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Abstract

In this paper I discuss various properties of the simplicial complex of maximal lattice free
bodies associated with a matrix A. If the matrix satisfies some mild conditions, and is generic,
the edges of the complex form the minimal test set for the family of integer programs obtained
by selecting a particular row of A as the objective function, and wvsing the remaining rows to
impose constraints on the integer variables. © 1997 The Mathematical Programming Society, Inc.
Published by FElsevier Science B.V.
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1. Introduction

Let A = [a;] be a matrix with m+ 1 rows (i = 0,...,m) and n columns (j =
1,...,n). In this talk [ will discuss rest sets for the family of integer programs

n
max Z agjh;,  subject to
=l

H
Zaijhj2bn i=1,...,m, heZ", (1)

=l
obtained by fixing the objective function and the constraints a;, i = 0, .. ., m and selecting

arbitrary values of the right-hand side b;.

In order to introduce the basic ideas of test sets it may be useful to step back from the
lattice structure of integer programming and replace the set of vectors {y = Ah | h & Z"}
with an arbitrary finite set of vectors ¥ = {y/ | j =0,...,k} in R"*! [8]. The members
of ¥ are assumed to satisfy the following:

0023-5610/97/%$17.00 © 1997 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.
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Fig. 1. The set Y.

Non-Degeneracy Assumption. No two members of ¥ have the same ith coordinate for
any i =0,...,m.

Let us consider the collection of discrete programming problems of the form

max yg  subject to

vi =z by for i=1,...,m and y€¥Y (2)

A restr set for y* €Y is a subset N{y*) of ¥ with the property that if y* satisfies the
constraints y} = b;, for i = 1,...,m but is not optimal, then one of the members of
N(y*) is feasible and has a larger Oth coordinate. A test set provides a proof that a
feasible solution is not optimal.

Test sets are based on a simplicial complex C(Y) of dimension m which is defined
in a canonical fashion for the set Y. We begin the construction of C(Y) by adding a
negative orthant N to each of the points y/ € ¥ obtaining the set ¥ = Uj( v/ + N) as in
Fig. 1. The upper boundary of ¥ is piece-wise linear, with cach linear piece parallel to
one of the coordinate hyperplanes.

Definition 1. The set {y*,y",. ..,y } is an m-dimensional simplex of C(Y) if there
is no point y € ¥ with y > min[y®,y/',...,y™] in each coordinate. More generally,
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Fig. 2. The simplicial complex.

a set {yo,y/t, ...y} with [ € m is an l-dimensional simplex of C(Y) if there is no
point y € ¥ with y > min[y®,y/, .. y/] in each coordinate.

An m-simplex of C(Y) is obtained by translating the positive orthant of R**! parallel
to itself until it lies fully above the set ¥, i.e., looking at the set {y | y; > b;} for
some b. We then translate the positive orthant downwards until no further translation is
possible without passing through one of the points y € ¥. At such a position each of
the m + 1 coordinate hyperplanes of the translated orthant will contain an element of Y.
Given the non-degeneracy assumption, no coordinate hyperplane will contain more than
a single member of ¥. The translation will therefore be stopped by m + 1 points which
define a simplex in C(¥). Fig. 2 displays the 6 simplices of dimension 2 arising from
the 7 points in Fig. 1.

There are clearly some translations of the positive orthant which can be lowered
indefinitely without passing through a vector in Y. If the orthant sits above the horizontal
line between y' and y?, then it can be translated along that line by lowering its 2nd
coordinate, without penetrating the upper surface of ¥. The pair {y',y*}, and other
pairs as well, form boundary simplices of C{Y¥). The boundary simplices can also be
captured by Definition 1 if the set ¥ is augmented by the introduction of m + 1 “ideal”
vectors £°, £, ..., &M with

L=oofori#j and & =—o0.
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Fig. 3. An example in which K(Y) has no interior vertices.

If Definition 1 is applied to this augmented set, we see that the triples {£2, y!, y*} and
{£2, ¥, ¥} are both simplices in C(Y) and together they constitute a face, say F of the
simplicial complex. More generally, if {i|,...,i} is a proper subset of {0,1,...,m},
then the m — ¢ dimensional simplices in the boundary face F; _ ; are those collections
of m — ¢+ 1 points in ¥ which satisfy Definition 1 in conjunction with the ideal vectors
£ ,§5'. We say that a point y is on the boundary of C(Y) if it is contained in a
simplex sitting in a boundary face. If y is not on the boundary of C(Y) it is said to be
interior to the complex. As Fig. 3 illustrates, there are examples in which every point
in ¥ is on the boundary of C(Y).

Definition 2. Iet v* be in Y. Then N{(y"), the set of neighbors of y*, consists of those
y € ¥ such that ¥y and y* arc members of a common simplex in C(Y}.

Theorem 3. A feasible solution y* € Y to Problem (2) is optimal if none of its
neighbors is feasible and vields a higher value for the Oth coordinate.

Theorem 3 is quite ancient; I have known about it for more than twenty years. An
equally venerable result is the following topological characterization of the complex
c{Y) [9].

Theorem 4. The complex C(Y) is a manifold: every interior m — | dimensional face
is contained in two m-simplices, and every boundary m — | face in a single m-simplex.
Moreover, if C(Y) contains an interior point, it is topologically an m-dimensional
simplex.
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2. Take Y to be a [attice

Let us return to integer programming by taking ¥ to be the lattice {y | y = Ah, ki €
Z"}. The additional structure afforded by the lattice permits a much deeper analysis of
the simplicial complex, which we denote by K(A) to emphasize its dependance on the
matrix A. But I should remark that it is difficult to calculate this simplicial complex,
and the set of neighbors, N(A) — much more difficult than solving a single instance
of the integer program (1). In my opinion, test sets are useful if one intends to solve,
or analyze a large family of integer programs based on the same matrix, with varying
right-hand sides, as in the Frobenius problem [7].

Some conditions have to be imposed on the matrix A in order for the complex to be
well-behaved [2].

The Main Assumption, 3 > () with wA = 0. Moreover, if = 2 0 (but not =0) and
A =0, then 7; > 0 for at least n 4+ 1 coordinates.

The non-degeneracy assumption asserts that no two vectors ¥y = Ah have the same
ith coordinate for any i. This is a particularly unpleasant assumption which rules out
the possibility that A is a matrix of integers. For expository purposes, however, I shall
retain this assumption for the moment, and postpone until later the question of how it
can be relaxed.

We begin by asking when a collection of m + 1 vectors

VO = ARD, L, ¥ = AR

is a simplex in the simplicial complex.

As before, we append a negative orthant to each y = Ah, and call the resulting set Y.
We then take the positive orthant P and translate it to b-- P so that it no longer intersects
¥. Such a translation can be described in R", the space of variables (see Fig. 4). The
statement that b + P does not intersect ¥ is identical with the statement that

the body P, = {x | Ax > b} contains no lattice points.

When we lower the translated positive orthant, the hyperplanes defining the body P,
are relaxed and the body is enlarged. If we reach a position in which no further relaxation
is possible without introducing a lattice point, then each of the m + 1 hyperplanes
will contain a lattice point. According to the non-degeneracy assumption, the ith such
hyperplane will contain precisely one lattice point, say 4. This collection of m+1 lattice
points defines a simplex in the complex K(A). It is useful to introduce the following
notation.

Notation. For 4%, k!, ... k¥ in Z% let (KO, h',. .., K*) be the smallest body of the form
{x | Ax = b} containing these lattice points. For this body, & is the coordinatewise
minimum of AR, AR', ..., AR*.
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y = AX

No images of iattice
points in ly > bl

b=G& by

No iaftice points
in x| Ax> b}

Fig. 4. The view in R™.

Definition 1 can then be translated into R” to define the simplices in K(A):

Revised definition. The set of lattice points {A%,...,k=} is an m-simplex in C(A)
if the body {h",..., k™) contains no lattice points other than {4%,...,A"}. More
generally, {#",...,h"}, with £ < m is an f-simplex in C(A) if the body {h*,... A")
contains no lattice points other than {A®, ... A"}

There will now be an infinite number of simplices in K(A); if {y%,y",.. ..y} is
one such simplex, then so is {y,y/t,..., ¥/} + Ah, for any lattice point h. It follows
that y is a neighbor of v* if, and only if, y — y* is a neighbor of 0; the test set is fully
described by the set of neighbors of the origin, which we denote by N(A). The lattice
point % is a neighbor of the origin if the body {0, ) contains no lattice points other
than O and A.

Consequences of the Main Assumption. Tt can be shown that the Main Assumption
implies that N{A) is finite, non-empty and symmetric. In addition, one can obtain a
bound on the size of the neighbors of the origin. Specifically, if the rows of A are
normalized so as to have length 1, and if ¢ is the smallest non-vanishing # by n minor
of A in absolute value, then

&) < #2/d for any neighbor £.
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The set of neighbors N(A) is a test set for the family of integer programs (1) in the
sense that a lattice point gz satisfying the inequalities g;z = b; for i = 1,...,m will be
an optimal solution to (1) if z + h is infeasible for every neighbor & € N(A), with
aph > 0. Under the non-degeneracy assumption, N(A) is a minimal test set in the sense
that if a single neighbor A with agh > 0 is discarded from N(A) then a right-hand side
b and a feasible, but non-optimal solution z can be found, whose lack of optimality
cannot be detected by the smaller test set.

3. Some examples

Let us consider the case in which the matrix A has 3 rows and 2 columns. A simplex
in K(A) will be given by 3 lattice points, say, {4% A',4?}, such that the body

{x}Ax = b}  with b =min[ah’ ah', ah®]

contains no other lattice points. It follows that the triangle with vertices 1, R, R?
contains no other lattice points, and must therefore have area 1/2. By a lattice translation,
we can bring A° to the origin, and then find a unimodular transformation so that

U0, ', k) = ((0,0), (1,0), (1,1)).

If A is multiplied on the right by U~', the lattice points defining the simplex for the
matrix AU~ will be given by ((0,0),(1,0),(1,1)).

It is easy to argue [10] that, aside from lattice translates, the simplicial complex
associated with a matrix with 3 rows and 2 columns has precisely 2 distinct simplices
{see Fig. 5), and by a unimodular transformation they can be brought into the form:

((0,0),(1,0), (1, 1))
((0,0), (0, 1), (1,1)).

We see that a matrix of this size has 6 neighbors. A family of examples in which
the number of neighbors is bounded by a function of the dimension alone is given by
matrices with n + T rows, # columns, and the following sign pattern

— + v —

and with the additional property that Zj ai; > 0 for i=1,...,m. In this case it can be
shown that N(A) consists of the 2" — 1 non-zero lattice points on the unit cube, and
their negatives [12].

But generally, the cardinality of N(A) depends on the entries of A and not just on its
dimensions, For example, if A has 4 rows and 2 columns, the simplices in K(A) will
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Fig. 5. The two simplices for a matrix of size 3 by 2.

consist of 4 lattice points, say {0, ', k%, k*}, such that the body {0, h*, %, ) contains
no additional lattice points. It follows that these 4 lattice points must be the vertices of
a parallelogram of unit area. But in this case, by selecting A properly, the simplicial
complex can contain arbitrarily many parallclograms of unit area which are not lattice
translates of each other, and, therefore, arbitrarily many neighbors.

In spite of its large cardinality, the collection of simplices associated with a matrix of
size 4 by 2 has a simple structure. If we adopt the notation that ' is above the diagonal
[0, 4*] and A? below this diagonal, then the parallelograms representing 3-simplices in
K(A) can be ordered linearly so that the successor of a parallelogram is obtained by
reflecting either the lattice point above the main diagonal through h* or the lattice point
below the diagonal through 4* (see Fig. 6). The linear set of parallelograms is given
by a sequence of symbols a,a,...,a,b,b,...,b,a... where a stands for reflecting the
lattice point above the diagonal, and & for reflecting the point below. In the case in which
A is an integral matrix, the number of alternations between a and & - and conversely —
in the sequence is bounded by a linear function of the bit-size of A. For a non-integral
matrix, thc bound is linear in the logarithm of the condition number. While there are
many simplices in K(A) they have a polynomial description.

The simplicial complex associated with a matrix of size 4 by 3 has been studied in
great detail [ 11]. Each simplex is described by 4 lattice points in 3 space, {0, A!, k%, i3},
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Fig. 6. The sequence of parallelograms.

such that the body (0, h', h*, h*) contains no additional lattice points. The convex hull
of the 4 points will contain no additional lattice points, but in distinction to the case
of 2 dimensions, such a tetrahedron may have an arbitrarily high volume. Moreover,
the number of tetrahedra that are not lattice translates of each other, and therefore the
number of neighbors, can be made arbitrarily large by a proper selection of the matrix
A. Nevertheless there is a surprising structure to the collection of simplices.

A special structure when A has size 4 by 3. There exists a non-zero, integral, linear
function L(x) such that |L{A}| < 1 for every neighbor & of the origin.

A great number of computational examples strongly suggest that, in this case, the
cones C;(A) have either 3 or 4 generators. If there are 3 generators, they have a deter-
minant of +1. If there are 4 generators, they form the vertices of a planar parallelogram
of unit area. A partial proof of this fact appears in the previously cited paper by Bérdny
and Scarf.

In order to illustrate the complexity that arises in this case, I include in Fig. 7 the
collection of non-translation equivalent tetrahedra arising from a particular matrix. They
form a 3-Torus.
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Fig. 7. The collection of tetrahedra,

4, Varying the matrix

As T shall indicate, the collection of matrices A satisfying the Main Assumption can
be partitioned into a set of closed convex cones with non-empty interiors, such that any
two matrices in the same cone have precisely the same simplicial complex, and, as a
consequence, the same set of neighbors. The result implies that degeneracy does not
influence the features of the simplicial complex unless the matrix lies on the boundary
of one of these cones.

The discussion requires a definition of the simplicial complex for degenerate matrices
satisfying the Main Assumption. If A is degencrate the difficulty in deciding whether 7
is a neighbor is that (0, k), the smallest body of the form {x | Ax > b} containing 0
and A, may have no lattice points in its interior, but may contain other lattice points
on its boundary. It may happen that {0, &) and {0, k) are identical for two distinct lattice
points h and k, and it is unclear which of the pair is to be designated as a neighbor.

For the purpose of the present discussion, let us take the most ample definition of
neighbors: i.e., the lattice point & will be a neighbor of A if (0, A} contains no lattice
points in its inferior. And more generally, the collection of lattice points {#%, ..., A"}
will be a face of K(A) if there are no lattice points interior to {A%,..., k"), With this
definition, N(A) will be non-empty, finite and symmetric about the origin.

Now let us introduce the concept of a generic matrix. Generic matrices will be
precisely those matrices interior to one of the cones referred to above,

Definition 5. The matrix A is defined to be generic if g, + 0 for all i and all
he N(A).
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Of course a non-degenerate matrix will be generic, since genericity requires a;# + 0
only for the neighbors of A and not for all lattice points. It is easy to see that if A is
generic and ki € N(A), then the body (0, k) contains no lattice points in its interior or
on its boundary. Moreover, if A is generic, K(A) is a manifold.

Theorem 6. [Let A be a generic matrix satisfying the Main Assumption and let B be a
matrix of the same size as A. Assume that

sign(bh) = sign(a:h) Jorall i and all h € N(A).

Then B is generic, satisfies the Main Assumption and has precisely the same simplicial
complex and set of neighbors as A.

We see that a generic matrix A is interior to the polyhedral cone C(A) consisting
of those matrices B such that sign(b;h) = sign(a;h} for all { and all 1 € N{A). The
cone is the product of m + 1 cones C;(A), one for each row of A. The cone for row
iis Ci(A) = {b; | &ih > 0 for all k € N(A) with g;h > 0}, Tt is the dual to the
cone generated by the set of neighbors with a;h > 0. The facets of C;(A) have normals
given by the extremne rays of the cone generated by the set of neighbors with a;h > Q.
(Computational experience suggests that the number of extreme rays is small; perhaps
bounded by a function of n.)

It is easy to describe the changes in the set of neighbors that arise from a passage
through a facet of C;(A). This information can be used to construct an algorithm for
calculating the sei of neighbors N{A). Take a matrix B whose neighbors are known,
and examine the linear set of matrices A(t) = (1 — #) B + tA. It is easy to find the first
value of ¢ such that the matrix A(#) passes through a facet of C;(B) for some [ into
a sccond cone. We then calculate the new collection of neighbors on the other side of
this facet. Knowing the facets of the second cone, we can determine the value of the
parameter ¢ for the transition to the next cone. We continue until the matrix A, whose
neighbors we wish to obtain, is reached. Of course, some care is required in order to
guarantee that the sequence does not have a limit point at some value of ¢ less than 1.

5. The global structure of K(A)

1t was mentioned in Section 1 that the simplicial complex K(Y), based on a finite set
of points ¥ in R™*!, is homeomorphic to the m-simplex. The corresponding result when
Y is a lattice is that K(A) is homeomorphic to R™ [3]. I shall indicate the outline of
the argument in the special case in whichm=n [1].

Let 7r be the unique (up to scale) positive vector with 7A = 0. We define a mapping
from R* to R"! as follows:

yo = exp(mptapx), y1=exp{mitaix), ..., ¥y =eXp(mntdux)
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for ¢ a large positive parameter. It is easy to see that R” is mapped onto the hyperboloid
sheet

"
H)’r=1-
i=1

Let V be the image of Z" under the mapping, and H, the boundary of the convex
hull of ¥ In order to show that the complex K{A) is homeomorphic to H (itself
homeomorphic to R") one argues that, for large f, the set {A®,..., A"} is a simplex in
K(A), if and only if its images are the vertices of an m-dimensional face of H. The
details of the argument may be found in the papers cited above.

6. The relationship to Groebner Bases

One of the most exciting recent developments in the theory of test sets is the recog-
nition, by Thomas and others [4,15,14], of a close relationship between test sets and
Groebner Bases for certain polynomial ideals. T am far from expert in this area, but |
would like to take this opportunity to provide a brief summary of the basic theme.

We arc required to restrict ourselves to integral matrices in the discussion of Groebner
Bases. The problem of degeneracy will arise and be treated by introducing a complete
ordering on the lattice points y = Ah, for k € Z". It will also be useful if, in this section,
we lake our inequalities in the form Ak < b. Then (0, k}, the smallest body of the form
{x | Ax < b} containing 0 and the lattice point A, will have b; = max[0, a;h].

For each y = Ak, with h € Z", let yt = max[0,y] and y~ = —min[0, y]. We
associate with & the binomial in the variables xp, x1,...,Xn
m , mn _
f(h;xﬂsxlv"-$xm)=Hx?l‘ _Hxl)l .
i=0 i=0
Let f[xg,X1,...,X»] be the ideal of polynomials with rational coefficients in the
variables xg, x1,..., Xy, generated by all of these binomials, as h ranges over Z*. We

then take a specific complete ordering on the integers in R™*!, say the lexicographic
ordering, and say that the lattice point k is lex positive if y = Ah is lexicographically

positive. The feading term LT( f(h,x)) is given by the monomial T[], x;.‘"" if & is lex
positive, and [T, xi"'— if & is lex negative,
The monomial m;(x) = []%;x%is divisible by the monomial my(x) = [Tr x if

a; = b; for all i. If k is lex positive, then the leading term of f(h;xg,x1,...,xy)
has the exponent max{0,q;k]. If k is also lex positive, then the leading term of
flhixg,x1,...,.x5) will be divisible by the leading term of f(k;xg, x1,..., %) if
and only if

max [0, a;h] > max[0,aq;k] for all £, or {0, k) 2 (0, k).
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Division of the leading terms of the binomials in / is identical with inclusion of the
corresponding bodies (0, ).

Definition 7. A Groebner Basis for the binomial ideal I is a finite set of binomials
£ FA .., %, associated with the lex positive lattice points A!, 4%, ..., A%, such that
the leading term of every binomial in the ideal is divisible by the leading term of one
of the f*. The Groebner Basis is minimal if no proper subset is also a Groebner Basis.

Consider the partial ordering, say >4, on lex positive lattice points h given by
h=ak if and only if (0,h) 2 (0, ).

h is a least element under this partial ordering if there is no lex positive & with & <4 h.
The sect of least elements may be partitioned into disjoint sets Ly, ..., L; such that lattice
points in the same L, are equivalent under >4 (i.e., they have the same bodies {0, k))
and lattice points in different L; are incomparable. A minimal Groebner Basis is given
by a selection of one lattice point from each of these sets. The unique reduced Groebner
Basis selects from each L; the lexicographically largest lattice point. (It is this point
where degeneracy is resolved.)

There is a slight difference between neighbors and members of a minimal Groebner
Basis. The set (0, &) for an element A of a minimal basis contains no lex positive lattice
points in its interior, But it may contain lex negative lattice points and not qualify as a
neighbor. This difference is relatively minor in the discussion of test sets, but it offers a
substantial problem for the construction of the simplicial complex K{A)} whose edges
are the neighbors N(A). I see no way to construct a useful simplicial complex all of
whose edges are the elements in a reduced Groebner Basis.

The elements of the reduced Groebner Basis may be calculated by the Buchberger
algorithm (see, for example, [5]). The algorithm can be translated directly into the
language of our polyhedra {x | Ax < b}. It is an interesting question whether some
variant of the Buchberger algorithm can be adapted to calculate neighbors for non-
integral, generic matrices.

The Graver test was introduced in 1975 [6]. (Also see [13].) In our formulation the
Graver test set consists of the set of lattice points 1 € Z" which cannot be written as
the sum of two lattice points &' and 4% such that sign(a;#/) = sign(a;h) for all i and
both j. It is easy to see that the Graver test contains all least elements under the partial
ordering >4, for any term order.
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