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SHORTEST INTEGER VECTORS

HERBERT E. SCARF anp DAVID F. SHALLCROSS

Let A be a fixed integer matrix of size m by n and consider all b for which the body
K, = {x: Ax < b} is full dimensional. We examine the set of shortest nonzero integral
vectors with respect to the family of norms whose unit balls are given by (K, — K,,). We show
that the number of such shortest vectors is polynomial in the bit size of A, for fixed n. We
also show the existence, for any s, of a family of matrices M for which the number of
shortest vectors has as a lower bound a polynomial in the bit size of M of the same degree as
the polynomial bound.

1. Introduction. For any closed convex body K, the difference body K — K,
being convex and symmetric about the origin, defines a norm

(1) leIIKAK=min{)t: %xeK—K}.

We consider a family of convex bodies of the form K, = {x: Ax < b}, where A is a
fixed m by n integer matrix, and b may vary; and denote x|k, -«, as |lxll,. We shall
assume that A has rank n, and that there is a positive vector , such that w4 = 0, so
that K, will always be bounded. We shall only consider those values of b for which
K, contains more than one point. For a finite-valued norm K, should in fact be full
dimensional. By a’ we will denote the ith row of 4. We would like to give good
bounds on the number of vectors v for which there exists some b such that v is a
shortest nonzero integer vector with respect to the norm || - ||,.

More specifically, we produce a bound on the number of these shortest vectors that
is polynomial in the bit size of A but exponential in n. The dependence on the bit
size of A is through the log of A,(A), defined as the largest absolute value of an n by
n subdeterminant of A. If we use the definition of size of A4 in [6], then log,(nA,(A4))
is less than the size of A. The argument follows the outlines of the polynomial bound
on the number of vertices of the integral hull of a polyhedron, in [3]. For any fixed n
we give an example of a family of matrices that shows the polynomial in our bound is
of the lowest degree possible.

The length of the shortest integer vector with respect to a norm || - ||, is an example
of one of Minkowski’s successive minima. For any norm || - || Minkowski [5, §47]
defines n successive minima, A, ..., A,, where A; is the minimum of all A such that
the scaled “unit ball” {x: ||x|| < A} contains i linearly independent integer vectors.
These minima may be seen as realized by integer vectors k', ..., h" given by the rule:
h' is a shortest integer vector linearly independent of 4%, ..., A~ L. Ties may occur, so
that this construction is not unique. Nevertheless, Kannan, Lovasz, and Scarf show in
[4] that for fixed A4, the union over all b of these successive minimizers for the norm
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[l -1, lies in the union of a set of n — 1 dimensional hyperplanes, of cardinality
polynomial in the bit size of 4 but exponential in m — n.

One conjecture generalizing the current result and the result of Kannan, Lovasz,
and Scarf would be that the union over all b of the first i successive minimizers lies in
the union of a set of / — 1 dimensional affine spaces, of cardinality polynomial in the
bit size of A4 for fixed m and n. We know of no evidence for the intermediate cases
of this conjecture.

2. Upper bound on number of shortest vectors. From now on we will call a
vector v shortest if there exists a vector b such that v is a shortest nonzero integer
vector with respect to || - |l5.

Define two vectors in R™ to have the same sign pattern if they have the same
coordinates positive, the same coordinates negative, and the same coordinates zero.
Shortest vectors are in a weak sense extreme among all integer vectors x with the
same sign pattern of Ax. '

Lemma 1. Ifx = %( y + z), where y and z are integer vectors such that Ay and Az
have the same sign pattern (and necessarily so does Ax), then x is not a shortest vector.

Proor. Let w = 5(y —z) =y — x. We shall show that w must be shorter than x
for any choice of b. Fix b. Let |lxll, = 1/A, so by the definition (1) there exists
p € R”, such that Ap < b and A(p + Ax) < b.

(2) ,u=/\(1+ min {a’_y ﬂZ—Z-})

ira'x>0 a'z’ a'y
The minimum is over a nonempty set, because K, is bounded. 1/u will be an upper

bound on the norm of w.
We will now show that

(3) A(p+—'2iy)<b; A(p+%z)<b,

checking each row. First, for any i such that a‘x < 0, we also know that a’y < 0 and
a‘'z < 0, so, having selected u greater than zero, we have

(4) ai(p+ %y) <a'p < b,
and
(5) ai(P + %2) <a'p < b

Second, for i such that a’x > 0, our choice of u guarantees that

(6) ai(p + %y) <a'p +Ma'(y/2) +a'(z/2)) =d'(p + Ax) <V,
and

@) ai(p + %z) <a'p+ Md'(z/2) +a'(y/2)) = a'(p + Ax) <b'.

Thus we have (3). Hence, with ¢ =p +(u/2)z and w = (1/2Xy — z), we have
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g€ K, and q + uw € K,. From our definition, [lwl|l, < 1/u. We conclude, since
u > A, that |wll, < llxll,. ©

We can also bound the region in which a shortest vector can lie. The proof uses
techniques from [2].

LemMa 2. If x is a shortest vector, then |a*x| < nA,(A), fork =1,...,m.

Proor. Let x be a shortest vector. Let K be the cone of vectors y for which Ay
has the same sign pattern as Ax. As K is pointed, every vector in K is a positive
combination of at most n extreme rays of K. In particular, we may write x in such a
way:

(8) x=Yxp, A>0
i=1

where the p’ are n extreme rays of K, scaled to be integer vectors according to the
following scheme.

Each extreme ray p of K satisfies the equations a’p = 0, j € S, for some set S of
n — 1 linearly independent rows of 4 depending on p. Let r be the integer vector
whose ith coordinate is (—1)~! times the determinant of the n — 1 by n — 1
submatrix of 4 consisting of the rows in § with the ith column removed. It follows
that for any i, the product a’r is the determinant of the n by n submatrix of 4 with
rows S U {i} and is zero whenever i is already in §. Thus r is a multiple of p. We
may choose p to be r or —r, whichever points in the correct direction. For any i, the
product a’p will be at most A,(A) in absolute value.

We now show, for any b, that [|x|l, > Al p'lls. Let [l x]l, = 1/¢. Then there exists w
such that Aw < b and A(w + £&x) < b. Now if a’x < 0 then a/(w + 1A, p') < a’w <
b’, and if a’x > 0 then a’/(w + tA,p) < a’(w + tX}_ A, p*) = a’(w + tx) < b’. So
by definition [|A; p'll, < 1/t = lIxll.

Since x is by assumption a shortest vector, || p'll, = llxll, = A1 p'lls, and so A; < 1
for all i. Now,

Z Ajakpi

i=1

(%) la*x| = <nhA(A4). o

We can now establish our polynomial bound:

THEOREM 3. The number of shortest vectors for a fixed matrix A is at most
m"4" (i + 2)* L, where  is [log,(nA, (AN

Proor. This proof is by reflecting sets, following [3].

Choose, perhaps sequentially, numbers 0;, %< 6, <1, fori=1,...,m,so that no
more than n of the hyperplanes a'x = i6i2k., i=1,....,m k=0,...,¢ + 1, inter-
sect at any one point. Divide the region {x: la‘x| < 6,2¢*!, Vi} into sets S(j, ..., j,.)

called reflecting sets, of the form

[6;271, 6,27%) =1
(10) S(jise-ardm) = x:a'x € (—6;,8;) Ji=0 Vi,
(627, 8,271 j< -1

where each j; ranges from —¢ — 1to ¢ + 1. Lemma 2 guarantees that each shortest
vector lies in some one of these reflecting sets. Further, we can show that any
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reflecting set contains at most one of the shortest vectors. First we show that if a
reflecting set contains two integer points x and y, then all four of AQx — y), Ax,
Ay, and A2y — x) have the same sign pattern. It is clear from the definition that in a
reflecting set with j; # 0, all points x have the same sign for a’x. On the other hand,
in any reflecting set with j, = 0, any point x has |a‘x| < 8, < 1, and since A4 is an
integer matrix, if x is an integer vector than a’x = 0. Therefore if x and y lie in the
same reflecting set S(j;,...,Jj,), then Ax and Ay have the same sign pattern.

Now let us determine the sign pattern of AQ2x — y). If j, = 0, then a’Qx — y) =
2a'x — a'y = 0. Otherwise, without loss of generality j; > 0. Since a’x > 6,2~ and
a'y < 6,27, we find a’2Qx —y) > 26,2/~! — 9,2/ = 0. Thus we can conclude that
AQx — y)(and also A2y — x)) has the same sign pattern as Ax and Ay. By Lemma
1 neither x nor y can be a shortest vector. Therefore, we can bound the number of
shortest vectors by counting nonempty reflecting sets.

Furthermore, we can reduce the number of reflecting sets that may simultaneously
contain shortest vectors. Many of the reflecting sets constructed are power of two
multiples of one another. For example, S(2,4,4, —2) = 25(1, 3, 3, — 1). Depending on
A, it may be that 5(1,3,3, —1) = 25(0, 2,2,0). I S(j,,...,j,) = 2"S(k,,...,k,,), for
h > 0, these two sets cannot both contain shortest vectors, by the following argument.
Let x € S(k,,...,k,) be a shortest vector. Then 2”x is an integer vector in
SCjiys -« /) By previous arguments, no other vector S(j,,..., j,) can be a shortest
vector, but 2#x is 2 times as long as x in any norm, and so cannot be shortest. We
can partition the set of reflecting sets into families of the form {S,2S,4S,...,2"S}
such that neither (1/2)S nor 2#*!S are reflecting sets. We call S the minimal
member of this family. By the above argument, each such family contains at most one
shortest vector.

We bound the number of shortest vectors by the number of minimal members of
these families of reflecting sets. For any reflecting set S(j,,...,j,), consider the
reflecting set S(k,...,k,), where k; =j, — 1if j,> 0, k;=0if j,=0, and k; =
Ji + 1if j; <0. It is clear from their definitions that S(j,,...,j,) € 2S(k,,...,k,,).
Inequalities defining S(j,,...,Jj,) are missing from 28(k,,...,k,,) only in three
cases. If j, = 1, we miss a'x > 6,. If j, = 0, we miss — 8, <a'x < 8. If j, = —1, we
miss a'x < —6,. Depending on A, these inequalities might be redundant for
SGyevsim) ¥ SGiy..oyj,) is minimal in its family and so not equal to
28(k,,..., k,,), an inequality of this type must be nonredundant, so we then have a
facet of the form a'x = +8, for some i.

We count the number of minimal reflecting sets by the number of their vertices
which lie on such facets. Each vertex is the intersection of 1 hyperplane of the form
a'x = +6,, and n — 1 hyperplanes of the form a*x = +86,2/, where k is an integer
between 1 and m but not equal to i, and j is some integer between 0 and ¢ + 1.

Thus there are at most m2(’;':11)(2z/1 + 4)"~! such vertices. Each vertex lies in at

most 2" reflecting sets; each reflecting set has at least n vertices on the required type
of facets. We conclude that the number of reflecting sets, and therefore the number
of shortest vectors, is at most:

- 4"m(':_—11)(¢/+2)"~'. ]

3. Example with many shortest vectors. For each n, and each ¢, we show the
existence of a matrix M, with bit size at most ¢, @, for which there are at least c,¢" ™!
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shortest vectors, where ¢, and ¢, are constants depending only on n. Since ¢ =
log(nA,(M)) is less than the bit size of M, this shows that the exponent on ¢ in
Theorem 3 is the best possible exponent that does not depend on m. We show the
existence of M with the assistance of the following result from [1].

TueoREM 4. For any n > 2 there exists a set of n independent unit vectors
S$15---58,, and an infinite set V of integer points, where V' is a subset of the vertices of the
convex hull of the nonzero integer points in the cone generated by s, ..., s,. This cone
contains no nonzero integer points on its boundary. Further, if we let B~' be the matrix
with columns s,,...,s,, let 1 be the vector of ones, and define V($) =V N {x:
Bx < 21}, then V() contains at least c¢™ ™' points, where c is a constant depending
only on n.

The vectors sy,...,s, may be taken as real eigenvectors of an easily constructed
matrix. They are, however, irrational, so we will have to make rational approxima-
tions to use them. We will use the following lemma to relate vertices of integer hulls
to shortest vectors.

LemMA 5. Let K be a pointed cone. Let v be a vertex of the convex hull of nonzero
integer points in K. Then v and —v are the only nonzero integer vectors in the convex set
(K — v) n (v — K), (where K — v denotes the set {x — v: x € K}).

Proor. Since v € K, we know 2v € K. Trivially 0 € K. Now v =2p —vp €
(K-v),andv=v —0€ (v —K),so v isindeed in (K — v) N (v — K). Similarly,
so is —v. Let x be any integer point other than v, —v, and 0. Assume that x lies in
(K —v)n (v — K). Then both v + x and v — x are nonzero integer points in K. But
v = 1(v +x) + 3(v — x), contradicting the hypothesis that v was a vertex of the
convex hull of nonzero integer points in K. Thus we may conclude that the only
integer points in (K —v) N (v — K)are v, —v,and 0. O

If v is in the interior of K, the convex set (K — v) N (v — K) is full dimensional.
The vector v is therefore the shortest nonzero integer vector with respect to the
norm given by the set (K — v) N (v — K). If v is on the boundary of K, this set will
not be full dimensional. In this case if K is a closed set, and x is any point in the
interior of K, then for sufficiently small € > 0, the convex set (K — (v + €x)) N
((v + ex) — K) contains a neighborhood of the origin and so is full dimensional, and
yet still contains only 0, v and —v as integer vectors. Here v is the shortest nonzero
integer vector with respect to the norm given by this expanded set. In either case such
a ball is centrally symmetric, and so equals its own difference body scaled by one half.
Using B and V from Theorem 4, and letting K be the cone {x: Bx > 0}, we see that
each v in V is a shortest vector with respect to the norm given by the body
(K—-v)n(v—K)={x: —Bv < Bx < Bv}. This body is the difference body of
{x: Bx < $Bv, —Bx < 1Bv}. Since V is infinite, the matrix M* defined as the 21 by
n matrix with one block of B and one block of —B generates an infinite family of
norms with distinct shortest vectors.

Of course, as we mentioned above, B has irrational entries, and so does not have a
well-defined bitsize. We now perform a two-step process to find a family of rationally
defined cones each of which gives many shortest vectors. Assume ¢ is large enough
that V(¢) contains at least two points. These points are necessarily linearly indepen-
dent. First we “press in” the facets of K until they reach points in V(&) as follows.
Let a; = min{b'x /L7 ,b'x: x € V(¢)}, where b’ is the ith row of B. The «, are
strictly positive, as V() is entirely in the interior of K = {x: Bx > 0}. The first new
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cone is defined as K; = {x: b'x — o, X7 b'x > 0,i = 1,...,n}. Note that

n

n n
Ya,= Y min bix/ Y bix

i=1 i=1x€V(e) j=1

n n
< min Y. bx/[ Y bix=1,
xeV(d) =y j=1

because these minima can be achieved at the same point only if the set (¢) does not
contain two linearly independent points. Now let x be any nonzero point in K;. We
know that

- za) ¥ bix.

i=1 i=1

n n
0< Z(bix—a[bex)=

i=1 j=1

Since we have determined that (1 — X7_,a;) > 0, we know that X7_,b’x > 0. This
allows us to conclude that 0 < b'x — o, X7_b’x < b'x for all i. We now know that
V($) c K, CcK.

The facets of K, may still be irrational, however. We will replace each of the n
facets of K, with n — 1 constraints to get a new cone K,. Let K; be the cone
generated by V(). (K; will, in general, have too many facets to use directly.) For
each i the set {x: b'x — o, X7_,b’x = 0} is a supporting hyperplane of K, at some ray
through 0 and some integer point y‘. The inequality b'x — o, X7_,b’x > 0 for x € K,
is implied by n — 1 constraints defining facets of K, incident on this ray. K, is
defined to be the intersection of these n sets of n — 1 constraints. Now we have
V(¢) c K, c K, c K. Since V(@) is a subset of the extreme points of the integer hull
of the nonzero points of K, we can conclude that V'(¢) is also a subset of the extreme
points of the integer hull of the nonzero points of K,.

If we let A be an n(n — 1) by n integer matrix of minimum bitsize such that
K, = {x: Ax > 0}, and let M be the 2n(n — 1) by n matrix consisting of one block of
A and one block of —A, then, by Lemma 5, M generates norms with at least c¢” ™!
shortest nonzero integer vectors. To determine the bitsize of M, first notice that since
for all v € V(¢), we have 0 < Bv < 21, and B™! has unit vectors for columns; each
component of v is of magnitude at most #2%. Since each row of M comes from a
hyperplane defining a facet of the cone generated by V(¢), each element of M is a
signed determinant of the matrix whose columns are vectors of V(¢), and so is of
magnitude at most (n — 1)!(n2¢)". Although apparently large, this bound is of bitsize
linear in ¢. Thus M is of bitsize at most a constant times ¢, as desired.

There is a more complicated construction of a 2n by n matrix M of bitsize at most
a constant times ¢, also generating norms with at least c¢” ! shortest nonzero
integer vectors. Unfortunately, this paper is too short to contain it.

Acknowledgement. The research reported here was supported by the Program in
Discrete Mathematics at the Cowles Foundation, Yale University, and by NSF Grant
SES-8807167. The authors wish to thank Imre Bardny for many useful conversations
and suggestions.

References

Bérany, 1., Howe, R. and Lovédsz, L. (1989). On Integer Points in Polyhedra: A Lower Bound. Cowles
Foundation Discussion Paper No. 917.

Cook, W., Gerards, A. M. H., Schrijver, A. and Tardos, E. (1986). Sensitivity Theorems in Integer Linear
Programming. Math. Programming 34 251-264.



522 HERBERT E. SCARF & DAVID F. SHALLCROSS

Cook, W., Hartman, M., Kannan, R. and McDiarmid, C., On Integer Points in Polyhedra. Combinatorica
(to appear).

Kannan, R., Lovész, L. and Scarf, H. (1990). The Shapes of Polyhedra. Math. Oper. Res. 15 364-380.

Minkowski, H. (1896). Geometrie der Zahlen (Erste Lieferung). Teubner, Leipzig. (Reprinted: Chelsea, New
York, 1953).

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons, New York.

H. E. Scarf: Cowles Foundation for Research in Economics, Yale University, New Haven, Connecticut
06520-2125
D. F. Shallcross: Bell Communications Research, Morristown, NJ 07962



