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Summary. We provide two new, simple proofs of Afriat’s celebrated theorem stat-
ing that a finite set of price-quantity observations is consistent with utility maxi-
mization if, and only if, the observations satisfy a variation of the Strong Axiom of
Revealed Preference known as the Generalized Axiom of Revealed Preference
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1 Introduction

The neoclassical theory of demand supposes that a consumer, facing a price vector
p ∈ R

�
++ and with income I > 0, chooses his demand bundle x ∈ R

l
+ to maximize

some utility function u : R
�
+ → R over his budget set B(p, I) := {x ∈ R

�
+ : p·x ≤

I}. We assume we have been presented with a finite data set D := {(pi, xi) : i ∈
N}, where N := {1, 2, . . . , n}, of price vectors pi ∈ R

�
++ and corresponding

demand vectors xi ∈ R
�
+. The basic question raised by Afriat is whether this data

set is consistent with the maximization of a locally non-satiated utility function u
in the sense that for each i ∈ N , xi maximizes u over B(pi, pi · xi). A locally
non-satiated utility function is one for which every neighborhood of a commodity
bundle contains another bundle with a higher utility. With such a utility function
the consumer will have spent all his income, so that we can use pi ·xi as the income
for situation i.

Correspondence to: H.E. Scarf
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If the set of price and quantity observations is derived from utility maximization
it will surely satisfy the variation of the Strong Axiom of Revealed Preference,
known as the Generalized Axiom of Revealed Preference, which states that, for any
list (x1, p1), . . . , (xn, pn) with the property that

pj · xj+1 ≤ pj · xj , for all j ≤ n − 1,

we must have pn · x1 ≥ pn · xn.1

The argument for the GeneralizedAxiom is straightforward. If pj ·xj+1 ≤ pj ·xj

then xj+1 could have been purchased at prices pj . Since xj+1 was not purchased
it cannot be strictly preferred to xj so that xj � xj+1. The entire sequence of
inequalities therefore implies that x1 � xn. If, on the other hand, pn ·x1 < pn ·xn

and the utility function is locally non-satiated, we could find a commodity bundle
ξ close to x1 with pn · ξ < pn · xn and ξ � xn, violating the assumption that xn

maximizes utility at prices pn and income pn · xn.
The Generalized Axiom may be stated in a slightly different fashion which is

more appropriate for our needs. If the inequalities

pj · xj+1 ≤ pj · xj , hold for all j ≤ n − 1 and if

pn · x1 ≤ pn · xn as well,

then we must have pn ·x1 = pn ·xn. But in this form there is no distinction between
the last observation and any of the other observations, so that

pj · xj+1 = pj · xj

holds for all j. This is the variation of the Strong Axiom which we shall adopt, not
only for the full set of n observations but for any ordered subset as well.

Definition 1 We say that the observations satisfy the Generalized Axiom of Re-
vealed Preference (GARP) if for every ordered subset {i, j, k, . . . , r} ⊂ N with

pi · xj ≤ pi · xi

pj · xk ≤ pj · xj

...
pr · xi ≤ pr · xr

it must be true that each inequality is, in fact, an equality.

1 There is a great variety of terminology associated with the concept of revealed preference. The
original definition offered by Samuelson [4], now known as the Weak Axiom of Revealed Preference
(WARP), was thought by the author to be sufficient to recover a utility function generating the data.
Houthakker’s definition of the Strong Axiom (SARP) [3] provided the additional conditions necessary
for recovery. But Houthakker’s statement of the Strong Axiom is motivated by a single valued demand
function rather than a finite list of observations and is, as a consequence, somewhat awkward. Afriat [1]
used the terminology Cyclical Consistency (CC) for the simpler concept of the current paper. Cyclical
Consistency is identical with the Generalized Axiom of Revealed Preference (GARP) introduced by
Varian [5]. This does not exhaust the list of variations in terminology.
We have chosen to use the term GARP rather than Cyclical Consistency. Our purpose is to use a
definition in which the phrase ”Revealed Preference” actually appears rather than the earlier, equivalent
terminology used by Afriat.
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From the data set we can compute the square matrix A of order n defined by

aij := pi · (xj − xi) for all i, j ∈ N.

Hence, aij negative means that xi is revealed preferred to xj . In this more con-
densed notation, the observations satisfy the Generalized Axiom if for every chain
{i, j, k, . . . , r} ⊂ N , aij ≤ 0, ajk ≤ 0, . . . , ari ≤ 0 implies that all the terms are
zero. It is clear that this condition is necessary for observations arising from utility
maximization. What is less clear, and indeed surprising, is that it is also sufficient.

Theorem 2 (Afriat’s Theorem) If the data set D satisfies the Generalized Axiom
then there exists a piecewise linear, continuous, strictly monotone and concave
utility function that generates the observations.

This is a remarkable result because it gives succinct, testable conditions that a
finite data set must satisfy in order to be consistent with utility maximization. More-
over, from the result, it follows that the assumptions of continuity, monotonicity
and concavity are not refutable by a finite data set.

Afriat’s original argument begins by asserting the existence of numbers φ1,
. . . , φn, and λ1, . . . , λn > 0 that satisfy the following unusual system of linear
inequalities (from now Afriat inequalities)

φj ≤ φi + λiaij , for all i, j ∈ N .

He then defines the utility function

u(x) = min{φ1 + λ1p1 · (x − x1), . . . , φn + λnpn · (x − xn)} .

We notice that each term in this expression is linear (and hence continuous and
concave) and strictly monotone. Therefore, u, as their pointwise minimum, is con-
tinuous, concave, and strictly monotone as well. Finally, as is shown in the next
two steps, u indeed generates the observations in the data set D.

1. u(xj) = φj , for all j ∈ N.

By definition u(xj) = mini{φi+λipi ·(xj−xi)} = φj+λjpj ·(xj−xj) = φj ,
where the minimum is taken by the index j from the Afriat inequalities.

2. pj · x ≤ pj · xj ⇒ u(x) ≤ u(xj).

u(x) ≤ φj + λjpj · (x − xj) ≤ φj = u(xj), where the first inequality follows
from the definition of u, the second from the fact that x is feasible at prices pj

and the last equality from Step 1.

2 A simple case

We have shown that the Afriat inequalities imply the existence of a nice utility
function that generates the data. What is less straightforward is to show that if
the observations satisfy the Generalized Axiom then the Afriat inequalities have a
solution. Afriat’s original proof is an inductive one, which is correct in the case in
which aij 	= 0, i 	= j. Indeed in this case the proof is quite simple.2

2 A similar version was presented in an informal communication by M. Weitzman.
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Claim 1. There is an index i ∈ N with aij ≥ 0 for all j ∈ N .

Proof of Claim 1. If this were not so, then every row would have a strictly negative
entry. Start with row i, say, and suppose that aij < 0. Now consider row j, and
identify a negative entry, say ajk < 0. Continue to generate the sequence i, j, k, ...,
until an index is repeated.Then a subsequence of this sequence yields a contradiction
to the Generalized Axiom. 
�

The existence of λj and φj is trivially true for n = 1; we can choose λ1 = 1 and
φ1 arbitrarily. For the induction let us begin by renumbering the observations (and
hence the rows and columns of A) so that anj > 0 for j = 1, ..., n−1 (using Claim
1). Now suppose, by induction, that there exist φ1, ..., φn−1; λ1, ..., λn−1 > 0 such
that

φj ≤ φi + λiaij , i 	= j, i, j = 1, ..., n − 1.

Let us select φn such that

φn ≤ min
i=1,...,n−1

φi + λiain,

and then choose λn > 0 so that

φj ≤ φn + λnanj , for j = 1, ..., n − 1.

Since all the non-diagonal elements of the nth row are strictly positive, λn can be
chosen large enough so that these n − 1 inequalities hold. Note the difficulty that
arises if any anj is zero: increasing λn will not help to fix the inequality for this n
and j. This completes the proof that the Afriat inequalities have a solution in this
simple case.

The general case, in which non-diagonal elements are allowed to be zero, is
related to the issue of indifference classes in the revealed preference ordering. Two
authors, Varian [5] and Diewert [2], have given correct proofs in this general case.
They prove the result using an inductive argument which manages to handle the
subtle issue of indifference classes. Unfortunately, the induction in each of these
presentations is complex and may involve the introduction of more than one price-
quantity observation at each step.

3 A general inductive proof

We now provide a simple proof for Afriat’s theorem in the general case where
anj ≥ 0 for j = 1, ..., n − 1, but with some of these entries possibly zero. The
argument is inductive, and as in the simple case, the inductive step introduces a
single observation at a time.

The key is to apply the inductive hypothesis to a different (n − 1) × (n − 1)
matrix A′. Specifically, for j = 1, ..., n − 1, we define

a′
ij :=

{
aij if anj > 0,

min{aij , ain} if anj = 0.
(1)
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Claim 2. A′ satisfies the Generalized Axiom.

Proof of Claim 2. First note that, if anj = 0, then ajn ≥ 0 by the Generalized
Axiom, so that a′

jj = ajj = 0 for j = 1, . . . , n − 1. Now suppose that A′ has a
cycle (i, j, k, . . . , r, i) with

a′
ij ≤ 0

a′
jk ≤ 0

...

a′
ri ≤ 0

and at least one term strictly negative. Since A does satisfy the Generalized Axiom
by hypothesis, there must be a term, say that for (p, q), with

a′
pq 	= apq .

But if a′
pq = apn and anq = 0, then we can replace the cycle (. . . , p, q, . . . ) by

(. . . , p, n, q, . . . ) with two new terms

apn ≤ 0
anq = 0

and, as before, at least one of the terms in the new sequence is strictly negative.
Continuing in this way we can construct a cycle in A that violates the Generalized
Axiom, contrary to our assumption. Hence A′ must satisfy the Generalized Axiom.


�

We can therefore apply our inductive assumption toA′ to guarantee the existence
of φi and positive λi for i ∈ N− := {1, 2, ..., n − 1} so that

φj ≤ φi + λia
′
ij (2)

for i, j ∈ N−. Since a′
ij ≤ aij from (1), this ensures that the Afriat inequalities

hold also for A for i, j ∈ N−. Next, set

φn = min
i∈N−

{φi + λiain}

(note that we choose equality, not less than or equal to), to achieve the inequalities
for i < n, j = n. Finally, set

λn := max
{

1, max
j∈N−,anj>0

[(φj − φn)/anj ]
}

.

As in the simple case, this choice makes sure that the inequalities hold for i = n
and j < n in the case that anj > 0. To complete the proof, suppose that anj = 0.
Then we have

φj ≤ mini∈N−{φi + λia
′
ij} (by (2))

≤ mini∈N−{φi + λiain} (by (1))
= φn by definition of φn

= φn + λnanj since anj = 0.
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Clearly the inequality holds for i = j = n, and so the inductive step is complete.
This finishes the proof.

4 A proof using linear programming

Diewert’s proof [2] relates theAfriat inequalities to a particular linear programming
problem. However the programming problem is not directly used in his proof. The
argument presented here makes use of a linear program which is essentially identical
to Diewert’s, but uses the Duality Theorem of Linear Programming to show that
the Afriat inequalities have a solution.3

Consider the following linear programming problem:

minλ,φ 0 · λ + 0 · φ
λi ≥ 1, for all i ∈ N,

aijλi + φi − φj ≥ 0, for all i, j ∈ N with i 	= j

in which the objective function is zero and the constraints are theAfriat inequalities.
We shall show that the dual linear program is feasible and has a maximum of zero.
The Duality Theorem then implies that the original problem is also feasible, and
therefore the Afriat inequalities have a solution. Although the argument may seem
a bit eccentric, the procedure is a standard trick to verify that a system of linear
inequalities is consistent.

The matrix associated with the linear program is

objective

...

...

...

...

variables

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0 · · · 0 0 RHS
1 0 · · · 0 0 0 · · · 0 0 1
0 1 · · · 0 0 0 · · · 0 0 1
...

...
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0 1

a12 0 · · · 0 1 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
a1n 0 · · · 0 1 0 · · · 0 −1 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · an1 −1 0 · · · 0 1 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · an,n−1 0 0 · · · −1 1 0
λ1 λ2 · · · λn φ1 φ2 · · · φn−1 φn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y1
y2

...
yn

x12
...

x1n

...
xn1

...
xn,n−1

In this matrix the top row describes the coefficients of the objective function, the
bottom row the variables associated with the columns and the last column the right
hand side of the inequalities. The slack variables have been omitted.

3 Our colleague, John Geanakoplos, has shown us an elegant proof that the Afriat inequalities have
a solution using the Min-Max Theorem for two-person zero-sum games.
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If the dual variable associated with the inequality λi ≥ 1 is yi(≥ 0) and the
dual variable associated with the inequality aijλi + φi − φj ≥ 0, for i 	= j, is
xij(≥ 0), the dual problem can be stated as

maxy,x

∑
i∈N yi ∑

h∈N xhi − ∑
j∈N xij = 0, for all i ∈ N,

yi +
∑

j∈N aijxij = 0, for all i ∈ N,

with yi, xij ≥ 0 for all i, j.

The dual variables xij can be viewed as the entries in an n × n matrix X , whose
diagonal entries are zero and whose off-diagonal elements are non-negative. The
first set of constraints in the dual problem state that for each i the sum of the entries
in row i of X equals the sum of the entries in column i.

In order to use the Duality Theorem to prove that the Afriat inequalities have
a solution, we need to show that x = 0, y = 0 is the optimal solution to the dual
problem. Clearly x = 0, y = 0 is feasible for the dual and 0 is an lower bound for
the optimal value of the dual objective function.

Claim 3. Let (x, y) be a feasible solution to the dual linear program. Then there
is a feasible solution, possibly different, with the same objective function value and
with no cycle (i, j), (j, k), . . . , (r, i) on which all xpq’s are positive and all apq’s
zero.

Proof of Claim 3. If there is such a cycle in a feasible solution, we can decrease
each xpq on the cycle by the minimum value of these xpq’s, so that at least one
such value becomes zero. In this procedure, the perturbed matrix X will still satisfy
the constraints of the dual problem and the variables yp, and hence the objective
function value, are unchanged since we are only modifying those xpq’s whose
corresponding apq coefficient is zero. 
�

Now let us show that an optimal solution to the dual problem is x = 0, y = 0.
Suppose, to the contrary, that yi > 0 in some feasible solution (x, y), which without
loss of generality we can assume satisfies the property of Claim 3. Then the sum

∑
q∈N

aiqxiq < 0

and at least one term is negative, say aijxij . Therefore aij is negative and xij

positive. By the first set of constraints,

∑
q∈N

xjq > 0,

while
∑

q∈N :xjq>0

ajqxjq ≤ 0
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by the second set of constraints. We can therefore choose k 	= j with xjk positive
and ajk nonpositive. Continuing in this way, we must eventually repeat an index,
and therefore we construct a cycle (�, m, . . . , r, �) on which all xpq’s are positive
and all apq’s nonpositive.

If the index we repeat is the first one with which we started, we immediately
get a contradiction since the Generalized Axiom implies that all the terms in the
cycle must be zero, but the first one is strictly negative by construction.

In the case that the cycle we construct does not include the first term, again, the
Generalized Axiom implies that all terms must be zero, but this was already ruled
out by our assumption that (x, y) satisfies the property of Claim 3.

We have demonstrated that the dual linear program is feasible and its maximum
value is 0. By the Duality Theorem of Linear Programming the original problem is
feasible, which means that the Afriat inequalities have a solution.

5 Complexity

Here we discuss the complexity of determining whether the data D is consistent
with utility maximization and, if so, computing a possible utility function u.

We remarked in the introduction that the Generalized Axiom gives testable
conditions for the data D to be consistent with utility maximization. But how
hard is it to check whether the axiom holds, and if so, to find a possible utility
function? At first sight, we need to check every possible cycle, and while this is a
finite procedure, there are exponentially many cycles. If we knew the 2n numbers
φ1, . . . , φn and λ1, . . . , λn > 0, potentially satisfying the Afriat inequalities, then
we would merely have to check these n2 relations, and from these a suitable utility
function is at hand. Diewert [2] proposed to find these numbers by solving a linear
programming problem, but this is computationally burdensome. Varian’s proof [5]
gives an O(n3) algorithm to find the φ’s and λ’s. Indeed, Varian first defines xi

to be directly revealed preferred to xj if pi · xj ≤ pi · xi, and then computes
the transitive closure R of this relation by a graph-theoretic algorithm in O(n3)
time. Then the Generalized Axiom can be checked simply: for each i and j, see if
xiRxj and pj · xi < pj · xj ; if so the Generalized Axiom is violated. If this does
not occur for any such pair, the Generalized Axiom is satisfied. Armed with the
transitive closure, Varian finds the φ’s and λ’s by an algorithm that must consider
together every subset of observations with each pair related by R. Our inductive
proof in Section 3 provides a simple alternative O(n3) method that determines
these parameters one by one. (Of course, we also need O(n2) work to compute the
entries of A from the data D.)

At each step of the inductive process, we search the current matrix A to find a
nonnegative row, say the ith, which takes O(n2) time. (If there is no such row, then
we can find a cycle violating the Generalized Axiom by the argument in the proof
of Claim 1, also in O(n2) time.) We then interchange the ith and nth rows of A, in
O(n) time, and calculate the reduced matrix A′, in O(n2) time. When we receive
information back from the smaller problem, we can find φn and λn each in O(n)
time. (If the smaller problem returns a cycle violating the Generalized Axiom in
A′, we can expand this to a cycle violating the Generalized Axiom in A using the
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argument in the proof of Claim 2, also in O(n) time.) This gives a total amount of
work at each stage of O(n2), for a total complexity of O(n3).

However, if at each stage we can find a positive row (except for its diagonal
entry), then we can avoid the per stage O(n2) work and complete all the computation
in a total of O(n2) time. Clearly we do not require the O(n2) work to calculate A′

so we only need to show how the search for a positive row can be performed in
only O(n) time at each stage. Initially, let us compute the number of negative and
zero entries in each row, at a one-time cost of O(n2). Then at each stage we can
scan these counts to find a positive row, and then after permuting that row and the
associated column to the end, we can update the counts for the submatrix containing
all but the last row and column in just O(n) work. Hence there is only O(n) work
per stage for a total of O(n2). (This complexity also holds if there are only a fixed
number of times that a positive row cannot be found.)

When can we use this simplified algorithm? Clearly, if A contains no zero
elements outside its diagonal, then the Generalized Axiom implies the existence of
a positive row. More generally, note that, if the GeneralizedAxiom holds vacuously,
i.e., there are no cycles with all aij’s nonpositive at all, then the argument of the
proof of Claim 1 shows that a positive row exists. This condition (assuming that
all demand vectors xi are distinct) is usually called the Strong Axiom of Revealed
Preference (see, e.g.,Varian [5]). Thus either the simple case considered in Section 3
or the Strong Axiom leads to the reduced complexity of O(n2) time to compute the
φ’s and λ’s satisfying the Afriat inequalities and hence a possible utility function.
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