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The Allocation of Resources
in the Presence of Indivisibilities

Herbert E. Scarf

he major problem presented to economic theory by the presence of

indivisibilities in production is the impossibility of detecting optimality

at the level of the firm, or for the economy as a whole, using the
criterion of profitability based on competitive prices. I will explore this issue in
a rather leisurely way, beginning with a discussion of the role played by
competitive prices in verifying optimality when production takes place under
constant returns to scale; then illustrating the failure of prices to perform this
task when indivisibilities are siguificant; and, finally, suggesting the replace-
ment of the pricing test by a specific quantity test. It is my hope that continued
study of these quantity tests will increase our understanding of the division of
labor in a large firm.

Using Prices to Detect Optimality Under Constant
Returns to Scale

One of the most important professional activities of econormists 1s to carry
out exercises in comparative statics: to estimate the consequences and the
merits of changes in economic policy or in our cconomic environment. We do
comparative statics at the level of the firm when we calculate the cffects of a
change in factor endowments or in the price of a valuable input into produc-
tion. We engage in comparative statics and dynamics for the economy as a
whole when we examine the consequences of the dramatic increase in the price
of imported oil in the latter part of 1973, or the second oil shock following the
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fall of the Shah, or the dismantling of AT &T, or a massive change in income
taxation within the United States, or the NAFTA. If these consequences spread
throughout the entire economy, we evaluate themn by assessing their effects on
the well-being of the members of the community.

We have a remarkable paradigm for assessing well-being that has been
passed on to us by generations of economic theorists and utilitarian philoso-
phers. The utilitarian calculus, 1 its modern ordinal version, provides us with a
simple test for evaluating the merits of a proposed change in economic activi-
ties: The change should be accepted if it has as an immediate consequence—or
one that can be brought about by a suitable redistribution of income—an
increase in the well-being or utility of all of the members of society.

The utilitarian test requires the possibility of major income redistributions
that may not be politically viable—the movement of a clothing manufacturer
from a Northern mill town to a lower wage region of the South may result in a
potential Pareto improvement, but 1 know of no instances of an appropriate
compensation to those employees whose jobs have been lost. And there are
serious problems about maintamning cffective incentives if lump sum transfers of
inconice are made independently of effort and the supply of productive factors.

In spite of these and other reservations, I personally consider the welfare
test to be an extraordinary intellectual construction—one which permits us to
focus our discussions about the potential merits of a novel economic proposal.
Last summer, for example, 1 participated in an extended discussion with a
distinguished high energy physicist about the super-conducting super-collider.
In that conversation, it became quite clear to me that the community of
physicists in favor of the project had been unable to establish any ground rules
about what constituted a compelling argument for the project. Of course, it
wasn’t the case that they had no arguments in favor of the collider; they had
many of them. But most of these arguments could cqually well have been
presented for a project whose costs were orders of magnitude larger. There was
no prior agreement or understanding between the proponents of the super-
collider and their audiences about what constituted an acceptable argument for
any particular level of expenditure.

Our profession does have such a line of discourse. It may, admittedly, be
difficult to carry out the welfare test in an instance as complex as the super-
collider; the collider is, after all, a public rather than a private good, and it is
one whose potential benefits are extremely hard to predict. The utilitarian test
is much easier to carry out when more conventional economic projects are
proposed. The test actually leads to a simple exercise in the calculation of
profitability, which, in my opinion, is one of the major theorems of microeco-
nomic theory, a theorem which is not entirely obvious to the man on the street
or even to professional economists.

Suppose that we are contemplating a hypothetical economic situation
which is in equilibrium in the purest Walrasian sense. The production possibil-
ity set cxhibits constant returns to scale so that there is a profit of zero at the
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equilibrium prices. Each consumer evaluates personal income (or wealth) at
these prices and market demand functions are obtained by the aggregation of
individual utility maximizing demands. The system is in equilibrium in the
sense that demand equals supply for each of the goods and services in the
economy.

Suppose that a technical advance is made resulting in the discovery of a
new manufacturing activity subject to constant returns to scale—one which
produces a good whose price is already known, ar a new location, with different
materials, with less expensive labor or with more sophisticated machinery. Shall
the new activity be used at some positive level? The word “shall” in this
question is the same word as in the questton: “Shall the super-conducting
super-collider be built?” The ualitarian test can be applied by inquiring whether
the new activity can be combined with a plan of income redistributions in such
a way as to make all consumers better off than they had previously been. On
the face of it, this sounds as if we must solve a complex mathematical program-
ming problem; but, in fact, the question has a rermarkably simple answer: [f the
activity is profitable at the old equilibrium prices, then there is a way lo use the activity at
a positive level so that with suitable income vedistributions, the welfare of every member of
society will increase. There is no necessity to determine the new equilibrium
prices arising after the activity i1s introduced; the current prices will do. And,
conversely, if the new activity makes a negative profit at the old equilibrium prices, then
there is no way in which it can be used to improve the utility of all consumers, even
allowing the most extraordinary schemes for income redistribution. This is an astonish-
ing mathematical theorem which 1 often ask about in graduate oral exams in
microeconomics. The second assertion takes about two lines of proof; the first is
more subtle: three lines of proof and a figure will do. T have never seen this
theorem, which seems to me to be one of the important theoretical arguments
in favor of private enterprise, in any textbook on economics.!

It may be worth remarking that if 17 new activities are presented simulta-
neously, the pricing test can be applied to the collection of activities in an
arbitrary sequence, without regard to decisions made about the remaining
activities. If none of the 17 activities makes a positive profit at the old equilib-
rium prices, then no subset of them can be used, along with income redistribu-
tions, so as o improve everyone's economic lot. It any one of the activities

'The sccond assertion: If the newly discovered activity is added to the old production possibility sct,
we obtain a new, and possibly larger, production possibility set. But the old equilibrivm—which
does not use the new activity—is still an cquilibrium using the expanded production possibility set,
because the new aclivity makes a non-posirive profit at the old prices. By the lirst welfare theorem,
the equilibrium must be Pareto optimal in the new setting with the larger set.

The first assertion: Simply draw the old produciion possibility set, a cone which is separated
by a plane—whose normal is the equilibrium price vector—Irom the convex set of net trades 1hat
can be allocated among the consumers so as to improve their utility levels. The new activity ray lies
above this price plane and, subject 10 some mild assumptions, it can be connected to the old
equilibrium production plan so as to yield a feasible production plan which intersects this se1 of net
trades and increases all consumers™ utilities.
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makes a positive profit, then some welfare improvement is surely possible. The
activity can be introduced, a new equilibrium determined—with Pareto-impro-
ving income redistributions—and the pricing test can be applied to the remain-
ing activities. This 1s an extraordinarily decentralized test; it presumably could
be applied to every minor innovation on the shop floor of a large firm simply
by evaluating its profitability in terms of prevailing market prices.

The market test sounds very much like a step in the simplex method for
solving linear programs. An activity analysis model of the economy or a firm is
given, along with a specified factor endowment and an objective function which
is to be maximized subject to the constraint that the factor endowment is not
exceeded. In a linear programming problem, a feasible solution to the con-
straints is proposed, and prices are found yielding a zero profit for the activities
in use. The proposed solution is optimal if and only if the remaining activities
make a profit less than or equal to zero.

The simplex method is an extremely efficient algorithm for solving linear
programs: Programs involving thousands of variables can be solved routinely
on a personal computer by high school students. But what is even more
significant for economists is that this effective computational procedure is based
on an evaluation of profitability identical to that performed by competitive
markets. A visitor from another planet who was taught the simplex method for
solving linear maximization problems would inevitably be led to the use of
prices and profitability to detect optimality. An algorithm—a mathematical
technique for solving maximization problems—suggests an institution—
competitive markets—which is central to the way in which we organize our
economic lives.

Is this suggestion of a major institutional structure an accident of the
simplex method or can it be expected from other computational procedures as
well? Is it a reasonable research strategy to address an area of economic theory
which is not fully understood—at least by me-—to cast it in the form of an
optimization problem, and to hope that algorithms for its solution will produce
a conceptual framework that is relevant to the original economic problem? I'm
not sure, but it 1s a strategy that 1 have followed for a number of years in an
attempt to increase my understanding of the problems posed for economic
theory by indivisibilitics and economies of scale.

The Failure of Prices in the Presence of Indivisibilities

Both linear programming and the Walrasian model of equilibrium make
the fundamental assumption that the production possibility set displays con-
stant or decreasing returns to scale; that there are no economies associated with
production at a high scale. I find this an absurd assumption, contradicted by
the most casual of observations. Taken literally, the assumption of constant
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returns to scale in production implies that if technical knowledge were univer-
sally available we could all trade only in factors of production, and assemble in
our own backyards all of the manufactured goods whose services we would like
to consume. If I want an automobile at a specified futurce date, I would
purchase steel, glass, rubber, electrical wiring and tools, hire labor of a variety
of skills on a part—time basis, and simply make the automobile myself. I would
grow my own food, cut and sew my own clothing, build my own computer
chips and assemble and disassemble my own international communication
system whenever I need to make a telephone call, without any loss of efficiency.
Notwithstanding the analysis offered by Adam Smith more than two centuries
ago, I would manufacture pins as I needed them.

If production really does obey constant returns to scale, there is nothing to
be gained by organizing economic activity in large, durable and complex units;
in short, there is no economic justification for the existence of firms. Competi-
tive markets would set prices for manufactured goods at every stage of produc-
tion and cash would be exchanged, or accounts would be reckoned, as goods
moved from one task to another. Every step in a complex manufacturing
process would be tested for profitability by itself, without regard to its relation-
ship to other potential improvements.

I am, I believe, not alone in thinking that the essence of economies of scale
in production is the presence of large and significant indivisibilities in produc-
rion. What 1 have in mind are assembly lines, bridges, transportation and
communmnication networks, giant presses and complex manufacturing plants,
which are available in specific discrete sizes, and whose economic usefulness
manifests itself only when the scale of operation is large. If the technology
giving rise to a large firm is based on indivisibilities, then this technology can be
described by, say, an activity analysis model in which the activity levels referring
to indivisible goods are required to assume integral values, like 0,1,2,. .., only,
When factor levels are specified and a particular objective function is chosen,
we are led directly to that class of difficult optimization problems known as
integer programs,

For a theorist, the major problem presented by indivisibilities in produc-
tion is the failure of the pricing test for optimality or for welfare improvements.
Return to our previous discussion of the economy which is in full Walrasian
equilibrium, and imagine, as before, that a new activity is discovered. But let us
now assume, in contrast to our earlier example, that this new activity—perhaps
a decision about the number of manufacturing plants of a parricular type to be
constructed— involves a discrete choice that can only be carried out at integral
levels. One can argue easily that if the activity makes a negative profit at the old
equilibrium prices, then there is no way to use it at a discrete or continuous
level so as to improve the utility of every agent in the economy. The problem
arises with the converse; it is perfectly possible that the activity make a positive
profit at the old prices and still not be capable of being used at any discrete
level to yield a Pareto improvement.
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Even more problems arise if 17 activities are presented to us, all of which
must be run at an integral level. A welfare improvement will typically require
the selection of a subset of the activities, some of which are profitable at the old
equilibrium prices, and some of which are not. There is no algorithm based on
prices and profitability which permits us to make a sequence of welfare
improvements by introducing one activity at a time, or even to detect which
activities should ultimately be used. There is no pricing test in the presence of
indivisibilities.

The absence of a pricing test is a truth that must be confronted. It certainly
does imply that total decentralization by means of competitive prices is impossi-
ble if the technology involves serious indivisibilities. In my own view, this is a
compelling reason for the existence of large firms, and it suggests that some
serious insight about the large {irm might be gained by considering such a firm
to be essentially an algorithm for the solution of mathematical programming
problems in which some of the variables are restricted to integer values. I hope
that insights from this source would complement other insights about the
functioning of large enterprises that are presented in a narrative rather than
mathematical form, that are based on a careful analysis of particular historical
cases, or that involve flows of information in hierarchical structures. The
subject 1s sufhiciently complex so that many voices should be heard.

An Example

An example may be useful. Consider a problem involving a single good
that can be produced by a vartety of technologics. Each technology is embodied
in a particular type of manufacturing plant with a specific cost of construction,
with a specific capacity, and with a specific unit cost of manufacturing. The level
of demand for the product is given exogenously, and we are required to
construct a series of plants and to manufacture sufficient product to satisfy this
demand at minimum cost. We now have a mathematical programming problem
in which some of the variables, the number of plants of each type to be
constructed, arc integral, and the remaining variables, the amounts manufac-
tured ar cach plant, are continuous.

The example is artificial in many ways. Perhaps its most serious flaw is the
obvious lack of any dynamic considerations. The construction cost is presumably
paid at the time of construction, when a capacity for producing the maximum
output per period is established. But demand for output manifests itself in a
sequence of periods over ime, possibly in a predictable though varying fashion,
or possibly with a good deal of uncertainty. Moreover, it is plausible to assume
that manufactured goods can be kept in inventory, at some cost, so as to satisfy
future demand. These elements can certainly be introduced into our problem,
but with a considerable increase in complexity. In order to make my points as
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simply as possible, I will assume that demand is constant over time and that no
inventories are kept; the unit costs may then be thought of as the discounted
sum of unit costs incurred over time as this constant demand is satisfied.

For fixed construction costs, capacities and unit costs, the optimal construc-
tion plan depends crucially on the level of demand. Some levels will call for
considerable excess capacity in various plants, and other levels will not. How
can we tell whether a proposed construction and manufacturing plan, which
meets the demand requirement, does, in fact, minimize total cost? Competitive
prices will not work for this class of problems. There is only one option: the
price test must be supplemented, or replaced, by what can be called a “quantity
test.”

At this point, I have an expository difficulty about which I must be quite
explicit. I would like to present an elementary example illustrating the particu-
lar quantity test required to demonstrate optimality without being cluttered by
too much detail; this naturally leads to an example with a small number of
plants, say, two. But programming problems with only two integer variables are
easy to solve, In addition, when there are only two types of plants, the saving in
cost achieved by a truly optimal solution is typically small compared to the cost
of approximately optimal solutions, which are themselves quite easy to find.
This is not true for larger problems, and I ask your indulgence on this issue.

With this caveat in mind, let us consider an example involving only two
types of plants. The first type of plant—the Smokestack plant— is of ancient
design, huge, made of red brick with steam pouring from its chimneys; it has a
large capacity, is moderately inexpensive to construct per unit of capacity and
has a fairly high marginal cost of production. The second plant—the High
Tech plant—is a gleaming marvel of computerized technology; it has a capacity
of medium size, is expensive to set up per unit of capacity, but has a lower
marginal cost of production. Specific numerical values are provided in Table 1.

If capacity could be built continuously rather than in discrete units, the
cost per unit of capacity in the Smokestack plant would be 53 /16 and the cost
of supplying a unit of demand would be 53/16 + 3 = 6.3125. The average

Table 1
Production Costs: Smokestack versus High Tech

Smokestack High Tech
Capacity 16 7
Construction Cost 53 30
Marginal Cost 3 2

Average Cost 6.3125 6.2857
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Table 2
Cost Minimizing Choices of Plants and Output Levels

Demand #Smokeslack #High Tech Output 1 Ouiput 2 Total Cost
55 3 1 48 7 347
56 0 8 0 56 352
57 1 6 5 42 362
58 1 6 16 42 365
59 2 4 31 28 375
60 2 4 32 28 378
61 3 2 47 14 388
62 3 2 48 14 391
63 0 9 0 63 396
64 4 0 64 0 404
65 1 7 16 49 409
66 2 5 31 35 419
67 2 5 32 35. 422
68 3 3 47 21 432
69 3 3 48 21 435
70 0 10 0 70 440

construction and manufacturing cost from a High Tech plant is 30/7 + 2 =
6.2857. What 1s, of course, uncomfortable about the example is the closeness of
these two average costs.

If plants could be constructed at an arbitrary size, the market test—using
either average or marginal cost as a criterion—would require that all demand
be satisfied from High Tech plants alone. But the optimal solution is consider-
ably different if plants must be built in discrete sizes, and the pricing test for
optimality fails dramatically. Table 2 illustrates the cost minimizing choices of
plants and the aggregate output levels of each type of plant for an interval of
demand values.

If the capacities at both plants were larger, the number of plants of each
type would be considerably less sensitive to the level of demand; a given
configuration of underutilized plants would be optimal for a large interval of
demands. It can easily be shown that the number of Smokestack plants becomes
a periodic function of demand after some point (d = 91 in this example). But it
is clear from this table that the optimal integer solution cannot be obtained
simply by rounding the fractional solution in which only High Tech plants are
used.

Quantity Tests for Optimality

Let us focus on a particular value of demand, say, 60, for which the optimal
solution is to build two Smokestack plants, four High Tech plants, and manu-
facture 32 and 28 units respectively, for a cost of $378. Suppose that an
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alternative solution had been proposed: that we build three Smokestack plants
(at a cost of $159 and providing a capacity of 48), two High Tech plants (at a
cost of $60 and capacity of 14), and that we manufacture 46 units at the
Smokestack plant and 14 units at the High Tech plant, for a total cost of $385.
Is there a quantity test revealing that this proposal, which also satisfies the
demand of 60, is not optimal?

The most elementary quantity test is to plot the point (3,2) in the plane,
and examine its 8 neighbors, which are obtained by increasing or decreasing
the number of plants of each type by unity. In other words, for any particular
feasible construction plan given by a pair (#Smokestack plants, #High Tech
plants), we examine those alternative construction plans obtained by adding to
this pair of integers each of the 8 vectors:

(1,0), (1, 1),(0,1),(=1,1),(=1.0), (=1, =1),(0, = 1), (1, = 1)

and testing each one of them to see whether it produces another feasible plan
at lower cost.

In Figure 1, those combinations of Smokestack plants and High Tech
plants which together provide a capacity of 60 units or more lie on or above the
frontier—an unbounded region forming the constraint set for the two integer
variables. (1 have not drawn the iso-cost lines in this figure since cost depends
not only on the number of plants of each type but also on the variables which
do not appear in the figure: the levels of output from each type of plant.) The
reader will notice that the four neighbors of (3,2) given by (2,2), (2,1), (3,1)

Figure 1
Looking in the Immediate Neighborhood
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and (2,3) all lie below the frontier and therefore do not provide sufficient
capacity to satisfy the demand of 60. The remaining four neighbors (4, 2), (4, 3),
(3,3) and (4, 1) do provide adequate capacity for the demand of 60, but their
total costs—assuming that High Tech plants are used to full capacity—are each
larger than the cost of $385 associated with (3,2). The plan (3, 2) is therefore a
local mindmum for this very natural quantity test, but it 1s not the global minimumn
when the demand is 60. Some alternative to this particular quantity test is
required, if we are looking for a test with the property that a local minimum is
global for any demand specification.

The Unique Minimal Quantity Test

For a quantity test to detect optimality it must be based on an examination
of a set of neighbors that are retated in some intrinsic fashion to the underlying
problem, rather than being merely adjacent in an elementary geometric sensc.
For our problem, there is a unigue, minimal set of neighhors all of which must
be examined to be certain about detecting optimality if we wish to use translates
of the same set for all feasible points and all levels of demand. They are
obtained by subtracting each of the following neighbors from the proposed
plan:

(0, 1),

(1,0),(1, = 1), (1, — 2),
(—1,3),(=2,5),(—35,7),
4, —9,(7, —186).

This set of neighbors, displayed along with its negatives in Figure 2, has the
important property that if one of its translates is excluded from the test set,
then there will be some level of demand and some feasible solution which 1s not
optimal but which cannot be improved by moving to any neighbor in the
smaller test set.? If all of them are examined, the local quantity test based on
this set of neighbors will vield the global optimal solution for any level of
demand.

To apply the neighborhood test of Figure 2, imagine that we lift up the set
of those neighbors that decrease cost and translate them from the origin to the
proposed solution (8, 2), as in Figure 3. The non-optimality of the plan (3, 2),
for the demand of 60, is casily seen in the figure by noticing that if we subtract

*Figure 2 displays eight of the nine neighbors listed above (I've left out (7, —16) in order to keep
the scale reasonable) and their negatives as well. "These nine necighbors decrcase cost when
subtracted from a trial solution, and their negatives incrcase cost. The negatives are useful if an
infeasible solution is given and we are searching for a feasible ncighbor, or for a variant of the
problem in which we are looking for a configuration of plants that maximizes outpui subject to a
cost constraint.
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A Global Quantity Test
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the neighbor (1, —2) from (3, 2), we reach the new plan (2,4) which is feasible,
lowers cost, and is, in this instance, optimal.

There is a clear algorithm suggested by these considerations: 1) Propose
some construction plan which produces a capacity sufficient to meet demand;
2) If one of its neighbors in the unique minimal test set is also feasible and leads
to a lower cost, move to that alternative plan; 3) If there are no such neighbors,

Figure 3
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the original proposal is optimal. This algorithm depends crucially on our
requirement that the local test set be the same for every feasible point; the set of
neighbors would otherwise have to be determined anew at each iteration.

It can be seen that these neighbors are closely related to the discrete
analogue of marginal products. As the demand level increases, the optimal
construction plan will either be unchanged or move to a new plan which is
obtained from the previous plan by adding one of these neighbors.

The reader may feel, at this moment, that I've pulled this collection of
neighbors out of a hat. I don’t mean to be unduly mysterious, so let me be
more specific about the role that neighbors play in detecting optimality.
Consider the neighbor (1, —2). If, as in our example, we subtract this neighbor
from a proposed construction plan, we obtain a new plan with 1 less Smokestack
plant and 2 more High Tech plants. There will be a net loss in capacity of two
units and a net increase in construction costs of $7. But the 2 additional High
Tech plants are capable of manufacturing 14 units at a cost of $28; these 14
units were previously manufactured at the Smokestack plant for an additional
$1 per unit. It follows that there is a cost saving of $7 associated with this
decrease in capacity of two units.

This “margmal” change would result in a decrease in cost if the original
plan had at least 2 units of excess capacity and used at least one Smokestack
plant; under these circumstances the change should certainly be adopted and
we should move to a new solution with lower cost (as we did in our example in
moving from the configuration (3, 2) to (2,4)). If the demand requirement had
been 61 units rather than 60, the configuration (3, 2) would equally well have
been feasible. But the excess capacity would now be 1 unit rather than 2; we no
longer can subtract the neighbor (1, —2) and remain with sufficient capacity.
On the other hand, it is easy to see that subtracting the neighbor (—3,7)
reduces capacity by only one unit, but we can only move to this neighbor if we
are currently contemplating a plan with seven or more High Tech plants.
Subtracting (4, —9) also reduces capacity by a single unit, but for this change to
lead to a new feasible configuration, we must currently be constructing at least
four Smokestack plants. And, finally, if we build seven fewer Smokestack plants
and 16 more High Tech plants, there will be no change in capacity but a
reduction in cost of $3, an option we should certainly take if the proposed plan
involves building seven or more Smokestack plants.

If we examuine the members of the minimal test set, the decrease in capacity
and cost obtained by subtracting each of them from a proposed solution is given
in Table 3, assuming that all High Tech plants are used to full capacity. The set
of neighbors provides all of the discrete tradeoffs necessary to verify optimality.
Of course, 1t 1s not obvious—nor can 1 make it obvious without an argument
that 1s quite straightforward, but which I would rather not include in this paper
—precisely why no other discrete tradeoffs are necessary.”

%A simple algorithm for constructing the set of neighbors when there are two integral variables is
given in Scarf (1981h). There is sufficient regularity in Table 3 so that the reader might be able to
guess what the algorithm is without looking at this paper.
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Table 3
Decreases in Capacity and Cost for Each Neighbor

Neighbor Capacity Cost
0, D 7 23
(1,0 16 53
(1, -1 9 30
(1, -2) 2 7
(-1,3) 5 16
(—-2,5) 3 9
(-3,7 1 2
4,-9) 1 5
(7, - 16) 0 3

These observations are quite general. Subject to very mild conditions, an
arbitrary activity analysis model with integral activity levels has associated with
it a unique, minimal neighborhood system, which depends solely on the
technology matrix and not on the specific factor endowment, and such that a
local maximum with respect to this neighborhood system is a global maximum
for any particular right-hand side (Scarf, 1981a). The minimal neighborhood
system is an intrinsic feature of the discrete production possibility set and is
fully independent of the particular factor endowment. In suggesting a quantity
test set which depends only on the specification of technical possibilities, we are
maintaining the distinction between technical knowledge and factor availability
which has been so fruitful in economic analysis.

In our example, the technology is simply given by the cost structure, and
aside from non-negativity of the variables there is a single constraint requiring
that output be greater than or equal to demand. We would have more
constraints if there were demands for output at several locations, or if we were
explicit about a variety of factors of production. The neighborhood system
would still be independent of the demand specification and factor endowments.

In the next section, I shall describe a few structural properties of neighbor-
hood systems suggesting that they can be examined rapidly and systematically
when there are only two integral variables. Other properties are known for
higher dimensions, and many more remain to be discovered. To the extent that
a firm can be viewed partially as an algorithm for the solution of discrete
programming problems, the firm must either know this minimal test set
explicitly—or in some implicit fashion—to test for optimality as the factor
endowment varies. The optimal allocation of indivisible resources is essentially
a combinatorial problem, addressed in this paper by means of neighborhood
systems. In a large firm, whose size arises from a technology involving indivisi-
bilities, the resolution of these combinatorial problems must be reflected in the
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firm’s organized decision-making procedures for selecting appropriate re-
sponses to changes in cconomic circumstances.

How, in general, are these neighbors to be determined for a given technol-
ogy matrix? I find it astonishing that there is a canned computer program that
can be found either in Mathematica or Maple which automatically calculates the
set of neighbors if presented with the underlying activity analysis matrix.* The
program is not designed with this particular question in mind; its purpose is to
compute a very sophisticated object in a field of mathematics known as alge-
braic geometry, a topic which is far removed from issues of economic theory.
But here we see one of the remarkable, though rare, virtues of the translation
into mathematical form of an everyday problem: words, phrases, and concepts
which bear no apparent relationship to each other in ordinary discourse may
become synonymous in the language of mathematics.

Comparative Statics in the Presence of Indivisibilities

Can the minimal neighborhood system be used to analyze changes in
optimal behavior resulting from a modification in our economic environment?
One type of modification is an exogenous change in factor endowments or, in
our example of plant selection, a change in demand for output. The minimal
neighborhood system permits us to analyze this type of change quite readily in
the sense that, for a general activity matrix, changes in the optimal solution
associated with increases in the factor endowment or demand are given by
preciscly these neighbors.

A more complex change results from a modification in the technology
rather than the factor endowment. In our earlier discussion in which produc-
tion exhibited constant returns to scale, this feature was illustrated by the
introduction of a new activity whose profitability could be tested at the old
equilibrium prices. If indivisibilities are present, a new activity analysis matrix
results in a new minimal neighborhood system.

Our numerical example is so elementary that the only changes in technol-
ogy are modifications in the costs and capacities of the two competing types of
plants. To see the consequences for the minimal neighborhood system, let me
first remark that the set of neighbors 1s unaltered if both capacitics change by a
common factor and if the average costs—the cost per unit of capacity plus
marginal cost—are changed by a possibly different common factor for both
types of plant,

Let us make such a rescaling, followed by slight increases in capacity at the
Smokestack plant and marginal cost at the High Tech plant so that the
parameters are now given by Table 4. At this point, the average cost at

4. . . . R . Lo
The program finds a mathematical object known as a Groebner Basis for a polynomial ideal whose
{ ) )
generators are defined by the columns of the activity analysis matrix.
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Table 4
Changes Which Bring Average Costs Closer

Smokestack High Tech
Capacity 1609 700
Construction Cost 5300000 3000000
Marginal Cost 3000 2010

Avcrage Cost 6293.97 6295.71

the Smokestack plant is slightly lower than that of the High Tech plant and the
previous minimal test set is increased by four new neighbors; it is now given by:

(0, 1),

(1,0), (1, =1, (1, = 2),
(=1,8),(~2,5),(=8,7)

(4, =9),(7, -16)

(—10,23),

(17, - 39), (27, —62), (37, —85).

The changes in capacities and costs obtained by subtracting each of these
neighbors from a proposed feasible solution are given in Table 5. As we sce, if

Table 5
Decreases in Capacity and Cost for each Neighbor

Neighboy Capacity Cost
0, 1) 700 2307000
(1,0) 1609 5300000
(1, -1 909 2893000
(1,-2) 209 686000
(-1,3) 491 1621000
(—2,5) 282 935000
(-3,7) 73 249000
4, -9 136 437000
(7, — 16) 63 188000
(—10,23) 10 61000
(17, —39) 53 127000
(27, —62) 43 66000

(37, —85) 33 5000
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the change in costs increases the competitiveness of the plants—causes their
average costs to converge—the number of neighbors will expand. If the plants
are closer in efficiency, a higher level of scrutiny is required to detect
optimality.®

For integer programming problems with two variables, the set of neighbors
can be linearly ordered, as in our examples. Small changes in the specification
of the problem will always result in modifying our degree of resolution by
adding or deleting an interval of neighbors at the end of the list. When the
parameters change continuously, the unique procedure for detecting optimality
changes in the most elementary fashion possible for a discrete, ordered set of
points: the set grows or shrinks at one end. One of the major themes of my
current research is to describe the ways in which the set of neighbors changes
when the number of discrete choices 1s larger than two and the neighbors are
no longer organized hinearty. All of the present evidence suggests that, for the
general integer programming problem, the minimal test set gains or loses
members at a small number of locations on its boundary.

These examples also illustrate some unexpected structural elements of the
set of neighbors: the set seems to be composed of a small number of linear
segments. This is a very desirable feature, since the question of whether a
member of a linear set of neighbors can be added to a proposed feasible
solution so as to retain feasibility and decrease cost is easy—rounding will do. It
is not diflicult to argue that this structure is valid for an arbitrary problem with
two integer variables; the set of neighbors always consists of a small number of
intervals (Scarf, 1981b). This observation permits us to construct what com-
puter scientists call a “polynomial”’—a really fast—algorithm for integer pro-
grams with two vartables.

A remarkable accomplishment of mathematical programming 1s the
generalization of this result to problems with an arbitrary number of integer
variables. For any fixed number of integer variables, there is an integer
programming algorithm which uses themes similar to, though not identical
with minimal test sets, and which executes in “polynomial” time—very rapidly
—as the other parameters of the problem vary. These algorithms have more
than theoretical interest: they have been coded by experts, and seem to be

SConsider the new neighbor (—10,23) pointing in the direction of a cost reduction if cxcess
capacity is 10 or more and if at least 23 High Tech plants are under consideration. Why is this not a
neighbor under the previous cost structure? Under the cost structurc of Table I, if we had decided
to build 10 more Smokestack plants and 23 fewer High Tech plants, there would have been a
decrease in capacity of 1 unir. Construction costs would have decreased by $160, but marginal costs
would have increased by $161, for a net increase in cost of $§1. This choice would not have lead t a
decrease in cost even if there had been excess capacity in the original proposal.

Of course, this argument might suggest that 10 fewer Smokestack and 23 more High Tech
plants should have been built under the older cost regime, since this would result in a reduction in
cost. But this would be feasible only if cxcess capacity was at least 1 unit and the number of
contemplated Smokestack plants was 10 or more. If this had been so, the lack of optimality would
already have been detected by the earlier neighbor leading to 7 fewer Smokestack and 16 more
High Tech plants.
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among the best general purposc mixed integer programming algorithms cur-
rently available.®

For Studying Large Firms, Pack Up Your Derivatives
in Mothballs

But let us leave this example with only two discrete choices concerning
types of plants, and remember that in a large manufacturing enterprise there
will be many discrete choices involving a large menu of tasks and machinery,
each of which has its own capacity, set-up cost and marginal cost. The equip-
ment may be placed in a number of different locations on the shop floor; the
work may be passed from one piece of machinery to another with complex
requirements of scheduling and precedence, and the tasks may alter from one
Job lot to another as the product specification varies. Demands may be revised
capriciously and unexpectedly over time; output may be shipped to many
different regions. The enterprise may have a host of competitors or none at all.
In the absence of internal market prices, combinatorial arguments and quantity
tests are necessary to regulate the flow of activity inside the enterprise in an
optimal fashion.

My message boils down to a simple straightforward piece of advice; if
economists are to study economies of scale, and the division of labor in the
large firm, the first step is to take our trusty derivatives, pack them up carefully
in mothballs and put them away respectfully; they have served us well for many
a year. But derivatives are prices, and in the presence of indivisibilities in
production, prices simply don’t do the jobs that they were meant to do. They
do not detect optimality; they aren’t useful in comparative statics; and they tell
us very little about the organized complexity of the large firm. Neighborhood
systems are the discrete approximations to the marginal rates of substitution
revealed by prices. They are relatively easy to compute, seem to behave pretty
well under continuous changes in the technology, and will ultimately lead to
even better algorithms than we have now.

We know much more about the structure of neighborhood systems than I
have been able to describe here—not enough, perhaps, to derive a really
satisfactory theory of the internal organization of the large firm at the present
time. But my own intuition is that this is an important way to proceed. I am
confident that serious, ultimately useful insights about the large firm will
eventually be obtained by thinking very hard and long about indivisibilities in
production.

®The seminal paper, exhibiting the first polynomial algorithm when the number of variables is
fixed at an arbitrary level, is Lenstra (1983). Lenstra’s argument requires the approximation by
ellipsoids of many convex bodies in high dimensions. This approximation is avoided in Lovész and
Scarf (August 1992). An elementary exposition of the Lovasz and Scarf variami of Lenstra’s
algorithm may be found in Scarf (1990). Computational experience is discussed in Cook, Ruther-
ford, Scarf, and Shallcross (1993).
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