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THE GENERALIZED BASIS REDUCTION ALGORITHM*

LASZLO LOVASZ ano HERBERT E. SCARF

Let F(x) be a convex function defined in R”, which is symmetric about the origin and
homogeneous of degree 1, and let L be the lattice of integers Z”. A definition of a reduced
basis, b', ..., b" of the lattice with respect to the distance function F is presented, and we
describe an algorithm which yields a reduced basis in polynomial time, for fixed n. In the
special case in which the bodies {x: F(x) < ¢} are ellipsoids, the definition of a reduced basis
is identical with that given by Lenstra, Lenstra and Lovész (1982) and the algorithm is the
well-known basis reduction algorithm.

We show that the basis vector 5!, in a reduced basis, is an approximation to a shortest
nonzero lattice point with respect to F and relate the basis vectors b° to Minkowski’s
successive minima. The results lead to an algorithm for integer programming which executes
in polynomial time for fixed n, but which avoids the ellipsoidal approximations required by
Lenstra’s algorithm. We also discuss the properties of a Korkine-Zolotarev basis for the
lattice.

1. Introduction. Let C be a compact convex body in R”, of positive volume and
symmetric about the origin, and let L be the lattice of integer vectors in R”. The
body can be used to define a distance function F(x) = inf{A > 0/x/A € C}, with the
properties:

(1) F(x) is convex,

(2) F(—x) = F(x),

(3) F(tx) = tF(x) for t > 0.

The dual body C* is defined to be {y|y - x < 1 for all x € C}, and the dual distance
function is F*(y) = max, .. y - x. We shall assume that F is computable in polyno-
mial time.

In order to determine a smallest nonzero lattice point according to the distance
function F, we introduce the concept of a reduced basis with respect to F. Let
b', b2 ..., b" be a basis for the integer lattice L. For each i we project C, along the
vectors b',...,b'" !, into the affine space E, = (b',...,b") obtaining C, In other
words, x =x,b' + -+ +x,b" € C, if and only if there are a,,...,a;_; such that
x+ab'+ - +a,_b'"' € C. The lattice L, obtained by projecting L along
bY,...,b" Vinto {b',..., b™), is the set of integral linear combinations of the vectors
b',...,b"

The distance function F,(x), associated with the projected body C,, is defined for
x €E; by

F(x) =min F(x + ayb' + -+ +a,_;b"""),

with the minimum taken over aj, ..., @;,_,. The function may, of course, be defined
for all x in R" by the same formula; if x = ijb’, then F,(x) will be independent of
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Xy, ..., Xx;_;. It is elementary to show that

F(x) =max{x-zlz€ C*b' - 2=0,...,b" -z =0}.

Fix 0 < € < 3. The basis is reduced, for this e, if the following two conditions hold
fori=1,...,n -1

(1) F(b™' + ub") > F(b'*?) for integral u, and

Q) F(b'*Y) = (1 — eF(bY).

A basis b',b?,.. ., b", reduced or not, will be said to be proper if F(b' + pub)) >
Iij(bi) for integral u, and all j < i. In the arguments of this paper, we shall frequently
find it useful to modify a basis b, b2,..., b" by selecting integers K, j, for j <isuch
that the basis c!,..., c" defined by

i-1
(1) c'=b"+ Y ou, b

j=1
is proper. This is done sequentially by taking M; ; SO as to minimize
Fj(b[ + T +l‘«i,/+1b/+1 + #‘i,jbj):

IVeN f; 1, By, ;41 The basis {c), which will be reduced if {'} is reduced, will be
said to be a proper basis associated with {b‘}. If C is an ellipsoid—or, alternatively, if
C is the unit ball and the lattice is a general lattice in R"—a proper reduced basis is
identical with the definition of a reduced basis in A. K. Lenstra, H. W. Lenstra, Jr.
and L. Lovasz (1982).

In §2, we discuss the properties of a reduced basis, demonstrating, in particular,
that for such a basis ' is an approximation to the shortest nonzero lattice point. In
addition, b’ is an approximation to a lattice point realizing the ith successive
minimum, according to Minkowski. We also provide a polynomial algorithm for fixed
n which finds the shortest nonzero lattice point rather than an approximation.

In §3, the basis reduction algorithm is described and shown to execute in polyno-
mial time, for fixed n. In §4, we examine a special basis—the Korkine-Zolotarev basis
—associated with a distance function F. Using the Korkine-Zolotarev basis, we
provide an alternative demonstration of a theorem to be found in Kannan and Lovasz
(1988), that a lattice-free body K, in R", has associated with it a nonzero lattice point
h, such that the width of the body in the direction # satisfies

ma{){({h "x} — mig{h “x) <con(n+1)/2,

with ¢, a universal constant,
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Lenstra’s polynomial algorithm (H. W. Lenstra, Jr. (1983)) for integer programming
with a fixed number of variables makes use of the spherical basis reduction algorithm.
He begins by a preliminary reduction to the problem of determining a lattice point in
a convex polyhedron K, in R”", defined by a system of linear inequalities Ax < c. To
find such a lattice point, the polyhedron is approximated by an ellipsoid £, and a
hyperplane with integer normals % is found so that the width of the ellipsoid in the
direction h, max, . g{h - x} = min, _ z{h - x} is as small as possible, aside from a
factor depending only on the number of variables, n. If this width is sufficiently large,
the polyhedron is sure to contain a lattice point. In the alternative case, in which the
width is not large, we consider the intersections of the polyhedron with the hyper-
planes hx = h,, with h, assuming all integral values between min, .4 - x and
max, . o h - x. The n-dimensional problem is thereby reduced to the problem of
determining a lattice point in one of a small number of » — 1 dimensional polyhedra.
Each of these polyhedra is then approximated by its own ellipsoid and the algorithm
continues.

A nonzero lattice point 4, which minimizes the width of the ellipsoid E, is a
shortest nonzero lattice point for the body (E — E)*, itself an ellipsoid. If this latter
ellipsoid is transformed to a sphere by a linear transformation, an approximation to
the shortest nonzero lattice point can be found using the spherical basis reduction
algorithm for a general lattice.

The arguments of this note can be used to find a short nonzero lattice point for the
body (K — K)* directly, thereby avoiding the series of ellipsoidal approximations.
The basis reduction algorithm is applied to C = (K — K)*, where K = {x]|Ax < c},
with the distance functions

F(¢) = min Fy(é + ayb' + ~++ +a,_,b""")

max £ - (x —y), subjectto
Ax <c, Ay <c, b]‘(x—y)=O,...,bi_1~(x—y)=0.

The analysis of §§3 and 4 can be used to provide an alternative to Lenstra’s
algorithm, free of ellipsoidal approximations, and which also executes in polynomial
time for a fixed number of variables.

The general basis reduction algorithm requires the solution of many linear pro-
grams, and there are tradeoffs between using an ellipsoidal approximation to K, or
working directly with the body, itself, to resolve the question of whether K contains a
lattice point. A number of computational experiments are currently being attempted
on integer programming problems of moderately large size to evaluate the merits of
the two procedures.

2. Properties of a reduced basis.

THEOREM 1. Let b',...,b" be a reduced basis. Then
Fo (6" > (53— €)F(b)) fori=1,...,n—1.

Proor. We have the identity min F(x + ab’) = F,, ,(x) with the minimum taken
over all real a. Since we can round « to the nearest integer u, it follows that

®) min £(x + ub) < F, (x) + 3F(b),
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with the minimum taken over integer w. If x is taken to be b'*! then (2), in
conjunction with the definition of a reduced basis, tells us that

(1= )E(b) < F(b™') = min F(b'*" + ub)

< F(b1) + (b)), @
THEOREM 2. Let b',...,b" be a reduced basis, and let A, = min F(h), for all
nonzero lattice points h. Then X, > F(b") - (5 — )" .

Proor. Let h =1,p'+ --- +1,b* with I,...,I, integral and /, different from
zero, be a shortest nonzero lattice point according to the distance function F. Then

Ay =F(h) > Fo(h) = LIF,(b%) > F(bY) - (3 - ). o

Theorem 2 states that the first vector, b, in a reduced basis is an approximation to
the shortest nonzero lattice point. In a similar fashion the other basis vectors
approximate the successive minima of the lattice with respect to the distance function.

DEFINITION.  Ay,..., A, are the successive minima of the lattice with respect to F
if there are lattice points A',..., A", with A, = F(h'), such that for each i = 1,...,n,
h' is the shortest lattice point which is linearly independent of 4',..., A" L.

An equivalent definition is A; = min{A|F(x) < A contains i linearly independent
lattice points}. The successive minima A, are uniquely defined by the distance
function F, but there may be more than one set of lattice points 4, aside from —A’,
which realize these values. We have the following generalization of Theorem 2.

TueOREM 3. Let b',...,b" be a reduced basis. Then fori = 1,...,n,
F(b)(5—€)" " <A <F(b)/(3-¢) "

Proor. There is no loss in generality in assuming that the basis {»’} is not only
reduced but is also proper, in our sense that F(b' + ub’) > F(b") for all j <i and
integral w. This follows from the observation that if {b} is replaced by a proper basis
{c} with ¢f = b* + Egliﬂi,jbja the new basis is also reduced and, moreover, F(c’) =
F(bY).

We begin by showing that

(3) Fy(b') < F(b)) /(- €)',

thereby demonstrating the right-hand side of the inequality in Theorem 3.
We first argue that

(4) F(b') < F(b') + 3[F_ (b1 + -+ +F(b7)] forj<i.
In the proof of Theorem 1, we have established the validity of (4) for j =i — 1.
Moreover, if (4) is correct for a given value of j, then the corresponding inequality

holds for j — 1, since

F(b') = minF;_(b' +xb37")
> minF;_,(b' + ub’~') — F,_(b’"") for integral p
n

= F,_(b") — 3F;_(b’™") since {b'} is proper.
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Estimating Zj‘ 1Fj(bf ) by means of Theorem 1, we see that
Fi(b') < F(b)) - {1+ 451/(3 - &)}

<F(b)/(5-e) "
To demonstrate the inequalities on the left-hand side of Theorem 3, we write

' =1,b" +1,b* + -+ +1,,b",
B =1,b" + 1, + - +1,b",

h"=1b" +1,b>+ --- +1 b",

with /;; integral and with k' linearly independent lattice points which realize the
successive minima, i.e. Fi(h') = A,.

For each index i, there must be a pair of indices j and k with j < i < k such that
Ly # 0, since otherwise

U =1bt e b
W= 1Y 4 - 4l b,

and the vectors k', ..., k' would be linearly dependent. For each i, therefore, let k
be the largest index such that /;, # 0 for some j < i < k. But then, since [/;| > 1,

A=A = Fy(h9) > F(h) = L] - F(b%)

n—i

>F(b) (3= 2 E() - (5-¢)

This demonstrates Theorem 3. O

If the basis is reduced and proper, inequalities relating A, and F,(b°) can be
obtained from (3) and the fact that F,(b’) > F,(b").

According to Minkowski, the successive minima satisfy the inequality A; -+ A, -
vol(C) < 2". We can show that a proper reduced basis b, ..., b" approximates this
result in the following sense:

THEOREM 4. Let bl,...,b" be a proper reduced basis with respect to F. Then
Fy(b') - Fi(b?) -+ Fy(b") - vol(C) < 2"/ (% — &)™ V72,
Proor. The proof depends on the fact that for any basis
(5) Fy(bY) - Fy(b?) -+ F(b™) - vol(C) < 2™

To demonstrate (5), there is no loss in generality in taking b',...,b" to be the
standard basis of Z", since this can be achieved by a unimodular transformation
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which does not change vol(C). Let us assume, by induction, that this inequality is
satisfied for the n — 1-dimensional body C, obtained by projecting b! into the affine
space {b?,...,b"), so that

F,(b?) --+ FE,(b") -vol(C,) < 2" L.
But then vol(C) = [ I(x)dx, and /(x) the length of the intersection of the line
x + ab! with C. From the symmetry and convexity of C, I(x) < I(0) = 2/F,(b") so

that vol(C) < 2vol(C,)/F,(b"), thereby demonstrating (5). Theorem 4 then follows
from the previously established inequality (3):

F(b) <F(b)/(3-¢) 7" o
If we are given a reduced basis, then a shortest vector 4! can be calculated in
polynomial time for fixed n. We do this by establishing bounds on the coordinates of

lattice points satisfying F)(h) < F\(b'). Let h = L/,b’ be such a vector. Then

Fy(b") > Fy(h) > F,(h) =1L,|- F,(b")

so that
Ll < Fy(b)/F(0") < 1/(5 - €)'
Now let us suppose that the coordinates /,,...,/;,, have been selected. We find
bounds for /; as follows: Find the real @ which minimizes F,(1,b" + --- +[,_,b""' +

ab®). If the minimum is greater than F,(b') then there is no s with these final n — i
coordinates satisfying F,(h) < Fy(b"). If, on the other hand, the minimum is less than
or equal to F,(b') then since

F(L,b" + - +1,,b"*" + 1p') = F(h) < Fy(h) < Fy(b"),
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and F, is symmetric and convex, we obtain |, — a| - F{b') < 2F,(b") and therefore
II, — &l < 2/(3 — )", This provides us with a tree of depth n and with a “small”
number of branches at each node in which to search for the coordinates of the
shortest vector. If the tree is used to calculate the shortest nonzero lattice point in
actual numerical examples, the estimate (3 — €)' should be replaced by
F(b")/F(b"), which may be considerably smaller.

If we look for the ith successive minimum by considering those & with Fi(h) <
F(b")/(3 — €)'"! we obtain precisely the same set of inequalities for /,;...,/; but
we do not have similar bounds for the first i — 1 coordinates of 4. This yields a
“small” number of hyperplanes of dimension i — 1, one of which contains a lattice
point which realizes the ith successive minimum. '

3. The basis reduction algorithm. An algorithm for finding a reduced basis ma
casily be described. We begin with an initial basis a!, a?,..., a" for the lattice, an
move through a sequence of bases b!, b2,. .., b" according to the following rules: A
each step of the algorithm, we consider the first index i for which one of th
conditions

(1) F(b'*' + ub") = F(b'*?) for integral u, and

(2 F(b'*Y) = (1 — eF(b)
is not satisfied.

If the first condition is not satisfied, we replace b'** by b'*1 + ub’, with u the
integer which minimizes F,(b'*! + wb’). If, after this replacement, the second condi-
tion obtains, we move to level i + 1. If the second condition is not satisfied, we
interchange b’ and b'*! and move to the preceding level i — 1, unless i = 1, in which
case we remain at level 1.

In order to demonstrate convergence of the algorithm we consider the vector

Fi(bY),. .o F(b), Fri(b'Y), ., B(D™),

and remark that the maximum value of the components of the vector does not
increase at any step of the basis reduction algorithm. If we replace »'*! by b'*! + ub’,
none of the terms change; if ' and b'*! are interchanged, F,(b') becomes F,(b'*1)
< (1 — ©F,(b") and F,_(b'*1) is replaced by

min F(b' + ab' + -+ +a, 10" + o, b
<min F(b' + ayb' + -+ +a,_b'"") = F(b').

It follows that at any step in the algorithm, max F(b’) < max F{(a') equal to, say, U.

The basis reduction algorithm is known to converge in polynomial time, including
the number of variables, n, for F(x) = |x|, and a general lattice given by an integer
basis. The argument is based on two observations: first, that an interchange between
b' and b'*! preserves the value of F;(b’) for all indices other than i and i + 1, and
secondly, that for F(x) = |x|, the product F(b")F, ,(b'*') is constant when the
vectors b' and b'*! are exchanged. This permits us to deduce that D(d',..., b") =
[I(F, (b))~ decreases by a factor of (1 — €) at each interchange. It is easy to show
that II(F(b"))"~" > 1, for any basis, from which the polynomial convergence follows
réadily.

Constancy of F,(b')F,, (b'*!) is not valid for a general distance function, and the
generalized basis reduction algorithm is not known to execute in polynomial time in
the number of variables #. But the algorithm may be shown to be polynomial in the
data of the problem for fixed n. We present two arguments for this conclusion, both
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of which depend on establishing lower bounds for the possible values assumed by
F(b") during the course of the algorithm.

To obtain such a lower bound, assume that C < B(R), the ball of radius R. Then

F(x) > |x|/R. Now let b',...,b" be any basis for the lattice satisfying F(b) < U,
and let ¢’ =b' + Z};ll/.c,-, ;b7 be a proper basis associated with {b’}, satisfying

i—1
F(c') = E(b)) and Fy(c) <F(b%) + } ¥ F(b’) <nU.
1

We have, therefore, |c’| < nUR.
We estimate F(b'), from below, as follows:
Fy(b'y = min F(b' + a;b* + -+ +a; ,b'"")
=min F(b' + ayc’ + -+ +a;_,¢'77)
> min|(b' + ayct + -+ +a, 71| /R.

But minl(b’ + a;c' + -+ +a,_,c'" | is the distance between the vector b’ and the
space {c!,...,c"!) and is therefore equal to

[G(cl,...,ci’l,bi)/G(cl,...,ci'l)]l/z,
where the Grammian
G(x',...,x") = det[(xj,xk)]j.,kzl.
Since ¢!,..., ¢! and bf are integral, G(c',...,c'" !, b)) > 1. Moreover,
G(c!,..., ™)  <le! -+ 1™ < (nUR) .
It follows that
F(b%) » 1/[R(nRU)Y "] > 1/[ R(nRU)"™|

equal to, say, V.
We have already shown that each component of

Fy(bY),.., Fi(b), Fiy(B771), ., Fy (D7)

is bounded above by U = max F;(a') throughout the course of the algorithm. More-
over, the first term in the sequence to change at any iteration decreases by a factor of
(1 — €). Our first argument for polynomial convergence is to observe that the
maximal number of interchanges is therefore

[log(U/V") /log(1/(1 — €))]".

(Simply record the times at which the first two basis vectors b and b2 are inter-
changed. Between any consecutive pair of such times we are faced with an identical
problem with n — 1 variables.) Using our lower bound V' we see that the number of
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interchanges of the basis reduction algorithm is bounded above by

(6) [n log(nUR) /log(1/(1 — €))]".

It may be useful to remark that if the basis reduction algorithm is executed using a
proper basis {c?} associated with {b'}, then the size of the vectors ¢’ will remain
bounded from above by |c/| < nUR. In practice, it may be sufficient to calculate this
proper basis at periodic intervals.

The second argument for polynomiality, which achieves a different bound, depends
on the observation that for a general distance function F(x), the product
F(b))F,, (b'*") increases by a factor less than or equal to 2 after an interchange of b’
and b'*!. The argument makes use of the following theorem.

TueoreM 5. Let S be a compact convex set in R*, which is symmetric about the
origin, and let x and y be two linearly independent vectors on the boundary of S. Define

d

I

max{alax + By € S for some B} and

X

d

, = max{Blax + By € § for some a}.

Then 3<d,/d, < 2.

Proor. If d .x + By € S, theneither B >d, — l,orB <1 —d, Forif0 <B <
d, — 1, x is a strict convex combination of 0, —y, d, x + By, and is therefore interior
to S;if 1 —d, <B <0, x is a strict convex combination of 0, y, d,x + By and is
again interior to S. In the first case, d, > d, — 1. In the second case, since S is

symmetric, the vector —(d, x + By) € S and again d, > d, — 1. It follows that
d/d,<1+1/d,<2,

since d, > 1. The lower inequality follows from interchanging x and y. o
Theorem 5 may be used to show that the product F(b)F, (b'*!) increases by a
factor not larger than 2 at any step of the basis reduction algorithm in which b’ and
bi*1 are interchanged. Let S = C, C E, = (b’,...,b"). Assume, without loss of
generality, that F(b*) = 1, and take y = b’ and x = b**' /F(b'*"), both of which are
on the boundary of C,. But then F,, (x) = 1/d,, and F (b") = 1/d , with F%, the

distance function associated with the projection of C into (b, b'*% ...,b"). It
X + - . . -
dx x 1 dx)y d 'x dx x + (dX 1y
—————————————— Bty et
AN // -~
\\\ /, r///
N ’ /,’
\\ // ///
Nt
X
/’/ / \\
e / Ay
//’ / AN
/,’ // \\
-7 / N
/,/ 7 AN
> . »
-y 0 y

FiGure 3
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follows that
(7) F(b" ) FA (") /F (D) F (D)
= [FYy/a, ] /[FY d,] =d,/d, < 2.
Now consider
D(bL,...,b") = T(E(b)))"

with y = 2 + 1/log(1/(1 — ¢€)). It is a straightforward computation to show that our
estimate (7) and the inequality F(b'*') < (1 — €)F,(b") imply that D(b',...,b")
decreases by a factor of at least (1 — ¢) at each interchange required by the basis
reduction algorithm. Since V' < F,(b") < U at each step of the algorithm, we see that
the number of interchanges is bounded above by

[(y" = 1)/(y = D]log(U/V) /log(1/(1 = €))
< [(v" = 1)/(y = 1)]nlog(nUR) /log(1/(1 = ¢)),

an estimate which is much better than our previous estimate in terms of its depen-
dence of UR. The preceding discussion has established the following theorem:

THEOREM 6. The basis reduction algorithm terminates in a polynomial number of
steps, for fixed n.

Since the number of possible values of the vector
Fi(bY),.... Fi(bY), Fry(b™1), ... F,(b")

is finite, the basis reduction algorithm executes in finite time even when € = 0.
Bérany has recently demonstrated geometric convergence when e = 0 for the case of
two variables. Consider two successive steps of the algorithm. Assume that the initial
basis is (»', b2), with b? the smallest lattice point on the line »% + ab?’, and that
8,F(b") < F(b*) < F(b").After the first interchange the basis is given by (b%, b'). Let
w* minimize F(b' + pb?) for integral u and assume that 8,F(b?) < F(b! + w*b?)
< F(b?) so that another interchange is required leading to the basis (b + u*b?, b?).
Finally, let & be the integer which minimizes F(b* + u(b! + u*b?)).

THEOREM 7 (BARANY). If 8,8, > % then w =0 or 1. In either case the basis
(b + w*b?, b? + w(b' + w*b?)) is reduced.

Proor. We argue, first of all, that |u*| > 1. If u* = 0, there is a contradiction
between F(b' + u*b?) < F(b?) and F(b?) < F(bY). If u* = 1, then b? is not the
shortest integral vector on the line »% + ab', and similarly for w* = —1. To be
specific, let us now assume that u* < —2.

Consider the convex function g(a) = F(b% + a(b! + w*b?)). We have g(0) = F(b?)
and from our assumptions g(0) > §,F(b") > 8,8, F(b"). Also,

g(1) = F(b' + (u* + 1)b?) = F(b' + p*b*) > 8, F(b*) > 6,6,F(b").
But

g(—1/w*) = (/I F(b") < 5F(bY).
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It follows, from the convexity of g(a), that if 8,8, > 3, the integral minimum of g(a)
is at @ =0 or @ = 1. In the first case, the basis (b' + u*b2, b?) is reduced since
F(b' + *b?) < F(b?); in the second case, the basis (b! + p*b2% b + (u* + Db?) is
reduced because F(b' + u*b?) < F(b! + (u* + 1)b?). D

Theorem 7 implies that in 2p steps of the basis reduction algorithm, F(b') will
decrease by a factor of at least (1,/2)?. Since F(h) > 1/R for any lattice point 4, we
have geometric convergence of the algorithm for » = 2 and € = 0. No argument is
currently available for higher dimensions, and € = 0, unless we revise the order in
which the steps of the algorithm are executed. For example, following a suggestion
made by Barany, let us assume that we always select the largest index i for which one
of the conditions of a reduced basis is not satisfied. It follows that if we ever return to
level 1, the basis b2,..., b" is reduced with € = 0 for the n — 1 dimensional problem
defined by C,. If an interchange of b' and b? is then required, two possible cases
arise:

(1) F(b*) > (1 — §)F(b") for some fixed 1 < 8 < 1. But then the basis b, ..., b"
will be 8-reduced for the original problem. Qur previous analysis shows that there is a
finite number, N(n, 8) of lattice points 4, such that Fy(h) < F|(b'), and, therefore,
the algorithm requires an exchange of b! and b? not more than N(#, §) times.

(2) At each return to level 1, we have F(b?) < (1 — 8)F(b'), and therefore the
number of returns to level 1 is bounded above by

log(U/V') /log(1/(1 — 8)).

We then use an inductive argument on n to achieve polynomial bounds on the
running time of the algorithm for € = 0 and fixed n.

4. The Korkine-Zolotarev basis. A special basis for a lattice, the Korkine-
Zolotarev basis, has been used very successfully by Lagarias, Lenstra and Schnorr
(1986) to improve some classical estimates in the geometry of numbers relating the
successive minima of a body C and its dual body C* = {y|y -x < 1forall x € C}. In
their analysis they approximate a general body by an ellipsoid, transform the ellipsoid
to a sphere by a linear transformation and use specific properties of the spherical
norm. We shall illustrate, by means of a few examples, that their arguments can be
applied, virtually unchanged, to a general body without the prior step of an ellipsoidal

approximation.

Let b1, b2, ..., b" be defined recursively as follows: given b',..., b*~1 b’ minimizes
F(h) over all lattice points which are linearly independent of b',...,b" 1. The
vectors b!, b2, ..., b" clearly form a basis, since otherwise there is an integer vector

which can be written as a linear combination of the b’ with some fractional
coefficients. But then by adding and subtracting suitable integral multiples of {57}, we
obtain an integral vector h = a,b' + -+ +a,b’, with @, a proper fraction; & is
independent of b%,..., 5! and gives a smaller value of F(k) than does b,

A Korkine-Zolotarev basis is defined to be any proper basis {c'} associated with
{b}. The basis satisfies the inequalities

i—1
(8) Fi(c') < F(b) + 3 X F(b7).

The Korkine-Zolotarev basis may not be unique; there may be several integral vectors
independent of b',...,b""" which minimize F(4), and the integers p, ; defining a
proper basis associated with {b'} need not be unique.
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THEOREM 8. Let ¢!, .., c" be a Korkine-Zolotarev basis. Then

Fy(c)/((E+1)/2) <2 < ((i + 1) /2) Fi(c).

Proor. Let A, .. ., h" realize the successive minima. For each i, at least one of
the vectors A',...,h" must be independent of bl, ..., b~ since otherwise the
vectors would all lie in {(b',..., b 1> and be linearly dependent. It follows that

max, _; F(h’') > F(b') and therefore

A= Fi(h') = max F\(h’) > F,(b').
It

But then (8) implies that
Fl(ci) <A+ %(/\1 + o +)\i—l) < ((l + 1)/2))‘i~

This demonstrates the left-hand inequality of Theorem 8.
To obtain the right-hand side, notice that for

k <i, F (b*) < F(c') < Fi(c'), since ¢ is independent of b',...,b" ).

But

A< max F(e) < max[F(6) + 1 T F(bh)]

i o .
J<i Jst k<j-1

<F](ci)max{l +1 Y1 } =((i+1)/2)F/(c"). ©

j<i k<j—1

We remark that Theorem 8, in conjunction with Minkowski’s inequality, implies
that a Korkine-Zolotarev basis satisfies

Fi(c') - F(c?) -+ Fy(c™) -vol(C) < (n + 1)1,

an improvement over the estimate of Theorem 4.

Let X% be the length of the shortest nonzero lattice point with respect to the dual
body C* = {yly -x < 1 for all x € C}. Minkowski’s first theorem implies that A; <
2/(volC)N'/™ and X% < 2/(vol(C*))'/", so that an upper bound for A,X} may be
obtained from a lower bound for the product of the volumes vol(C) - vol(C*). A
well-known ellipsoidal agpproximation to C is sufficient to produce the inequality
MAY < n*2 A more sophisticated lower bound, given by Bourgain and Milman
(1985), implies that there exists a universal constant c,, such that A;X} < con. This
result is used to demonstrate the following property of a Korkine-Zolotarev basis.

THeOREM 9. There is a universal constant ¢ such that for a Korkine-Zolotarev
basis, F(cHX < cofln — i+ 1).

Proor. We assume, without loss of generality, that the Korkine-Zolotarev basis
consists of the n-units vectors e,...,e", and let C; be the projection of C into
e',...,e", with associated distance function F. The projection of the original lattice is
the set of all (x,,...,x,) with integral coordinates. For this lattice and distance
function, A, = F/(c').
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For the previous discussion, there is a nonzero lattice point 4’ = (h,,..., h,) such
that

Fi(c'y - max{h’ - xlx € C}} <co(n — i+ 1).

But this linear function A’ - x may be extended to a linear function 4 - x in R" by
adding i — 1 zero coordinates to A, so that

F(cYN < F(c') max{h-xlx € C} <cy(n—i+1). o
i 1 0

Theorem 9 has an important application to the study of lattice-free bodies K which
are not symmetric about the origin. As we shall see, any such body has associated
with it a nonzero lattice point / such that

max {/ - x} — min{k - x} <cyn(n + 1) /2.
x€K x€K

The argument is based on Theorem 9, and a subsequent result in the paper by
Kannan and Lovéisz which may be described as follows.

Tueorem 10. Let C = (K — K), with K a convex body, and let F be the distance
function associated with C. For any basis b',..., b", define p = LF.(b"). Then the
lattice translates of pK cover R".

Proor. We show, by induction on 7, that for any x € R”, there is a lattice point
h with x + 4 € pK. Notice that the hypotheses and conclusion of the theorem are
unchanged if we replace K by any translate of itself; we may therefore assume that K
has been translated so that both 0 and b! are contained in F(b")K. Let K’ be the

projection of K along the vector b! into {b?...,b") and x’ the corresponding
projection of x. :
By the induction assumption, there is a lattice point /' in {b?,...,b") such that

x + K e L3F(b)K' and therefore x + ab’ + i’ € L3F(b')K for some a. It follows
that

x+ [a]lb'+H e iﬂ(b‘)](-k (Ja] —a)b' c ZFE(V)K. ©
2

If the body K is free of lattice points, then its lattice translates do not cover the
origin, and therefore p = LF(bh’) > 1. We see from Theorem 9, that for such a body,
A <coZ{n — i+ 1) = con(n + 1) /2. It should be remarked that the inductive argu-
ment provides an algorithm for calculating a lattice point in K, if p < 1. The reader
may notice that this observation, combined with the fact that the shortest nonzero
lattice point may be calculated in polynomial time for fixed 7, leads to an algorithm
for integer programming, which requires no ellipsoidal approximations, and which
executes in polynomial time for a fixed number of variables.
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