: the value of
output at these prices minus the cost of those factors
used 1n production. It 15 then customary to assume
that the goal of the manufacturing entity is to select,
from the list of all possible plans available to it, the
particular production plan that maximizes profit.

Prices also enter into the consumer side. Each con-
suming unit owns its share of the assets of the econ-
omy and is able to evaluate its income or wealth once
the prices of these assets are known. Given the income
of each consumer and the prices of goods to be pur-
chased, the mdividual consumer’s demand for the
outputs of production can be specified as well defined
functions of price. Adding the individual demand
functions, we obtain the market demand functions,
which tell us the quantity demanded of each of the
goods and services in the economy as a function of
the entire set of prices faced by consumers.

Market demands arise from the consumer side of
the economy, market supplies from the producer side.
At an arbitrary selection of prices, it need not be true
that the demand for each commodity is equal to its
supply. If the price of apples is too high, consumers
may wish to spend their income on oranges, and if
the price of clothing is too low in comparison with
wages and the cost of materials, manufacturers may
not be able to cover their costs of production. Only
certain prices—equilibrium prices—will equilibrate
the demand and supply for all commodities. It is these
prices—and these prices alone——that permit the econ-
omy to function in the decentralized fashion cele-
brated by economic theory.

This intellectual construction—this paradigm—of
decentralized competitive behavior is extremely flexi-
ble and provides a framework of analysis for a great
variety of economic problems. To take one example,

it can be used to discuss the consequences of a change

in some significant parameter of the economy, such

as the abrupt increases in the cost of imported oil

experienced by the United States twice 1n the last 15-
years (in 1973-1974 and 1979-1980), changes with

extraordinary consequences for the future develop-

ment of the U.S. and world economies. To analyze.
this experience we design a formal mathematical

model of the economy in which the price of imported

oil appears as an exogenous parameter. On the con-

sumer side of the economy we specify the assets—for

example, labor, capital and durable goods—owned by

each class of consumers and their preferences for the .
goods and services potentially available to them. To

model the production side, we need an explicit math-

ematical description of the techniques available to-
producers, given perhaps by an input/output table for

the economy as a whole, or by a series of activity-

analysis matrices for each of the firms in the economy.

We then solve the pre- and post-shock variants of the

model for equilibrium prices, the choice of productive

techniques, the distribution of income, and other vari-

ables of economic interest. A mathematical presenta-

tion of the model of equilibrium is required for this

exercise in comparative statics to be carried out on

the computer.

Ideally, the general equilibrium model can be used
to describe the efficient allocation of resources and
the selection of production plans n a socialist econ-
omy, such as the Soviet Union, as well as in an
economy in which private initiative and individual
gain are the motivating forces for economic decisions.
The general equilibrium model formed the basis for
the fascinating discussion of economic planning in the
early decades of this century. One of the major figures
in this debate was the Italian economist Barone, who
was skeptical about the use of the equilibrium model
on the ground that the computational difficulties were
insurmountable. Barone described the production side
of the economy by an activity-analysis model. He
realized that, if we knew precisely which activities
were to be used at equilibrium, then relative prices for '
all the goods and services in the economy could be
determined by solving the system of linear equations
that said the profit associated with each of these activ-
ities was zero. For Barone, and for subsequent partic-
ipants in this debate about sociahist planning, the
difficulty in applying the equlibrium model to a
socialist economy was that no computational proce-
dure existed for solving the vast number of nonlinear
equations and inequalities required to select precisely
the correct set of activities to be used at equilibrium.

On the face of it, Barone’s objection seems no longer



to be valid, given the emergence of the modern com-
puter and the development of efficient computer codes
for calculating equilibrium prices. Models with, say,
one hundred variables can be solved quite readily on
a personal computer. Given the value of this calcula-
tion, it would seem desirable to use a dozen supercom-
puters full time to provide Soviet planners with the
prices and production decisions that would allocate
resources in an optimal fashion. Like all administra-
tors, Soviet politicians are presumably reluctant to
give up political power. A bank of Cray supercompu-
ters would be a trivial investment if the results of
numerical computations could avoid the inefficiencies
of the Soviet economy without sacrificing centralized
political control of economic decisions and without
allowing the vast disparities in income that are an
inevitable consequence of private economic initiative.

Why is it, then, that we see the emergence of the
institution of private markets to solve the economic
problems faced by one centralized economy after
another? It 1s astonishing how much political power
is being sacrificed today in the Soviet Union, Poland,
Hungary, and other countries, in the hope of dramatic
improvements in economic conditions. In my opin-
ion, the major attraction of markets over centralized
calculation, for Gorbachev and his economic reform-
ers, it not so much the mathematical difficulty of a
single equilibrium calculation; it is rather that these
computations must be performed over and over again,
in real time, in the face of constantly changing eco-
nomic circumstances. The economy is in continual
flux, with new possibilities constantly emerging, and
mathematical solutions to the equilibrium equations
will at best represent the solutions to yesterday’s prob-
lems. If we are to be responsive to the novel conditions
of daily life—and to engage the energies and skills of
millions of self-interested economic actors—it may be
necessary to use the market as an algorithm for solving
the equilibrium equations rather than solving these
equations themselves on the computer.

Suppose that the system is in equilibrium and that
someone discovers a new way to make sausages out
of sawdust, or a new way to transport electrical energy
using superconducting wires. Shall this new activity
be used? The planners could recalculate the equilib-
rium on the supercomputer. Or they could make use
of a theorem of economic theory—perhaps the most
important result of microeconomic analysis—that
provides an immediate necessary and sufficient con-
dition for an affirmative answer to the question: can
all consumers be made better off if the new activity is
used? The condition is amazingly simple; all con-
sumers can be made better off if and only if the new
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activity makes a positive profit at the current equilib-
rium prices. I do not know whether Gorbachev is
impressed by mathematical theorems, but the fact that
the market test of profitability is the precise test for a
Pareto improvement is the intellectual justification for
decentralized markets. And this market test can be
carried out by self-interested, economically motivated
individuals, rather than on the computer, if we are
willing to tolerate inequalities in the distribution
of income.

2. MATHEMATICAL PROGRAMMING

What does this have to do with mathematical pro-
gramming? On the face of it, mathematical program-
ming is concerned with an entirely different set of
issues than those I have just mentioned. Mathematical
programming 1s about the maximization of a function
of several variables subject to a set of constraints. The
primary example of a constrained maximization prob-
lem is a linear program, in which the objective func-
tion is a linear function of the variables and the
constraints are themselves a series of linear inequali-
ties. The solution of a linear program seems to be an
exercise in applied mathematics and apparently has
nothing to do with prices, profit maximization, and
decentralized economic decisions.

At present, the two major contenders as algorithms
for solving linear programming problems are the sim-
plex method, invented by Dantzig some forty years
ago, and the new interior-point methods introduced
by Karmarkar within the last 5 years. There may be
considerable debate as to the computational merits of
these two methods for solving any particular linear
program. But, from an economic point of view, the
simplex method is the clear winner in the sense that
the steps of the simplex method are capable of the
most striking economic interpretation. At each step of
the simplex method a trial solution to the linear
program is proposed. To test for the optimality of this
solution, we find those prices that yield a profit of
zero for the activities in use, and use them to calculate
the profitability of the remaining activities. The trial
solution is optimal if none of the remaining activities
make a positive profit; if one of them is profitable, we
simply increase the level of its use from zero, making
compensating changes in the previous activity levels
until one of them falls to zero. The algorithm contin-
ues until a trial solution 1s found that passes the pricing
test for optimality.

The simplex method mimics the search for decen-
tralized prices that equilibrate the supply and demand
for factors of production. A visitor from another
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planet who was taught the simplex method for the
solution of maximization problems would immedi-
ately be led to the introduction of competitive mar-
kets. With no knowledge whatsoever of the long
historical development of the institutions of competi-
tion, our visitor would be able to answer a vital
question: If the economy is m equilibrium—in the
sense that the optimal values of the variables have
been determined—and a change in economic circum-
stances presents a new activity for possible use, can
the new activity be used so as to increase the value of
the objective function? The visitor would know imme-
diately that a necessary and sufficient condition for
the use of this activaty is that it make a positive profit
at the old equilibrium prices. Prices and the institution
of competitive markets, not obviously associated with
the simple mathematics of maximization, arise in the
most natural way 1n solving optimization problems.

I remember a conversation that I had many years
ago with Tjalling Koopmans, when linear program-
ming models were being considered as a tool for
socialist planning. At one point Tjalhng said, “Sup-
pose that the giant linear program for the Soviet Union
is solved on the computer. Should we tell the individ-
ual firms the specific production plans that the model
instructs them to use, or should we simply give them
the prices for their inputs and outputs and let them
make their own decisions?” I think that perhaps we
should do neither. Instead, we should suggest that the
mstitution of competitive markets be used to decide
on the ments of the novel economic possibilities that
firms will be facing over and over again in the future.

3. INTEGER PROGRAMMING AND THE
ECONOMICS OF LARGE-SCALE
PRODUCTION

Now I will turn this discussion of markets on its head
and talk about what is for me one of the major
difficulties in the competitive solution to the problem
of resource allocation. Both linear programming and
the classical model of equilibrium make an extremely
important—and, to my way of thinking, extremely
restrictive—assumption about the production side of
the economy. Both of these formulations require that
production exhibit constant returns to scale: that the
mix of inputs needed to produce a particular assort-
ment of outputs be unchanged as the scale of produc-
tion varies; that it is just as efficient to manufacture
steel in our own backyards as it is to use a fully
integrated assembly Iine. This is a terribly restrictive
assumption, which excludes the possibility of econo-
mies of scale and forces us to ignore one of the central

features of economic life in the twentieth century: the
large industrial firm whose size 1s based on the eco-
nomic advantages of large-scale production.

Economists have been concerned for many years’
about the need to incorporate the possibility of
increasing returns to scale in their analytic formula-
tions. An older school of economists held the opinion
that efficiencies of large-scale production were caused
by indivisibilities, that is, large, lumpy aggregates of
capital—assembly lines, railroad and telephone net-
works, bridges—whose economic advantages could
not be realized at low levels of production. Lerner
(1944), for instance, devoted two chapters of his
famous book, The Economics of Control, to the study
of indivisibilities. I quote from Chapter 15 (p. 176) to
iltustrate his position on this subject:

We see then that indivisibility leads to an expansion in
the output of the firm, and this either makes the output
big enough to render the indivisibility insignificant, or 1t
destroys the perfection of competition Significant indivisi-
bility destroys perfect competition.

In the classical case of constant returns to scale,
there is essentially no theory of the firm, because the
firm can progressively be disaggregated into smaller
and smaller units, which then interact with each other
by means of market prices. If increasing returns to
scale or indivisibilities prevail, however, the firm can-
not be disaggregated into competitive units without a
substantial loss of efficiency. In the case of constant
returns to scale, institutional arrangements such as
competitive markets are directly suggested by numer-
ical methods for the solution of linear programming
problems. If the analogy were to be maintained, we
would expect corresponding insights about the inter-
nal organization of large firms from the study of
decision methods for solving maximization problems
involving indivisibilities. And one of the central con-
cerns in mathematical programming at present 1s pre-
cisely the study of maximization problems in which
the production-possibility set involves indivisibilities,
increasing returns to scale, or other forms of noncon-
vexity—that is, integer programming,.

Indivisibilities are introduced into a linear program-
ming problem by requiring that some, or all, of the
activity levels take on integral values, rather than
arbitrary real values. Linear programming problems
that require some of the activity levels to be integral
are known as integer programs. As you all know, the
first algorithm for solving the general integer program-
ming problem was introduced in the late 1950s by
Gomory. There were some serious problems with this
and other early computational methods. The methods



were not robust: A slight change in one of the param-
eters of the problem could transform an easy problem
into an intractable one. In contrast to the simplex
method, which performs remarkably well on most
linear programming problems, integer programming
algorithms were capricious and unreliable. And, per-
haps even more significant for economic theory, none
of these algorithms seemed capable of being inter-
preted—by even the most sympathetic student—in
meaningful economic terms.

Early researchers in this area were acutely aware of
the vital relationship of integer programming to eco-
nomic theory: Koopmans and Beckmann (1957)
wrote an early paper on indivisibilities, and Gomory
and Baumol (1960) published a joint paper on a
possible economic interpretation of Gomory’s cutting
plane algorithm. By the late 1960s, however, the
origins of discrete programming problems in eco-
nomic theory were in the process of being forgotten
by practitioners in the field. The search for tractability
led to groupings and classifications of integer pro-
grams that were based solely on their mathematical
properties; less and less reference was made to eco-
nomic considerations. The terms indivisibility, factor
endowment, capital, and degrees of substitution were
slowly replaced by a new set of concepts: graphs,
network flows, matching problems, and matroids. Eco-
nomic theorists and scholars in discrete mathematics
became, in time, unable to converse with one another,
despite the essential underlying connections between
these two disciplines.

4. COMPLEXITY THEORY

In the 1970s an important intellectual event took
place: the development of the field of computational
complexity. A new way of looking at the intrinsic
complexity of a discrete programming problem was
introduced; it involves classifying problems as easy if
the time required for their solution is a small function
(a polynomial) of the time required to describe the
problem, or as hard if this 1s not the case.

An example of an easy problem 1s that of maxi-
mizing the flow of material through a railroad net-
work with capacity constraints on each link of the
network. This problem can be solved quite readily
for networks of large size. On the contrary, the trav-
eling salesman problem—which calls for the construc-
tion of a tour through a set of cities so as to minimize
the total traveling time—is hard, and it becomes pro-
hibitively expensive to obtain the precise optimal solu-
tion as the number of cities increases. Easy problems
are routine and presumably can be carried out by
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human beings without the extraordinary intellectual
and conceptual investment required by a hard prob-
lem. This is a point that will come up again.

In the last decade, my own research has been
directed toward studying the general integer program
from the point of view of complexity theory. To
illustrate this point of view, let me return to the earlier
discussion of the role played by prices in solving linear
programs. For such problems, prices have their cus-
tomary economic interpretation as marginal value
products—the marginal change in the optimal value
of output if a particular factor of production is
increased by a small amount. But, as we have seen,
prices are also used to determine whether a specific
feasible solution, one that satisfies the constraints of
the problem, is actually the optimal solution. Given a
feasible solution to a linear program, we find the prices
that yield a zero profit—net of all costs, including the
rental of capital—for the activities being used. Then
a necessary and sufficient condition that the proposed
feasible solution be optimal is that all the remaining
activities make a profit less than or equal to zero when
their profitability is evaluated at these same prices.

This test for optimality is not available for integer
programs; there simply need not be a set of prices that
vields a zero profit for the activities in use at the
optimal solution. Let us look at the following example
of an integer program with a single constraint and two
nonnegative integer variables.

Maximize x + 3y
subjectto 2x+3y<S$

x,y=0 and integral.

The solution to the corresponding linear program,
with no requirement of integrality for the activity
levels, is (x, y) = (0, ¥3), and the price of the con-
straint—the optimal dual variable—is equal to one.
At this price, the second activity makes a profit of
zero and the first activity, which is not used, has a
negative profit. But the optimal solution for the integer
program is (x, y) = (1, 1); both activities are used and
there is no price at all that yields a zero profit for the
two activities simultaneously (see Figure 1).

This is, of course, not an accident of this particular
example. Except for very special integer programs,
there will not be a vector of prices that provides a
profit of zero for the activities used in the optimal
solution and a negative profit for the remaining activ-
ities. Moreover, if we have solved a specific integer
program by one device or another, and a new activity
is discovered, there is no conclusive pricing test to tell
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Figure 1. An example of an integer program.

us whether the new activity can be used to improve
the objective value.

A similar difficulty arises in the equilibrium for-
mulation that I discussed earlier. Suppose that the
economic system is in equilibrium at certain prices
and that a new activity is discovered that can only be
used at an integral level. Is its profitability at the
equilibrium prices a necessary and sufficient condition
for a Pareto improvement—for the possibility that
everyone can be made better off using this new activ-
1ty? The answer, unfortunately, is no! And if several
activities are discovered simultaneously, all of which
must be used at integral levels, improvements may
require the use of a complex mixture of both profitable
and unprofitable activities. The market test is simply
not available to us in the presence of indivisibilities.

The market test fails because the firm, whose tech-
nology is based on an activity-analysis model with
integral activity levels, cannot be decentralized with-
out losing the advantages of increasing returns to scale.
The large firm has an integral organization of mana-
gerial and productive tasks, which cannot be replaced
by competitive markets that are internal to the firm.
We cannot decentralize the large firm by assuming
that the subdivisions of the firm trade outputs and
factors with each other using competitive prices. But,
if we return to our metaphor about the relationship
between computational procedures and economic
institutions and view the large firm as an algonithm
for the solution of integer programming problems, can
some hints about the internal structure of the firm be
obtained by examining numerical algorithms?

5. LENSTRA’S ALGORITHM

Let us look at the algorithm proposed by Lenstra
several years ago (Lenstra 1983). In the language of
complexity theory, integer programmng is what is

known as an NP-complete problem: If there is a
polynomial algorithm for integer programming, then
virtually every problem that we can think of is easy to
solve—a quite unlikely possibility. Lenstra’s algorithm
provides a polynomual algorithm for integer program-
ming when the number of integral variables is fixed
in advance. It also provides a sharp theoretical descrip-
tion of the complexity of integer programming and it
is also possible that the algorithm may have practical
as well as theoretical significance. Several of us are
now programming a variant of Lenstra’s algorithm to
see whether it is actually useful in solving the general
mixed integer program with, say, thirty or forty inte-
gral variables. It is too early to give a definitive verdict,
but I am very optimistic.

Lenstra’s algorithm makes heavy use of the branch
of mathematics known as the Geometry of Numbers.
This subject, invented by the distinguished mathe-
matician Hermann Minkowski almost 100 vears ago,
is undergoing a remarkable revival, owing primarily
to its potential application to the study of discrete
programmuing problems.

To appreciate the novelties of the Geometry of
Numbers, it may be useful to contrast it with the
classical arguments of linear programming. The pri-
mary mathematical tool used 1n linear programming
is convex analysis. The constraint set defined by a
series of linear inequalities is a convex body, and the
existence of prices that support an optimal solution is
a direct application of the separating hyperplane theo-
rem. When indivisibilities are present, the correspond-
ing activity levels are restricted to integer values, and
the vector of possible activity levels lies in the lattice
of integers in n-dimensional space. The major math-
ematical problem in the theory of discrete program-
ming is to find out, in an efficient way, whether a
given convex body contains a lattice point.

It is an elementary mathematical observation that a
convex body may have an arbitrarily large volume
and yet be free of lattice points. But if the body is
symmetric about the origin (see Figure 2), it will
contain a lattice point other than zero if its volume is
sufficiently large. Minkowski’s fundamental result is
that there will be a lattice point, different from zero,
in a symmetric convex body lying in n-dimensional
space if the volume of the body is greater than 2",
Minkowskr’s theorem is applied, in an indirect way,
in Lenstra’s algorithm.,

Lenstra begins by casting the integer program n the
form mentioned above: Does a given convex body
contain a lattice point? Let us consider as our convex
body the triangle in the plane with integral vertices
(1,0), (0, 1)and (15, 17) and suppose that our question
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Figure 2. A convex body symmetric about the origin.

is whether the triangle contains an integral vector
other than one of its vertices (see Figure 3). (This
particular example is, of course, trivial to analyze; we
may actually write an explicit formula for the number
of lattice points in a planar triangle with integer ver-
tices. Think of this, rather, as an illustration of a
general convex polyhedron in #n-space.) The most
naive approach is to enclose the triangle in the rectan-
gular box 0 < x; < 15, 0 < x, < 17, set the first
coordinate equal to each of its 16 possible values, and
for each of these first coordinates, check to see whether
there is an integral value of the second coordinate that
satisfies the linear inequalities defining the body. This
is the basic 1dea of a branch-and-bound algorithm.

But we can do better. If we make the following
unimodular transformation of coordinates, which car-
ries lattice points into lattice points

V==X =+ X,
Y =5x1 —4x,

the body has the form of Figure 4, with vertices
(-1, 5), (1, —4) and (2, 7), and the rectangular box
containing the body is considerably smaller. We have
only 4 possible values of the first coordinate, rather
than our previous 16 values.

What Lenstra does for the general problem is
to construct a unimodular transformation such
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that either

1. the body is sufficiently large so that it clearly
contains a lattice point, or

2. the rectangular box containing the body in the
new coordinate system is small in at least one coor-
dinate, say, the first one.

In the first case, the algorithm terminates with
a lattice point. In the second, the lattice points lying
in the body have a small number of possible values
for their first coordinate, and the problem is then
reduced to the study of a small number of (n — 1)-
dimensional problems.

The algorithm takes the form of a decision tree (see
Figure 5): Find the good unimodular transformation
and consider, in turn, each one of the small number
of integer programs involving n — 1 variables. Repeat-
ing the process, each of these problems leads to a small
number of integer programs with » — 2 variables.
Ultimately, we are led to integer programs with a
single variable, which are, of course, trivial to solve. It
is necessary to consider all branches in the decision
tree, but there are ample opportunities for parallel
processing, since the computations to be carried out
on distinct branches can be done simultaneously.

Other algorithms for solving integer programs—
such as branch-and-bound methods—also make use
of decision trees. But the Lenstra algorithm is the only

X2
(15,17)

(01 1)

(1,0) X4

Figure 3. The triangular convex body enclosed in a
rectangular box.



384 |/ SCARF

@7

(_115)

(1.4

Figure 4. The triangular convex body after the uni-
modular transformation of coordinates,
together with its rectangular box of reduced
size.
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Figure 5. The decision tree for Lenstra’s algorithm.

one that I am aware of—for the general integer pro-
gram, rather than the special case of 0, 1 problems—
in which the work at each node and the number of
branches emanating from each node are both poly-

nomial in the data of the problem, at least if the
number of variables is fixed.

The work at each node of the decision tree involves
finding a unimodular transformation so that the body
is relatively thin in a particular direction. This can be
done by means of the Lovasz basis-reduction algo-
rithm (see Lovasz 1986), which executes in polynom-
ial time for a fixed number of variables. In the second
case, in which a lattice point cannot be determined
directly, the number of branches emanating from the
node also can be shown to be a polynomial function
of the data of the problem. If we use the metaphor of
complexity theory, which suggests that easy problems
are those that can be solved routinely by human
beings, negotiating through the decision tree is in itself
routine, even for a general integer program.

6. THE ORGANIZATION OF THE FIRM

The computational procedure seems to be capable of
an interpretation in terms of the managerial tasks
faced by the firm. If the large-scale firm is viewed as
an algorithm for solving maximization problems
based on an activity-analysis model with integral activ-
ity levels, the decision tree may be taken as a repre-
sentation of the internal organization of the firm. We
can imagine a human being sitting at each node
of Figure 5, who performs the routine calculations
required at the node, and transmuts the results of these
calculations to the small number of subordinates at
each of the successor nodes. Accepting the metaphor
means accepting the equivalence between the arith-
metical operations required by an algorithm and the
more usual paperwork performed at a desk or hand-
ling of materials on the shop floor. But we have
accepted a metaphor of this sort before in discussing
the equivalence between the simplex method and the
market’s search for equilibrium prices.

Of course, Lenstra’s algorithm—as just described—
solves one particular integer program in much the
same way that the equilibrium calculation in the
socialist planning office solved for a vector of equilib-
rium prices under a particular set of circumstances. If
the decision tree is meant to be a representation of the
internal organization of a large firm whose technology
involves substantial indivisibilities, this organization
must have some stability in the face of changing
economic circumstances. Suppose, for example, that
we are interested in solving not one specific integer
program but rather a family of similar problems, say,
the family of integer programs with a fixed technology
matrix, but with many different right-hand side vec-
tors. It can be shown, using some recent results by



Kannan, Lovasz and Scarf (1988), that a decision tree
with polynomial work and a polynomial number of
branches at each node may be constructed to depend
only on the activity-analysis model and to be fully
independent of the right-hand side of the integer pro-
gram. With such a decision tree, a shock to the envi-
ronment need not require a total redesign of the
internal organization of the firm. It may also be shown
that the tree will change only shightly if the technology
matrix is altered slightly, whether by the revision of
one of its coefficients or by the discovery of a new
process. We actually see these small changes taking
place in the performance of the algorithm itself—in
the structure of the tree—as we change the numerical
values of the problem.

Such a flexible tree cannot be constructed in poly-
nomial time for vanable x. But, once it is constructed,
the computations at each node and the number of
successor nodes are actually polynomial in # as well
as the other data of the problem, as long as the number
of inequalities is less than the number of variables by
a fixed amount. Constructing the decision tree can be
viewed as an expensive investment activity, which
provides a firm with flexibility in the face of changes
in its economic environment. There is a considerable
tradeoff between a flexible design capable of with-
standing substantial changes in the parameters of the
problem and a less expensive design tailored to a
particular problem. It is much less costly to construct
a decision tree for a particular problem rather than
one that deals simultaneously with a large set of
alternatives. But 1f a specific tree were constructed and
the economic environment changed in a significant
fashion—if, say, there were a substantial change in
the price of imported oil—then a new decision tree,
and perhaps a reorganization of the firm’s administra-
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tive structure, might have to be recalculated at consid-
erable cost. The achievement of flexibility—the
construction of an orgamzation or computer code
capable of solving a large number of relatively similar
problems in real time—may mert its additional cost
in the face of the uncertain and constantly changmg
circumstances that are an ever present aspect of mod-
ern economic life.

ACKNOWLEDGMENT

The preparation of this paper was supported by the
Program in Discrete Mathematics at the Cowles Foun-
dation at Yale University and by National Science
Foundation grant 8807167.

REFERENCES

GoMoRry, R. E., AND W. J. BauMoL. 1960. Integer Pro-
grammung and Pricing. Econometrica 28, 521-550

KANNAN, R. L., L. Lovasz AND H. E. SCARF. 1988. The
Shapes of Polyhedra. Cowles Foundation Discussion
Paper No. 833, Yale University, New Haven, Conn.
Math. Opns Res (to appear).

KoopMans, T. C, AND M. BECKMANN. 1957 Assign-
ment Problems and the Location of Economic
Activities. Econometrica 25, 53-76.

LENSTRA, H W., JRr. 1983. Integer Programming With a
Fixed Number of Vanables. Math Opns Res 8,
538-548.

LERNER, A. 1944. The Economucs of Control. Macmillan,
New York.

Lovasz, L. 1986. An Algorithmic Theory of Numbers,
Graphs, and Convexity. CBMS-NSF Regional
Conference Series m Apphed Mathematics 50,
Society for Industrial and Applied Mathematics,
Philadelphia.



