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THE FROBENIUS PROBLEM AND MAXIMAL LATTICE
FREE BODIES

HERBERT E. SCARF anpo DAVID F. SHALLCROSS

Let p = (p,,...,p,) be a vector of positive integers whose greatest common divisor 1s
unity. The Frobenius problem is to find the largest integer f* which cannot be written as a
nonnegative integral combination of the p,. In this note we relate the Frobenius problem to
the topic of maximal lattice free bodics and describe an algorithm for n = 3.

1. Introduction. Let p =(p,,...,p,) be a vector of positive integers whose
greatest common divisor is unity. The Frobenius problem is to find the largest integer
f* which cannot be written as a nonnegative integral combination of the p;. For
n = 2, it is well known that f* = p, p, — p, — p,. For n = 3, there is an algorithm of
Rédseth (1977) which finds the Frobenius number f* in polynomial time. Recently,
Kannan (1989) has produced an algorithm for the Frobenius problem which runs in
polynomial time for all fixed », but which is doubly exponential in n.

The question of whether a single linear equation X p;4; = f is solvable in nonnega-
tive integers is NP complete, and we cannot expect to resolve its solvability by means
of an algorithm which is polynomial in the number of variables as well as the bit size
of the data. For fixed n, Lenstra’s algorithm (1983) will execute in polynomial time
for any particular linear equation. The significance of the Frobenius problem is that it
is concerned with a family of linear equations, L ph; = f, as f varies over all positive
integers, rather than with a single equation itself. For any instance of the Frobenius
problem, the Frobenius number f* will typically be sufficiently large so that its
determination by an exhaustive search over all f less than some established upper
bound will not yield a polynomial algorithm.

In this note we shall relate the Frobenius problem to a different area under recent
investigation, that of maximal closed convex sets containing no interior lattice points.
Given a matrix 4, the body {x: Ax < b} is a maximal lattice free body if it contains no
lattice points in its interior and if any strictly larger body obtained by relaxing some of
the inequalities does contain an interior lattice point. A polytope is a maximal lattice
free body if it contains no lattice points in its interior and if each facet contains a
lattice point in its relative interior. We demonstrate that if we can maximize a linear
function over the set of b’s yielding maximal lattice free bodies for a matrix with n
rows and # — 1 columns, then we can solve the Frobenius problem with # variables.
One consequence is an algorithm for the three-variable problem—somewhat similar
to Rddseth’s algorithm—which runs in linear time in the bit size of the integers p;.
We also relate the Frobenius number to the covering radius of a simplex in R"~!, in
a somewhat different fashion than that established by Kannan.

Lovasz (1988) has conjectured that if # is fixed and A is integral, the set of b
yielding maximal lattice free bodics is the union of the set of lattice points in a
polynomial number of polyhedra—with a particular lattice for each polyhedron.
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Maximizing a linear function over the lattice points in each such polyhedron is a
standard integer program which can be solved in polynomial time for a fixed number
of variables. If the Lovdsz conjecture were correct, this would yield an alternative
polynomial algorithm for the Frobenius problem.

2. The relationship to maximal lattice free bodies. Let A4 be a matrix of size n
by n = 1, whose columns generate the (n — 1)-dimensional lattice of integers A
satisfying p - A = 0. In this case the bodies (x: Ax < b} will be simplices which are
nonempty if p + b > 0. Our main result is

THeorREM 1. f* = max{p - b|b is integral and {x: Ax < b} contains no lattice
points}.

Proor. To demonstrate Theorem 1, we observe that if b is an integer vector such
that {x: Ax < b} contains no lattice points, then f = p - b cannot be written as p -
with ~ nonnegative integers. For if this were possible then 0 = p - (b — k) so that
b — h is in the (n — 1)-dimensional lattice generated by the columns of 4. It follows
that b — h = A¢ for some integral ¢ and therefore the set {x: Ax < b} contains a
lattice point.

Conversely, if b is an integral vector such that {x: Ax < b} contains a latticec point
& then f=p-b=p-(b—AE), with b — A¢ a nonnegative integer vector. Since the
p; are relatively prime, every integer f can be written as p - b for some integral b. It
follows from these observations that f* is the largest value of p - b for those integral
b such that {x: Ax < b} is free of lattice points. o

Theorem 1 permits us to calculate the Frobenius number f* from a description of
the set of vectors b such that K, = {x: Ax < b} is a maximal lattice free body,
according to our previous definition. We simply remark that, for integral b, the
simplex {x: Ax < b} contains no lattice points in its interior if, and only if, {x:
Ax < b — ¢} contains no lattice points at all, where ¢ is the vector all of whose
components are unity. It follows that

f* = max{p - bl Ax < b is a maximal lattice free body} — X p,.

Aside from lattice translates of {x: Ax < b}, which do not change the value of p - b,
there are a finite number of maximal lattice free bodies associated with the matrix A.

Kannan shows that the calculation of the Frobenius number is equivalent to finding
the covering radius of a particular (# — 1)-dimensional simplex. The covering radius
of a body K in R"™! is the smallest p such that the lattice translates of pK cover
R"~ 1. Our discussion yields the following relation between the Frobenius number and
the covering radius of {x: Ax < b}.

THEOREM 2. Let the covering radius of {x: Ax < b} be p,, for any particular b with
p-b>0. Then f* =(p-b)p, — Lp,.

Proor. 1If K« is that maximal lattice free simplex {x: Ax < b*} which maximizes
p - b, then its covering radius is unity. For if x is not covered by any lattice translate
of K+, then K+ — x contains no lattice points and it can be expanded to a maximal
lattice free body strictly larger than K,.. On the other hand, a slight contraction of
K,» contains no lattice points, and, therefore, its lattice translates do not cover the
origin. The covering radius of K,« is therefore equal to unity. For any other b with
p - b >0, the simplex K, is similar to K,«; it can be brought to K,« by a suitable
translation and expansion by a factor p - b* /p - b. It follows that the covering radius
of Kyisp-b*/p-b=(f*+Lp)/(p-b). o
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3. Maximal lattice free bodies for n = 3. Relatively little is known about the set
of maximal lattice free bodies associated with a general matrix A4 with # rows and
n — 1 columns. It is not clear to us how to use the analysis given by Scarf (1985) for
the case n = 4 to solve the corresponding Frobenius problem. When n = 3, Scarf
(1981) has demonstrated—under the assumptions that the entries in each row of A
have an irrational ratio, that w4 = 0 for a strictly positive vector 7 and that no two
rows are proportional—that there are two maximal lattice free bodies of the form {x:
Ax < b}, up to a lattice translation, and that these bodies are easy to find. Specifically,
Scarf shows that there is a unimodular coordinate transformation so that the matrix
A has the sign pattern

+ —
-+

with the sum of the second and third rows strictly positive, and that the two maximal
lattice free bodies are given by

b' = (0,85 1,85, +a;,)
and
b? = (0,8, +a,,,4a;,).

But the assumption that the entries in each row of A4 have an irrational ratio is, of
course, not satisfied in our case, and the analysis to be presented becomes somewhat
more complex; in particular, some of the strict inequalities given above may become
weak inequalities and there may be only one maximal lattice free body, aside from
integral translations.

We shall describe an algorithm which yields a unimodular transformation of
coordinates such that the matrix 4 has the sign pattern

+ 1 A

N+

with the sum of the entries in the second row greater than or equal to zero, and the
sum in the third row strictly positive; and then demonstrate that this pattern is
sufficient to characterize the maximal lattice free triangles. (The symbol < appearing
in the matrix signifies that the corresponding entry is less than or equal to zero.)

We begin with a particular form for the matrix A. Let y be the greatest common
divisor of p, and p;, and write y = m,p, — m,p;, with m, and m; integers
satisfying 0 < m, < p,/y and 0 < m; < p,/v. Then the columns of

—y 0
A= m3p —P3/Y
—Mm, Py 12544

generate the lattice of integers satisfying p - & = 0. The matrix has the sign pattern
described above, but without any specific signs for the sums of the second and third
rows. We shall systematically add integral multiples of one of the columns of A4 to the
other column, retaining the signs of the entries in 4 and ultimately achieving the
desired signs for these row sums.
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The algorithm alternates between two steps:

1. adding the largest integral multiple of column 2 to column 1 so as to preserve
the sign pattern (—, +, <) in column 1, and

2. adding the largest integral multiple of column 1 to column 2 so as to preserve the

sign pattern (<, —, +) in column 2.
After a step of type 1, the sum of the two columns of A will have the sign pattern
(=, =, +), in which case we terminate, or (—, —, +) and we move to a step of type

2. After a step of type 2, the sum of the two columns of A4 will have the sign pattern
(—, =, +), in which case we terminate, or the pattern (—, +, <) and we continue
with a step of type 1. In both of these observations, we use the fact that entries in the
column sum cannot be all less than or equal to zero, since the pair of columns in a
matrix arising from repeated applications of steps 1 and 2 will generate the lattice of
integers satisfying p - A = 0. The algorithm clearly terminates in a number of steps
bounded above by the bit size of p.

Now let us argue that the sign pattern which has just been established is sufficient
to identify the maximal lattice free bodies associated with A-—in particular, that if we
let b'=(0,a,,, a5, +as,), and b*> =(0,a,, + a,,, as,), then the triangle
{x: Ax < b'} and its integral translates are always maximal lattice free bodies, the
triangle {x: Ax < b?} and its integral translates are maximal lattice free bodies when
the inequalitics a, , < 0, @, | + a,, > 0, and a; ; <0 are strict, and there are no
other maximal lattice free bodies. In the cases in which {x: Ax < b?} is not a maximal
lattice free body pb? < pb'. Thus f* = max{pb', pb?} — p, — 0, — p5.

First we show that any maximal lattice free body {x: Ax < b} has an integral
translate such that either b < b' or b < b% This immediately implies that only
{x: Ax < b'} and {x: Ax < b?} and their integral translates can be maximal lattice
free bodies. Given a particular maximal lattice free body, translate it so that the
origin is in the interior of the facet given by the constraint a;x < #,, and so that no
other integer point on the relative interior of that same facet has a positive second
coordinate. Then b, =0, b, > 0, and b5 > (. Only the constraint a,x < b, can
exclude the point (1,0) from the interior, so that b, < a, ;. Only the constraint
asx < by can exclude (0, 1) from both the intcrior of the triangle and the relative
interior of the facet a;x = b, so that b; < a; ,. Either of the last two constraints can
exclude (1, 1), so we must have either b, < a,, +a,, or by < a;, + a;,. Depend-
ing on this choice, cither b < b' or b < b2 '
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Second, we show that {x: Ax < b'} is a maximal lattice free body. All points in Z?
lie either in the set {x: x, <0, x, < 0}, which satisfy a,x > by, the set {x: x, > 1,
x, — x, > 1}, which satisfy a,x > b}, or the set {x: x, —x, <0, x, > 1}, which
satisfy a,x > b3. Thus, the triangle contains no interior lattice points. The inequali-
ties

a , <0, 0<a,;, 0<a;,+a;,,
a  +a ,<0, a,,<0, 0 < a,,,

guarantee that (0,0), (1, 0), and (1, 1) are each in the relative interior of one of the
three facets of the triangle. Thus, b' gives a maximal lattice free body.

Finally, we show that {x: Ax < b?} is a maximal lattice free body if the inequalities
a;,<0,a,, +a,,>0,and a;, <0 are strict, but is not a maximal lattice free
body if any of these inequalities are satisfied with equality. The points in Z? lie either
in the set {x: x, <0, % < < 0}, which satisfy a, > b7, the set {x: x; > 1, x, — x, > 0},
which satisfy a,x > b3, or the set {x: x, — X3 < —1, x, > 1}, which satisfy a; > b2
Thus the triangle contains no lattice points in its interior. The inequalities

a ., <0, 0<a,, 0<a,,+a,,,
a g +a ,<0 az,;<0, 0 <a;,,

guarantee that the points (0,0), (1, 1), and (0, 1) lie on the boundary of the triangle
given by b2. If all of these inequalities are strict, then these points lie in the relative
interiors of their respective facets of the triangle. Otherwise, one of these points will
lie on a corner of the triangle, and there will be a facet without integral points in its
relative interior preventing the triangle from being a maximal lattice free body. A
maximal lattice frec body containing this triangle must be an integral translate of
{x: Ax < b'}, so that pb? < pb'.
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