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MATRICES WITH IDENTICAL SETS OF NEIGHBORS

IMRE BARANY anp HERBERT SCARF

Given a generic m by n matrix A, a lattice point & in Z" is a neighbor of the origin if the
body {x:Ax = b}, withh; = max{0,&;r},i=1,...,m, contains no latticc point other than 0
and k. The set of neighbors, N(A), is finite and 0-symimetric, We show that if A’ is another matrix
of the same size with the property that sign @,k = sign g/ h for every i and every A € N(A), then
A’ has precisely the same set of neighbors as A. The collection of such matrices is a polyhedral
cone, described by a finite set of linear inequalities, each such inequality corresponding to a
generator of one of the cones C; = pos{h € N(A) : a;h < 0}. Computational experience shows
that C; has “‘few’’ generators. We demonstrate this in the first nontrivial case n = 3, m = 4.

1. Introduction. Test sets for integer programming were introduced by Graver
(1975) and Scarf (1986). They provide a way of telling if a feasible solution z € £ is
optimal or not by checking, for each # in the test set, whether z + A is feasible and yields
an improved value of the objective function.

The test set of Scarf, the set of neighbors of the origin, is associated with a matrix A
of size m by n, and is applied to the class of problems of the form

min &z
(1.1)
subjectto az=hb{i=2,....m), z€2"

in which a single row of A becomes the objective, and the remaining rows are used, with
arbitrary b, , to form the constraints.
For each lattice point # € Z*, the smallest body of the form

(1.2) K, = {xER":Ax = b}

containing 0 and £ is given by b, = max {0,¢;h}, fori = 1,2,...,m. We designate this
body by {0, ). The lattice point z € Z" (h # Q) is defined to be a neighbor of the origin
it {0, h) contains no lattice points in its interior. The collection of such neighbors is
denoted by N(A). Note that in this definition the special role of @; as the objective function
has disappeared.

In the next section we introduce various conditions on A to ensure that N(A) is a test
set for the integer programs (1.1), or that N(A) is nonempty and finite. Finiteness of
N{A) is proved in guantitative form (Theorem 3). Qur main result (Theorem 1) char-
acterizes matrices with identical sets of neighbors (and identical sign-pattern of Ak for
each neighbour). It turns out that this collection of matrices C(A) is a polyhedral set
determined by the cones

{(1.3) C, = pos{h € N(A):ag;h <0}
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where A is u generic (ci. §2) malrix. C(A) has a product structure since the rows of the
matrices in it vary in the interior of €, the polar of C;, independently of each other.

Computational experience and some theoretical results (cf. Remark in §2) indicate that
C; has “'lew’” gencrators. We demonstrate this { Theorem 2) in the first nontrivial casc n
= 3, m = 4. We also show that the generators form ihe Hilbert basis of the cone C;. The
proof is based on properties of the neighbors and of 3-dimensional lattices.

2. Resuifs. We assume throughout that the rank of A is n. Notice first that N(4) is
syminetric about the origin. This follows from {0, k) — h = {0, —h).

Next, we need o formulate various conditions on the matrix A. A convenient way to
do so 13 10 consider the dual feasible region

DA)={yeR":yA =0,y =0}.
The first condition we need is
{Al) Thereis v € D(A) with v, > 0 (Vi).

This is equivalent 10 saying that K, is bounded for every b, or that O € int conv {a,, . . .,
@y, } . We will show (Cluim 1 in §3) that (A1) implies that N(A ) is nonempty and, further,
that it is a test set for the integer programs (1.1).

Conditicn { A1} implies that there exists a nonzero vector in D{A) withn + 1 or fewer
positive components. Our next condition, » weak form of nondegeneracy of 4, says

(AZ) cvery nonzero v € D(A) has at least 7 + 1 posilive components,

which is the same as saying that 0 is not in the convex hull of any 7 rows of A. We will
show in Theorem 3 that, under (A1) and ( A2), N(A) is finite in a quantitative form.

Finiteness of N(A) was proved in White { 1983 ) and in Bdrdny, ct al. ( 1995 ) under the
stronger condition “*all # by » minors of A are nonsingular.”

In gencral, the sct of neighbors need not form a minimal test set for the integer programs
(1.1); a proper subset of N(A4) may also be a test set. The reason for this ambiguity is
that we may have two bodies (0, 2) and (0, "), with distinct lattice points # and A",
which are identical, free of interior lattice points, but with #' on the boundary of the first
body and / on the boundary of the sccond. In this case, removal of either one of these
points & or 2’ results in a smaller test set. As we shall see, this is more a problem of
exposition than substance, aside from a lower dimensiona) set of matrices.

The matrix A is called generic if it satisfies conditions (A1) and {A2) and

(A3} af+ Oforevery i and every i € N(A).
For a generic matrix A. N(A) is the unique minimal test set for ( 1.1). Notice that generic
malrices form a dense set in the collection of matrices satisfying (A1) and (A2): any
such matrix with ulgebraically independent entries is antomatically generic.

Now let 4 be a generic matrix and C(A) the collection of matrices A4 ° satisfying, for
every [ and every 1 € N(A)

(2.1) sign a@! b = sign ah.

As we shall sce the closure of C(A) is a polyhedral cone. This follows from
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THeEOREM 1. Let A be @ generic matrix and A' € C(A). Then A" is also generic and
has precisely the same set of neighbors as A.
This, of course, shows that C(A) = C(A’). Theorem 1 says, in other words, that elements
of C(A) are characterized by conditions (cf. (2.1))

alcintCF, i=1,...,m

where € is the polar of the cone C; defined in (1.3). Thus C(A) has a product structure:
any choice ¢/ € int CF (i =1, ..., m, the a/ are chosen independently!) gives rise to
a generic matrix A" = [af, ..., a,]" € C(4).

Write now G, for the set of generators of the cone C;. Each G, is finite and

CH=1{x:8x=0,g€G)

is a (minimal) polyhedral description of C;* and of C(A). The simpler the structure of
the G,, the simpler this polyhedral description becomes.

We have investigated the structure of N(A) on several examples, mainly in dimension
3, 4, and 5. The computational experiments provided beautiful pictures and insightful
examples, and showed structural properties of the neighbors. The experiments led to the
conjecture that the cones C, have **few’” generators. We prove this in the first nentrivial
case.

THEOREM 2. IfA is a generic 4 by 3 matrix, then the cone C; has either three or four
generators and they form the Hilbert basis of C;.

We recall from Schrijver (1986) that H C Z" is a Hilbert basis of the pointed polyhedral
cone C C R*if every z € C M Z" is a nonnegative integral combination of some elements
of H and H is minimal (1o containment) with respect 1o this property. It is known that
the Hilbert basis exists and is unique.

Before proceeding to the proofs some remarks are in place here.

REMARK 1. Most frequently, test sets are considered when the corresponding matrix
A is integral (Lovisz 1989, Sturmfels and Thomas 1994, and others). These matrices
often lie on the boundary of the decomposition { given by Theorem 1) of the set of matrices
satisfying (Al). For matrices on the boundary of a cell C the set of neighbors need not
be a minimal test set.

REMARK 2. In the 4 by 3 case the number of generators of C, G|, is bounded
independently of A (according (o Theorem 2. There is a series of examples (withn =3
and m = 5) showing |G, | is not bounded by a function of » and m alone. However, as
A. Barvinok {1995) pointed out, a deep result of R. Kannan (1990) shows that 1G; ) is
polynomial in the size of A. We mention further that, in the 4 by 3 case, in every
computational example the generators formed a parallelogram whenever there were four
of them.

REMARK 3. The cones C; play a role in another question as well, Sturmfels and Tho-
mas { 1994} considered integer programs of the form min{cx : Ax < b, x € Z"} with ¢
and b varying while A is a fixed national (or integral) matrix. They show that there is a
fan, i.e., a subdivision of R* into cones K7, . . ., K, with nice intersection properties, such
that for every b € R™ and every ¢;, ¢} € int K, the integer programs

min{c;x: Ax <= b, x€Z"} and

min{c/x: Ax=b,xEZ"}
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have the same solution. It can be shown (using the results ol this paper) that for any
particular ¢, € int K, K; is the polar of pos{/ € N(4,) : c;h < 0} where A, = {e;yuy,
R

RiMaRk 4. There is yet another case where the cones C; come up. Given a genernc
m X nmatrix A and 5 € R™ the set K, of the form (1.3} is a maximal lattice [free convex
hody if Z" Vint K, = dbut 7" Vint K = ¢ for cvery convex body K property containing
K,. Lvery facet of K, contains exactly one lattice point in its relative interior. Associating
this set of lattice points with the maximal lattice free convex body K, gives rise 1o a
simplicial complex K(A} depending only on A (see Bariny et al. (1994) and Baérdny et
al. {1995} for the precise definition). The proof of Theorem 1 shows that for A’ € C(Ay,
the simplicial complexes K(AY and K{A') coincide.

3. N(A)is nonempty and finite. We show first that, under condition (ALY, N(A)is
nonempty in the following stronger forn.

Cramt L If A satisfies (A1), then every set Ky with 0 € K, and 'Z" N K, =2
contuins « neighbor of A,

ProoF. Suppose 0, 2 € 7" N K, = = (. We construct a (finite) sequence z = zy, 7,,

cxsothaty €m0, o3, (0 ) S0, )i =1, ..., J)and 7, € N(A).

Assumc z; has been constructed, If 27 (M int{(). z;) = &, set I = and stop. Otherwise
pick any o4, € Z" N int{(), z;5 and continue. The algorithm stops since, in view of (A1),
K, is bounded and . z.. . ... 7 all belong to (0. 5} C K, 1z

The cluim implics that N(4) # ¢ and, Turther, that N(A) is a test sct for the integer
programs (1.1). Now we turn 1o the proof of finiteness of N¢A ),

As N(A) does not change if «; is multiplied by a positive number we may and do
assume that |la,|| = | for all ;. Define

(3.1) d = min {!del B| : Bix a nonsingular # X n minor of A } .

Tueorim 3. I A sadsfies (A1) and (A2), then for every i € N(A)

it

. | = — .
(32) Il =%

Proor.  We are indebted to Martin Henk for a remark simplifying our original proof
of this theorem.

Fix It & N(A), (0. &) is bounded (by (Al)) and int{0, &) =+ ¢ because of (A2),
Consider the ball 8 inscribed in (0, 2} that has the largest radius p, let its center be c.

Z" N B = ¢ implies, via a simple induction. that po= 31\/1;.

Write / for the set of indices i ¢ {1, ..., m} for which the hyperplane {x : a;x = b, }
1s tangent to B. (Here b, = max{0. a4k} .} Fori € I the equation of this hyperplane can
be written as

(3.3) alx-¢)~ p

The corresponding inequalities represent the *‘active’’ constraints on the largest in-
scribed bull. The simple necessary condition for the maximality of ¢ is 0 € conv {a 1
& I}. Then condition (A2) implics O = im conv{a, : I € I} which shows, in tumn, that
the polyhedron
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P={x:aqx=b,icl}

is bounded (and, further, that B is unique but we won't need this). Clearly (0, k) C P.

A vertex v, of P, is the solution of equations of the form (3.3). Write M for the matrix
whose rows are the @, of these n equations. Further, let M- be the matrix obtained from
M by replacing its jth column by the all-one column. We get for the jth component of v
—-c

det M/
det M’

(v—c);=p

The denominator here is nonzero since otherwise the corresponding equations do not
determine a vertex. Expanding the numerator along the all-one column and using |la;]|
= lweget [(v— c)| = pn/d. By (3.1)

v — cll = pnVnid = n*124.

But diam(0, &) = diam P = n?/d because the diameter of P occurs between two of its
vertices. ]

4. Proof of Theorem 1. 'We start the argument by taking A’ to be identical with A
in rows 2, ..., m and differing only in row 1. By assumption sign afh = sign a,k for
every A € N(A).

CLamm 2. N(A') C N(A).

Proor. Leth' € N(A'). There is no loss in generality in assuming that a/h’ = 0
since if this were not true we could select the neighbor —’ € N(A').

Assume k' is not a neighbor of A. Then by Claim 1 of the previous section there is an
h & N(A) with h € int{0, h’},, so that

ah < max{0,a;h’} =0,
ah < max {0, a;h"} = max{0,afh"'}, i=2,...,m.

We show now that 4 € int{0, 2'),. contradicting the assumption that £’ € N{A").

We certainly have ! h = a;h < max{0,alh’) fori =2, ..., m. In order to dem-
onstrate ajh < max {0, a}k"} it suffices to show that | < 0. But since h & N{A) we
have sign @12 = sign a,ir < 0. O

Write now A(1) = 1A + (1 — £)A’ and a,(r) = ta, + (1 — t)ai. We use a homotopy
argument for

Lemma 1. A(1) is generic for every 1 € [0, 1].

We show first how this implies Theorem 3. A’ = A(1) is generic by Lemma 1. Further,
sign a/ h = sign a;h for every i and every B € N(A") since N(A") C N(A) by Claim 2.
Claim 2 applies again with the roles of A and A’ interchanged showing N(A) = N(A").

To finish the proof of Theorem 1 we repeat the same argument for every row in A. [J

ProoF OoF LEMMA 1. Set

t* =min{t = 0: A(#) is not generic}.
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where the existence of the minimum and 1* > 0 are easily justificd. Assume, by way of
contradiction, that 1 = 1. Clearly sign a, (11h = sign a, /1 for every i C N(A) and every
t € [0, 1]. Thus A(1) satisfies condition (A3) for every ¢ & [0. 1]. Claim 2 implies.
further, N(A (1)) C N(A) for every ¢ € [{}, t¥).

We can reformulate conditions (A1) and (A2) for A (4)as

{A1Y Oswmtconvi{a (1).as.....a,.),
(AZ') 0 ¢& conv{anyn of them}.

These conditions are true for £ € [0, ¢*) but one of them fails at r*. If (AT1") fails, then
0 appears on the boundary of conv {a,(t*), 22, ..., 2, }. By Caratheodory s theorem, 0
1s in the relative interior of the convex hull of some of these vectors, including, of course,
a;{t*). Renaming these vectors suitably we got

4.1) 0 < relint conv {a, (i*), ay, ..., a}

where & = » and we assume, further, that as. . . ., @, arc linearly independent.

IF (A27) fails at 1%, then 0 is in the convex hull of some 1 or fewer of the rows of
A(r*)Y. We conclude again. that (4.1) holds with & = » and as. .... a linearly
independent.

CLam 3. Therearen v+ 1 - k rows of A(r) which we can take to be Doty - vy by
so that for alt £ € [0, 1%)

(4.2 Oeinteonv{a,(£), gy . ...ty ).

Again, we show first how Lemma | follows from herc. Claim 3 and (A17) imply that
the cone

C)={xER :ayx< 0. ax <0, ..., a,x < 0}
is simplicial and nonempty. Then
min{a, z:z € C(1)N 7"}

is rcached at some k(1) € C(r) YV 77, Since htf) is a neighbor for the matrix {a, (1), a..
e 1%, tis a neighbor for A(r) as well. By Claim 2, h(r) € N(A). As N(A) is
finite, there is a scquence £, ~ 1* (as u —> =) so that Aty = h € N(A) for all g Thus
a(rF)h < 0,ah <0,....a.h <0 showing that the hyperplanc {x: ix = 0} strictly
separates O trom {a,(+*), ¢y, ..., ¢, }. This contradicts (4.1) and finishes the proof of
Lemma 1. 1
The proof of Claim 3 is technical but rather straightforward: We are going to find a4, , ,,
« Gye1 DY projecting along the subspace L - lin{a,, .. ., ap} = lin{a (t%;, a4, . . .,
a; } - Let ¥ denote the orthogonal projection of x € R” onto L* . the orthogonal complement
of L. Set Q(t) = conv (&,(r), @, 4, ..., ay, }. (Al) implies

0 € relint Q1) for ¢ € [0, £%).

The hallline {—Ag,(f) : A = 0} intersects the boundary of Q(¢) (which is a convex
polytope in .- ) at —A(1)@,{t). This point belongs to a facet F(r) of Q). Since a, (1)
is not on this facet and since &, (1) changes linearly with £, F() is constant on an interval
[#’,1*). By Caratheodory’s theorem there ure linearly independent vertices of F(r), which
we take o be &, ..., @,. such —A(1)Z,(1) & conv{a.\, ....d,} implying
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(4.3) —a (1) = i o; (a,

i=k+1

with ; () continuous on [ 7, 1*], positive on [t’, £*), and 0 at t*. The linear independence
of @y, ..., a8, showsp =n + 1.
Lifting (4.3) back to R" we get

P

—a(t) =1+ ¥ e (Da

k+1

where I(t) € Lsothat [(1) = 2% o, (#)a; with uniquely determined and continuous ( since
[(1) is continuous} coefficients ov; (#). We then have

(44) 0=at) +ia1—(t)a,-.

Here o;(#) > Ofori >k, and a; (+) > Ofori =2,...,kon [#, £*) as well since a, (#*)
> 0 as follows from (4.1).

(4.4) shows 0 & relint conv {a,(1), ..., a,} whent € [17,t*). By (A2Yp=n + |
and 0 € int conv {a.(1), ..., dy41 }- By (A27), again, this helds for all ¢ € [0, t*y., O

5. Few generators. From now on we work with the 4 X 3 case. The arguments of
the next two sections provide a proof of Theorem 2.

Shalleross (1992) has given a complete characterization of the neighbors in this case.
Although we do not use this characterization explicitly, it provides considerable insight.
Claims 1 and 2 below can be found in Shallcross (1992) as well.

With a slight change of notation let a,, 4, s, a; be the rows of A. We assume again
that A is generic. Define HY, H}, H; as the set of x € R® with g;x = 0, >0, <0
respectively.

We are interested in the neighbors N = {h € N(A) : aph < 0} . They lie in cones of
the type Hy M HY M HF N H; which we denote by C,: the index shows which of the
H; go with + superscript. By condition (A1) Hy N H7 N Hy N H3 = 3. So the cones
in question are C,, Cs, Cs, Cypz, Cas, Cs;, and C)s.

Observe that the cones €y, C,, Cy, and C\,; contain exactly one neighbor, to be denoted
by s, 53, 55, and 5., respectively. To see this note that, for instance s, is the unigue solution
to the integer program

min{ax:a;x <0,i=0,1,3,x€ Z*}.

Since multiplying a; by a positive number does not change the neighbors we may assume
that gpso = —l and ¢;s;, = 1 (i = 1, 2, 3). Set

Q={xeR :|ax| =1,i=0,1,2,3}.
CLaim 1. N(A) C Q.

PrOOF. Assume k € N(A)but h € O, aph > 1, say. As / is a neighber, there is no
integer other than 0 and h satisfying ;x < max{ah, 0} for all i. But — 5, satisfies all
these inequalities since a,(—s,) = 1 < agh and a;(—s$y) < Owheni=1,2, 3. i

Recall now the definition of C = pos ¥ and write D = C U (—C ). We know from
Theorem 1 that @, can be moved without changing N(A) as long as H, does not meet C.
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CLamm 2. O\D contains no lattice point.

PROOF.  Assume to the contrary that there is a point z & Z* N O\D. Move g, along
ty(4) = ay + tauntil Hy(1) passes through the first such lattice point z. This happens at
I = fo. say. Since z is not a neighbor, it is in one of the cones (), Cy, o1 Oy, say O,
But as Hy(t) passes through z, it will be in the cone Hg(ty M HY N H: N Hy, which
contains the unique neighbor —s,. So 2 = - 5, a contradiction, !

Crav 3. If u and v ure generators of € thenu — v ¢ Q.

Proor. If w — v € Q then, by Claim 2. # — v is either in C or in - (. Assuming

—1€C,nuCr+ C,s0u=uv+ ctorsomec € C.But then v is not a generator of C.

|

Now if u, v € C N @ belong to the same cone C)-, Cs;, or Cy, then automatically «

— U & Q. This shows that € can have at most seven generators, one in each of the cones

Ci, €y, Chx5. The trivial observation s, € pos{s,, 5a. 53} implies that C has at most six
generators. The nexit claim takes this number down to four.

CLamd 4. If s, and s, are generators of C, then C has no generator in C,,
ProoF. Assume i € N N Gy is such a generator. We will show that «, (s, + s5,)
= max{a, 0} fori =0, 1,2, 3 contradicting # € N, First, fori = Oori = 3

als) sy <0 =max{ah. 0},

By Claim 3,5, —h & Q. Now [ax{s5, — /)| < 1 clearly, and a, (s, - Iy=1-ahe,
1) since A € Q. Furither, a, can be moved without chunging N so that H, almost contains
s, and 4. This follows from Theorem 2 and the fact that 1 and A are consecutive geperators
of C. Then as(s; — h)is between -1 and 1. Consequently. a,(y. — k) <~ —1So we get
syt sy —h) = s 4 ay(sy — k) <0, e,

a2 (8 + 82) < el = max {ah, 0},

One proves a. (5. ~ 3.} < wh = max {a/h. 0} the same way,

S
3
o /M2

*has *ha3

.-1351-7 \-52 5.1 / \.52 5.1 / h12-\

h3qe hyq® *hag haq * ®ha3

/'h12 \ 51'/

Fisuke [.
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The figure presents the remaining six cases in the plane agx = —1; the three lines are
the traces of the planes H,, H,, H;.

6. The structure of the generators.

Ciama 1. If u, v are generators of C, then u, v form a basis of the lattice 7°
MNlin{u,v}.

Proor. By Claim 2 of the previous section there is no integer in the triangle [0, 1,
—v] other than its vertices. Consequently [0, u, —v, u — v] is a lattice parallelogram. O

Here and in what follows we write [a, b, ¢. d] for the convex hull of a,b,c,d € R,
We say that [a, b, ¢, d] is special if it contains no lattice point other than a, b, ¢, d. The
notation and terminology are extended to triangles and segments as well.

CLamm 2. [fu,v, w are consecutive generators af C, then [0, u, v, —w] and [0, —u,
v, w] are special simplices.

ProoF. This is true because of the previous claim and because the simplices in ques-
tion are contained in Q\D. O

LEMMA 2. If0,a, b, c € Z? are not coplanar and the simplices [0,a,a + b, a + ¢l
and [0, ¢, a + ¢, b + c] are special, then so are [a + b + c. b + c,c,bl,[a+ b +c,
a+b,b,al. Moreover, all lattice points in T = {aa + pb + ve:0<a, B,y < 1}are
of the form a(a + ¢) + Bb for some o, B € (0, 1).

Proor. The first statement follows simply by reflection through 3(a + b + ¢). The
second needs more meditation.

Obviously, a and ¢ generate the lattice Z* N lin{a, ¢ }. Then we can pickze TN #?
so that a, ¢, z form a basis of Z*. Thus

b = )\1a+)\2c+)\3z

with A; an integer. In fact Ay > 1 since A; = 1 would mean that a, b, ¢ form a basis of
7’and then Z* NMint T= (7. Since z € Tand \yz = b — Ma —Me, M < 0Oand A, < 0.
Clearly z € pos{a, b, ¢} and the conditions concerning special simplices imply z
epos{a+ b, b+ c,c+ a,b}. This cone is the union of pos{a + b, b + ¢, b} and
pos{a+ b, b+c,c+a}.
Ifz Cpos{a+b,b+c, b}, then we have, with y; = 0,

Az = pi{a + b)Y + (b + ¢} + b
= (ot o+ )b + a + e = b — ha — he.
So p; = —N; (i = 1, 2) are positive integers and p, + t2 + ps = 1 with gz > 0 which is
impossible.
Therefore we have z € pos{a + b, b + ¢, c + a}, and again with positive y;
Mz=b—Na—he=pgla+b)+ up(b+co)+ (e + a).

The solution is g = (1 — N, + X)) and ps = (1 + X, ~ N\y) which is possible with
positive p; and integer A; if and only if A, = X,. This proves the lemma. O

We return now to the proof of Theorem 3. Write G for the set of generators of C. If
a, b, c are consecutive generators of C, then [0, a, b, —¢] and [0, —a, b, ¢] are special
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(by Claim 2). Thenso are [c,a ¢ ¢, b +¢,Cland |a,0.a + b, u + c| (by translation)
and Lemma 3 applies.

Consider first the case |G| = 3. Then a. b. ¢ are consecutive generators in every order
and, by LLemma 3, each integer in T is of the form a(a + b + ¢). So we have

COROLLARY. ff C has three generators a, b, c with |det(a, b, c)l =N> 1, then T
NZ =1lkla+b+c)x fork=1... . A— 1Y,
We are to check the first four cases of the figure separately.

Case L. G = {5, m,8).Its + 5, & O, then as(s, + 52) <2 —1 must hold since
aesy and a,s; can be taken almost equal to zero. So if s, + 5, & @ then a; (5, + 5, + 53)
< 0. Similarly, s, +s: & Qand s, + 5, ¢ Q, respectively, imply a, (s, + 5, + 33) < 0
and az (s, + §2 + 54 < 0, Since agd ) + 82 + s2) < O antomatically, and « (s, + §3 1 33)
< Ofori=0.1.2. 3 contradicts (A1) we must have either 5, + s, & Qors.+s:- €0
ors; + 5 € (J. Assume. say, s; + 5, € Q. Then the interior of the segment [ —ss, 5, + 5]
lies in @\ D so the segment is special. But then s: 4 [—y,, 5 + 5.] = 10, s + 5.+ 5.1,
is also special and the corollary implics det(s;, ., 5,) = +1.

Case 2. G = {5, %, I} Thens, v hy, € Q and the segment [ —s,, 51 + Ffiq]
€ Q\D. The sume argument as above shows that det(s,. s, fi5) = =1,

Case 2. G = {5, ha hn}. Agains, + by € Q and the segment [ =, 5, + bl
€ @\D, and we repeal the ubove argument.

Case 4. G = {hg, hxs. by ). We are done again it sy + By € Q. I none of ki,
+ oy, Das = h, and By = B isin @, then Ay, ~ By + by, € Cpuy s one can easily
check. Let z = (Byp 4 has + Ky )/N be the first integral point on the diagonal of T,
where, of course, A € £ and assume A = 2. Then

1
1= ‘au\‘n' == ‘anzi = X !f‘o(hb + i+ h?l)‘-
But since 4y can be moved so that aghy; and ayhsy, are almost vero, we get
1 1 I
| = ’{ 'ﬁnh:zl SX ‘f?nﬁ'u' = /{

Assume now that C has four generators a, b, ¢, o in this order. The relative interiors
of the cones pos{«, ¢} and pos {#, 4} intersect so we have

aa + yo = 36 + bd

with a, 4, v, 4 > 0 and we may assume, by multiplying if necessary, that the smallest
coefticient is equal to one.

We show first that either @ = y or § = §. By symmetry we may assume that § is
maximal among a. &, ¥, é. Either 5 =- é and we are done or £ > 6 and we gat

) o v
(6.5) b+d=(l——)b+- e
g} 5T g

and this point is in 7 since all the coefficients an the right hand side are between 0 and
1. So Lemma 3 shows that o« = vy,

Claim 2 applies to @. b, c and b, ¢, d and ¢, d, ¢ and d, a, b showing that [0, a, b,
—cl [ b -c.o~dl.and 10. - ¢, - 4. «] [0. ~d. a. b] are special. This implies that
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their union, [0, a, b, —c, —d] is also special which imposes a restriction. Namely, by a
theorem in Scarf (1986), these five points must lie on two consecutive lattice hyperplanes,
H\, Ha, say. If four of them lie in one of the hyperplanes, then they have tobe a, b, —c¢,
—d as otherwise three of the generators would lie in a hyperplane through the origin. But
then a, b, c, d are the vertices of a (special) parallelogram and they clearly form the
Hilbert basis of C. We may assume now that the split is two-three and 0 € H,. By
symmetry it is enough to consider three cases.

Case 1. 0,a, b € Hyand ~c, —d € H,. Then a, b generate Z* N lin{a., b}.
Consequently @, b, ¢ and a, b, d form a basis of Z*. Further, lin{a, b} contains ¢ — d.
So ¢ — d = xa + yb with integer x and y. This gives ¢ + { —x)a = yb + 4 but this is the
same (apart from a multiplier) as the linear dependence (6.1) where, as we just proved,
eitheree = yor § = §. Soeitherx = —landy > Oory=1and x < 0.

In the first case @ + ¢ = yb + d, and therefore det(a, b, d) = det(b, ¢, d). So both
a,b,dand b, ¢, d form a basis of Z* and then they are the Hilbert bases of the cones
pos{a, b, d} and pos{h, ¢, d}, respectively, whose union is C. In the second case ¢
+ (—x)a = b + d and the same argument works.

Case 2. 0,4, —c € Hyand b, —d € H,. Then a, ~c generate Z*> M lin{a, —c}.
Consequently «, b, ¢ and a, ¢, d form a basis of Z°. Then they are the Hilbert bases of
the cones pos{a, b, ¢} and pos{a, ¢, d}, respectively, whose union is C.

Case 3. 0,ec€ Hyand b, —c, —d € H,. Then b, —c, —d, and consequently &, ¢,
d, form a basis of Z*. Moreover, b + ¢, b + d form a basis of Z* N Hi soa=x(b+¢)
+ y(b + d) with integral x and y. Then a + (—x)c = (x + )b + yd which is the same
(apart from a multiplyer) as (6.1). But & = ¥ or # = & holds as well. That is possible
only if x = —1. Then det(a, b, d) = det{b, c, d) and, again, a, b, d and b, ¢, d form a
basis of the lattice, and they are the Hilbert bases of pos{a, b, d} and pos{b, ¢, d},
respectively, whose union is C. J
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