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6 The computation of
equilibria for the Walrasian
model: a personal account

Some early history

I was a graduate student in the Department of Mathematics at Princeton from
September 1951 until June 1954. After graduation I left Princeton for the RAND

" Corporation. One of the major reasons for choosing RAND rather than a more
conventional academic position was my desire to be involved in applied rather
than abstract mathematics. I could not have selected a better location for this
particular goal. George Dantzig had arrived recently and was in the process of
applying linear programming techniques to a growing body of basic problems.
Richard Bellman was convinced that all optimization problems with a dynamic
structure (and many others) could fruitfully be formulated, and solved, as dynamic
programs. Ray Fulkerson and Lester Ford had turned their attention to network
flow problems, a topic which became the springboard for the fertile field of
combinatorial optimization. Dantzig and Fulkerson studied the Traveling Salesman
problem and other early examples of what ultimately became known, under the
guidance of Ralph Gomory, as integer programming.'

I spent my first year at RAND in the Department of Mathematics, but in 1955
the organization was visited by a budgetary crisis and I was asked if I would mind
taking up temporary residence in the Department of Logistics. The Logistics
Department was a subgroup of the Department of Economics at RAND, with a
much more prosaic mission than that of its senior colleagues. The members of the
Logistics Department were concerned with scheduling, maintenance, repair and
inventory management and not the deeper economic and strategic questions of the
Cold War. I began to work in inventory theory, a topic that I pursued for the next
decade.

I was fortunate to meet Samuel Karlin and Kenneth Arrow at RAND. They
were both interested in inventory problems and they kindly invited me to spend
the academic year 1956-57 with them at Stanford University. My natural home
at Stanford would have been a Department of Operations Research, but such a
department had not yet been established and I was formally located in the
Department of Statistics. My office was in a charming building known as Serra
House, sitting in a grove of Eucalyptus trees at the edge of the Stanford campus.



The computation of equilibria for the Walrasian model 47

I was on the second floor of the building along with Kenneth, Hiro Uzawa and
Patrick Suppes. Richard Atkinson was on the first floor and Leo Hurwicz and
Bill Estes were frequent visitors. I began to learn about economic theory from
a series of seminars applying mathematics to various topics in the social
sciences.

Early research in economics

My involvement in the computation of economic equilibria for the Walrasian
model began, somewhat indirectly, with the example of a globally unstable model
of exchange that I constructed in the Spring of 1959. This was my first paper in
economic theory proper.

1 was tutored in the subject of stability by the reigning experts in the field:
Kenneth Arrow, Leo Hurwicz and Hiro Uzawa, my neighbors at Serra House.
Kenneth and Leo (joined by H. D. Block in the second paper; see Arrow, Block and
Hurwicz 1959) had just published their two basic papers in Econometrica and there
was much discussion of the topic of stability at seminars and in the halls of the
building. The major result of their research was that the Walrasian price adjustment
mechanism was globally stable in a model of exchange in which the market excess
demand functions exhibited gross substitutability or satisfied the weak axiom of
revealed preference. Models with production were not explicitly considered.

To be specific, let there be 7 goods with associated prices

p=(y .7, 20.

The market excess demand functions (f,(p), ..., /,(p)) are derived from the
summation of individual excess demand functions each obtained from utility
maximization subject to the budget constraint—with income equal to the value of
that consumer’s initial endowment. The demand functions are continuous if none
of the prices is zero; they are homogeneous of degree zero, and satisfy the
important identity

pf)=0

known as the Walras Law. A competitive equilibrium is a price vector p such that
f () <0withf, (p) =0ifp,>0.

The existence of a competitive equilibrium had been established several years
earlier by Arrow and Debreu (1954), Gale (1955) and McKenzie (1959) making
use of one or another version of a fixed point theorem applied to a variety of
different mappings. Their results guaranteed the existence of a price vector for
which excess demand was zero, but gave no hint of a dynamic process converging
to the equilibrium price vector. The price adjustment mechanism, formalized a
number of years earlier by Paul Samuelson, was meant to be a possible description
of such a process.
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The Walrasian tdtonnement can be translated into mathematical form by the
system of differential equations:

dp
z =@

stating that the change in price, for each commodity, is proportional to its excess
demand. With this normalization, the Walras law has the peculiar consequence
that any solution p(¢) will stay a fixed distance from the origin, since

d (3P}
—ZT =2pf(p)=0.

If, therefore, the initial price vector lies on the sphere of radius 1 so will all of the
prices on the curve p(f). The market excess demand functions therefore define a
vector field on the positive part of the unit sphere which is followed by the price
adjustment mechanism.

The commodities are gross substitutes if

f;
= > 11 indi 38
apj 0 for all indices i #;

If this property holds then an elementary argument proposed by McKenzie shows
that

max(p, (+)/ p] is decreasing and min [p; (#)/p,] is increasing
1 . 14

along the path; with some tidiness this property can be converted into an argument
for global stability.

The second condition discussed by Arrow, Block and Hurwicz (1959) was that
the market excess demand functions satisfy the weak axiom of revealed preference,
L.e. that for two non-proportional price vectors, p, g the inequalities

pf (@ =0,
af (@) =0

cannot both hold. If the weak axiom is satisfied then
1 . '
EDNCAORY)

decreases along the path: its time derivative is given by
% (6,00 - B) ) =~ S5 P)

which is < 0 because pf (p) = 0 and therefore p £, (p) > 0.
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The conditions have contrasting drawbacks. The weak axiom is satisfied for

individual excess demand functions, but, unfortunately it does not aggregate over
consumers. Gross substitutability, on the other hand, does aggregate, but it is not
satisfied for individual demand functions allowing even a modest form of
complementarity. Despite the limited reach of these two assumptions, there was,
ifI correctly remember, a tentative optimism that market excess demand functions
would inherit some property, not yet clearly specified, that would suffice for
global convergence of the tdtonnement. But for a variety of reasons this was not
to be.
- My paper, ‘Some Examples of Global Instability of the Competitive
Equilibrium” (Scarf 1960) contains a series of examples, each globally unstable.
They are woven around a first example involving 3 consumers and 3 commodities
using preferences based on Leontief utility functions, and therefore exhibiting the
most extreme form of complementarity. In this first example, the utility functions
and initial holdings possess a curious symmetry that permits us to characterize the
solution explicitly as the curve defined by the intersection of the two surfaces

pi+pi+pi=1;
P\pps=c

For this example the solution is unstable in a weak sense: if the initial price vector
is not the equilibrium, the path follows a closed periodic curve that does not
approach the equilibrium. The subsequent examples of the paper cannot be solved
explicitly, but they do display a unique explosive equilibrium.

Of course, the entire discussion of stability was placed in a different light many
years later by the Sonmenschein (1973), Mantel (1974), Debreu (1974) theorem
asserting that any continuous functions )

10 =D S (D)

defined on a closed subset of the positive part of the unit sphere, and satisfying
the Walras law, were the excess demand functions arising from the summation of
individual demand functions. As a consequence of this remarkable and to some
economists, unsettling, theorem, unstable models of exchange could be constructed
at will. Simply draw an arbitrary continuous curve on the positive part of the
sphere, take its tangents and flesh them out to a continuous vector field on the
sphere which, by virtue of this theorem is the market excess demand function
arising from a model of exchange. The price adjustment mechanism will follow
this arbitrary pre-specified curve. With 4 goods, one can write one’s name with a
flourish on the 3 dimensional sphere.

I spoke about this material at-the Summer meeting of the Econometric Society
at Stanford in 1959. In my audience were Peter Diamond, who had just received
his B.A. from Yale, and T. N. Srinivasan, who had just finished his Comprehensive
Examinations at Yale. Both were at the very beginnings of their distinguished
careers.
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I was invited by Tjalling Koopmans, whom I had met at RAND, to spend the
academic year 1959-60 at the Cowles Foundation, beginning an association with
Cowles and Yale University which became permanent several years later. I
lectured on my counter-example at a Cowles Foundation staff meeting chaired by
Jim Tobin who was then the Director. I cannot say with assurance who the other
members of the audience were, but Gerard Debreu, Donald Hester, Alan Manne,
Art Okun, Ned Phelps, Bob Summers and Jascha Marschak were all staff members
at that time and were likely to be present at my talk. Of course Tjalling was there,
as was Martin Shubik who was also a visitor during that year. I do remember
raising a tentative question as to whether the instability represented by my example
might be related to the phenomenon of business cycles, and I also remember being
treated kindly by Jim Tobin as he demurred.

I returned to the Stanford Department of Statistics in the Fall of 1960 and
remained there for three years, working primarily on the theory of the core and its
relation to the competitive equilibrium of a Walrasian model. I spent more time
with economists than I had before visiting Yale; I remember quite vividly being
at seminars with David Cass, Karl Schell and Menahem Yaari. I was, in fact, one
of the supervisors of Yaari’s thesis, which was concerned with optimal
consumption plans derived from an infinite horizon, continuous time model. In
the Spring of 1963 I accepted an offer to join the Cowles Foundation and the
Department of Economics as a Full Professor. Kenneth tried to assemble an
analogous appointment involving the Department of Economics at Stanford, but
the other members of the department were, I suspect, not quite ready to accept
someone with as little formal training in Economics as I possessed. Yaari joined
the Cowles Foundation in 1962 and Cass arrived at the same time as 1.

Yale and the Cowles Foundation

My teaching responsibilities at Yale were light: I presented a year-long graduate
course in Mathematical Economics which was cobbled together during that first
year. A number of students audited the course the first time that it was offered, but
only a single student, Father Eugene Poirier, was brave enough to take the course
for credit. I decided to reverse the customary ordering of topics by presenting the
theory of production first, before taking up the discussion of consumer preferences
and demand, a mode of organization that I have retained till this day. I feel strongly
that production is at the heart of a modern economy, and that the customary
emphasis on models of exchange, with production treated casually as an
afterthought, provides students with a misleading introduction to economic theory.

So much of economic theory is built upon two extraordinary abstractions
neither of which has a tangible representation in our world of everyday experience:
the individual utility function and the production function and its generalization—
the production possibility set. These two abstractions are crucial for a theory of
the determination of market prices and for our ability to examine the consequences
of changes in the economic environment. In order to minimize the abstract
character of the production possibility set, I would begin my exposition with a
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study of the transportation problem: that act of production in which a commodity
at a specific location is combined with labor, raw materials, some machinery and
possibly time, to produce, as an output, the same commodity located elsewhere.
The transportation problem, spelled out by Tjalling at a very early stage of his
career, has all of the marvellous features of the general activity analysis model-of
production. Activities can be run at arbitrary non-negative scales, and several
activities can be used simultaneously with outputs from one activity possibly
appearing as inputs into a second activity. Commodities can be transported from
one city to a second, and then from the second to a third, resulting in a net activity
in which the intermediary city is not explicitly recorded.

I took the activity analysis model seriously as a pedagogical device to make
production possibility sets concrete. Activity analysis models involve numbers,
rather than algebraic symbols, to describe inputs and outputs. The resulting
production possibility set can be graphed elegantly if there are only two factors of
production and a single output, leading to a geometric intuition that permits us to
think about general production possibility sets as convex cones in higher
dimensional spaces. I must confess to a magical talisman; for 40 years [ have
drawn precisely the same production possibility set, with precisely the same
numbers, whenever I introduce this material for the first time.

If the activity analysis model involves a single output, then the upper surface of
the production possibility set is the production function representing the maximum
output obtainable from a given vector of inputs. The specific values of the
production function can be calculated by solving a linear program. I had been
exposed to linear programming by George Dantzig at RAND, and I knew of
Tjalling’s interest in the transportation problem and the more general activity
analysis model. George’s paper on the simplex method and Tjalling’s discussion
of prices that are associated with efficient production plans appear in Cowles
Commission Monograph 13 (Koopmans 1951) reporting on a conference on linear
programming held at the Cowles Commission in Chicago in June of 1949. The list
of attendees at the conference contains many of the leaders in the revolution in
economic theory that was led by the Commission in the 1940s: Arrow, Dantzig,
Domar, Dresher, Dorfman, Gale, Hildreth, Koopmans, Kuhn, Marschak, Metzler,
Morgenstern, Reiter, Samuelson, Scitovsky, Simon, Tucker and Whitin. Most of
them were not yet 40 years old.

Tjalling was an elegant writer, concise, lucid and accurate. His introduction
to the volume and his paper on the activity analysis model have not lost their
freshness more than 60 years later. Tjalling’s work was honored in 1975 by his
award of the Nobel Prize, jointly with Leonid Kantorovitch. I have written, ina
biographical essay on Tjalling (Scarf 1995), about his distress that the committee
did not see fit to share the prize with Dantzig as well. I have no reasonable
explanation for this lapse; is it possible that George would have been selected
if he had been more accommodating towards economists and appreciative of
economic theory; if he had used the term ‘prices’ throughout his work instead
of ‘simplex multipliers’, if he had ever mentioned the terms ‘production
function’ or ‘production possibility set’? I doubt it.
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In my view, the simplex method was one of the major contributions to applied
economics in the twentieth century. I would introduce the simplex method early
in my course, work out the details of the proof of finiteness, and use the simplex
algorithm to produce constructively those prices which verified that a proposed
feasible solution to the linear program was indeed optimal. I would always give a
second proof of the existence of these prices using the separating hyperplane
theorem and the elements of the theory of convex sets. But I would enj oy stressing
the constructive nature of the simplex method to calculate these dual prices in a
specific instance and to demonstrate their existence in general.

The actual steps of the simplex method are capable of economic interpretation
themselves. Given a proposed feasible solution to the constraints of the linear
program, one solves for prices that yield a zero profit for the activities in use. If
the remaining activities have a non-positive profit, the proposed solution is
optimal; if some of these activities make a positive profit we select one of them
and raise its level of use from zero, making compensating changes in the levels of
those activities previously used. When one of those levels falls to zero, we obtain
a new tentative feasible solution to which the pricing test is reapplied. The
production function associated with an activity analysis model is piece-wise
linear; the simplex method can be viewed as a systematic search for that facet of
the production set that is consistent with the given factor endowment.

In my course, I would follow linear programming with a discussion of non-linear
programming, stressing the economic interpretation of the Kuhn-Tucker theorem
as an assertion about prices supporting efficient production plans in the production
set derived from the objective function and constraints of the non-linear program.
I would also demonstrate that these prices were sufficient to verify optimality. As
in linear programming the existence theorem makes heavy use of the underlying
assumption that the production possibility set is convex. In this realm of discourse
no clue is offered for detecting optimality in the absence of convexity.

The Kuhn-Tucker theorem

I am always distressed when economists choose not to present the Kuhn-Tucker
theorem as an economic insight about neo-classical production functions but
simply as a mathematical tool using the phrasings ‘Lagrange multiplier’ and
‘Lagrangian’ instead of ‘prices’ and ‘profits’; these terms should be banished from
the vocabulary of economists. Non-linear programming also offers a fine
introduction to the theory of competitive markets, under the special assumption of
a single consumer. Consider the non-linear program

max f,(x) subject to
f&) = by
Ao < b
L0 < b,
x = (x,...x)=0
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with f(x) concave and f(x) convex for i =1, ..., n. The objective function and
constraints define the production possibility set ¥ consisting of all y = (3, ¥;5 --- » ¥,,)
with

Sy

4@

_ym Z f;n(x)'

as x ranges over all non-negative vectors in R". The convexity assumptions on the
functions f(x) imply immediately that Y is convex. In this framework, the non-
linear program finds that production plan that maximizes output subject to
constraints on the endowment of factors.

If the price of output is unity and the price of the i-th factor is z, > 0, then the
profit associated with the production plan f(x), = f,(x), ..., f,(x) is

Jo®) X mf,(®)-

Yo
-,

IV IA

Let x" be the constrained maximum with the specific factor endowment b , ..., b,.
Then under mild assumptions the Kuhn-Tucker theorem asserts the existence of a
price vector z° = (7}, ... , %,) > 0 with the properties

+  x" maximizes profit f,(x) =X 7y j;(x), for all x>0, and

. fx") <b with | = ( if the inequality is strict.

For simplicity assume that f,(x) is strictly concave and each f(x) is strictly convex
P 0% o A Y

for i > 0. Let x(x) be the unique activity vector that maximizes profit for factor

prices 7. The demands for the factors of production are then given by

£G(@)
£

1 (x(@)).

In this framework, the Kuhn-Tucker prices 7" are equilibrium prices which equate
the supply and demand for each factor (or yield a demand less than or equal to the
supply if the corresponding price is zero). In this simple instance the existence of
equilibrating prices follows from the separating hyperplane theorem; topological
fixed point theorems are not required.

The elementary nature of the discussion reveals itself as well in the behavior of
the price adjustment mechanism:

dr,
L= f ) - b,

with an obvious modification if a price becomes zero. For it can be easily seen that
this mechanism is always globally stable: starting from an arbitrary initial price
vector, if none of the prices become zero along the path, the solution z(f) will
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always converge to the correct equilibrium price #*. The argument is so charming
that I must reproduce it here. I have never seen this argument in any economics
text.

Let 7 and 7’ be two distinct price vectors. Then from the definitions of x(x) and
x(z’) we have

fox(@) = T, fie(m) > fox(@)) =2, fi()) and
fiolx(@) = X' filx(@)) < fx(m)) =’ fix(m))-

Adding these two inequalities together and simplifying, we obtain the following
consequence of revealed preference:

Y, — w)(f; () — filx(@) < 0.

But this inequality is sufficient to verify that z(z) — 7', at least if #* > 0, by
demonstrating that

A (m, (1) ~ =)
12— <0.

dt
We have
AT (x, () = @) . dalt)
12— — =Y (@ @O-7) g

=3 (@, (- T fiatm)=b) <0

if, in the above inequality, we take 7' = " and realize that f; (x(z") = b,.

In summary everything works well on the production side alone under neo-
classical convexity assumptions. Existence theorems require only the separating
hyperplane theorem and local adjustment processes are always globally stable. It
is the presence of consumers in the Walrasian model that gives rise to the
occasional instability of the price adjustment mechanism and forces us to use
fixed point theorems to demonstrate the existence of equilibrating prices. In my
course I would break the syllabus into two distinct sections based on the required
mathematical topics: the first part using elementary notions of convexity and the
second involving fixed point theorems. I had constructive algorithms for the first
part, but in the second part I had to rely on the non-constructive proof of Brouwer’s
fixed point theorem based on Sperner’s Lemma.

Sperner’s Lemma

Sperher’s Lemma deals with a simplicial subdivision of the unit simplex of
dimension n — 1, say, the price simplex

M={z=@,n, ... o) withw, >0, 3 7, = 1}
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into a large number of subsimplices that fit together nicely. Each vertex v of the
subdivision is given a label /(V) from the set {1, 2, ... , n}. The vertices on the
boundary of the simplex have some of their coordinates equal to zero; if vis on
the boundary of the simplex, its label I() is required to be selected from the set
of indices {i : v,> 0}. Sperner’s Lemma then asserts the existence of at least one
subsimplex (in fact, an odd number of subsimplices) all of whose vertices are
differently labeled as in Figure 6.1.
Suppose that we are given a continuous mapping

x — f(@) = (@), ) - » £, (@)

of the unit simplex into itself. Sperner’s Lemma provides an approximate fixed
point of the mapping, and, by means of a standard limiting argument, a proof of
the existence of a true fixed point = = f{r). Take a fine simplicial subdivision of
the unit simplex. For each vertex v there will be at least one index 7 for which

IO

and we sclect one of these indices to be the integer label /(v) associated with the
vertex v. We can clearly arrange the labeling so that a vertex on the boundary has
a label i for which v, > 0, and the conditions of Sperner’s Lemma are satisfied.
The completely labeled simplex whose existence is asserted by Sperner’s Lemma
provides us with a simplex with the property that for each coordinate i there isa
vertex of the simplex whose i-th coordinate is decreasing weakly under the
mapping. But this is all that we need for a good approximation. If the subdivision
is very fine, the vertices of the completely labelled simplex will be very close to
each other, and any point in the simplex will be changed by a small amount under
the mapping.

1 knew of Sperner’s Lemma and its application to Brouwer’s Theorem in 1963
I taught the subject with great care in my graduate course in Mathematical
Economics. I would present the standard proof of Sperner’s Lemma, which was

VAVi AVVAN

Figure 6.1 Sperner’s Lemma.
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based on an inductive argument on the dimension of the simplex. It is useful to
sketch Sperner’s proof, since it has elements that appear in the later simplicial
arguments.

Inductive Proof of Sperner’s Lemma. Take an n — 2 dimensional face of [1, say
the face 1" consisting of the vectors in I1 whose n-th coordinate is zero. By the
assumption of Sperner’s Lemma, the vertices on [1” will all have labels in the set
{1,2, ..., n— 1} and will satisfy the conditions of Spemner’s Lemma restricted
to that face. Assuming that Sperner’s Lemma is correct for a simplex of dimen-
sion n — 2, there will therefore be an odd number of simplices on I1” bearing the
complete set of labels {1,2, ..., n— 1}.

We begin the inductive step by making up a special list, say L, of subsimplicies in
I1 of dimension n — 2. We examine each n — 1 simplex in the subdivision of [1
and ask whether the simplex has an n — 2 dimensional face that happens to bear
the labels {1, 2, ..., n — 1}. If there is such an n — 2 dimensional face we include
that face in the list L.

Such an n — 2 dimensional face can only occur if the simplex containing the face is
completely labeled or almost completely labeled in the sense that it bears the
labels {1, 2, ..., n — 1}. In the first case, a single n — 2 face of the simplex is
added to the list L; in the second case there are two such n — 2 faces, both of
which are added to the list. Therefore the size of the list L has the same parity as
the number of completely labeled n — 1 simplices in [L.

But every n — 2 face in L has been recorded twice if it is an interior edge of the
simplex II, and once if it is on the boundary, and therefore the size of the list has
the same parity as the number of completely labeled n — 2 simplices on the face
I1", which by induction is odd. This completes the proof.

A beautiful argument for the existence of a completely labeled » — 1 dimensional
simplex, but not remotely an algorithm for finding one.

A digression on the core

During my visit to the Cowles Foundation in 1959-60; I agreed to give a talk at
Columbia University on my example of an exchange economy with a unique
unstable equilibrium. Martin Shubik, a friend from graduate student days at
Princeton, was in the audience. After the talk we took a long walk from 125th
street to Martin’s apartment in Sutton Place, and Martin spoke to me, with great
enthusiasm, about a topic that was much on his mind. He told me about a particular
cooperative solution to an n person game, the core, and about his conjecture that
outcomes in the core of an exchange economy would converge to its set of
competitive equilibria if the number of agents in the economy tended to infinity.

I was intrigued by this introduction to cooperative game theory. My previous
exposure to game theory was exclusively with two person zero-sum games, and I
had not realized that von Neuman and Morgenstern’s primary preoccupation was
the analysis of cooperative solutions to general n person games. I started thinking
seriously about the problem; I read The Theory of Games and Economic Behavior;
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I read Edgeworth’s analysis of the contract curve with two goods and two types
of consumers in Mathematical Psychics, and Martin’s own paper on this subject
(Shubik 1959). I discussed the problem with Martin and with Lloyd Shapley,
another friend from Princeton, and can remember vividly Lloyd’s immediate
demonstration that a competitive allocation was necessarily in the core.

The initial difficulty was to pose the problem correctly so as to formalize the
concept of a large number of agents. I remember toying briefly with a continuum
of agents indexed by the points in the unit interval—a setting of the problem
subsequently introduced by Robert Aumann. Edgeworth’s treatment seemed
natural: one would take a finite economy and replicate each consumer precisely the
same number of times, with the number of replications ultimately tending to
infinity. The replicated competitive equilibrium would be in the core of the
replicated game, in the sense that no coalition, involving arbitrary numbers of
consumers of each type, would be able to achieve a higher utility for each of its
members. The next problem was to find some analytic device that would permit
one to argue that competitive equilibria were the only allocations with this property.

The device that I stumbled on appears in the paper, ‘An Analysis of Markets
with a Large Number of Participants’ (Scarf 1962). The paper, presented at the
conference ‘Recent Advances in Game Theory’, held at Princeton in October
1961, does provide a proof of the conjecture that Shubik had presented to me on
our long walk. But the argument was extremely intricate, and I would hesitate to
use it today in a classroom presentation of the result. A dramatic simplification of
the argument was presented in the joint paper with Gerard Debreu, published in
1963 (Debreu and Scarf 1963). I can do no better than to quote Debreu’s Nobel
Prize lecture in 1983 on the circumstances leading to our collaboration.

Associated with our joint paper is one of my most vivid memories of the
instant when a problem is solved. Scarf, then at Stanford, had met me at the
San Francisco Airport in December 1961, and as he was driving to Palo Alto
on the freeway, one of us, in one sentence, provided a key to the solution; the
other, also in one sentence, immediately provided the other key; and the lock
clicked open.

(Debreu 1984: 272)

The relationship between the core and the set of competitive equilibria was
intriguing to me for two reasons: first of all the theorem allowed a competitive
equilibrium to be fully characterized by the preferences and endowments of
coalitions of agents, with no prior assumption about the role of competitive prices.
In this sense the core equivalence theorem is similar to the second welfare theorem,
but it is much tighter in that it leads to a competitive equilibrium with no income
redistribution at all. While the proof of the theorem requires only the elementary
machinery of convexity theory, it leads to an outcome whose existence can be
established only by the use of sophisticated fixed point arguments. This is in
distinction to a Pareto Optimum allocation whose existence follows simply from
maximizing a positive linear combination of utilities.
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Cooperative games without transferable utility

The treatment of cooperative game theory by von Neuman and Morgenstern was
based exclusively on games with transferable utility. In their volume, they
associated with each coalition S, a single number v, representing the total utility
that could be allocated among the members of the coalition. By the 1950s this
approach had become much too restrictive for economists working in general
equilibrium theory. There are, of course, several interesting cases of equilibrium
models in which utility can be thought of as transferable: in a model of exchange
in which all consumers have the same utility function u(x), which is non-
negative, concave and homogeneous of degree one, the utilities (!, ..., u"
associated with the set of Pareto optimal trades are the vectors u with Yu'=u(w),
where  is the vector of total assets owned by the consumers prior to trade. But
in the purely ordinal framework of equilibrium theory, this, and other special
cases like it, are useful primarily as examples illustrating features of the more
general model.

At some point in 1964, I was innocently toying with some examples and made
the observation that a model of exchange involving three consumers with convex
preferences, had a certain property that permitted me to assert the existence ofa
non-empty core by means of an argument that made no use at all of fixed point
theorems. The specific property, which had not previously been remarked on by
economists, was the following:

ifu=(u, Uy, ;) is a utility vector such that
the coalition (1, 2) can achieve the pair (1, u,) using @' + @?, and
the coalition (1, 3) can achieve the pair (u,, u,) using ' + w3, and

the coalition (2, 3) can achieve the pair (u,, ;) using w?+ o’

then it is an immediate, but not obvious, consequence of the convexity of
preferences that the coalition of all three players has a way of redistributing
their collective initial assets @'+ w? + @ so as to achieve the utility vector u =
(U5 Uy Uy)-

It was easy to argue, simply by tracing the intersection of certain surfaces in
3-space, that a superadditive game with this property would always have a non-
empty core. I remember remarking on this fact to Lionel McKenzie who
encouraged me to continue thinking about its analogue for games with more than
three players. I was much excited by the possibility of extending this result to
games with many players and obtaining a proof of the existence of a non-empty
core for an economy with convex preferences, without inferring its existence from
the fact that a competitive equilibrium was necessarily in the core. In conjunction
with my theorem with Debreu, this seemed to be a way of completely avoiding
the use of fixed point theorems to demonstrate the existence of a competitive
equilibrium. It was an example of a marvellously naive agenda which was useful
in spite of itself.
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Aumann and Peleg (1960) had provided a formal definition of a cooperative
game without transferable utility into which this discussion would naturally fit.
Let N be the coalition of all players in the game. For each coalition S < N, let ES
be the Euclidean space whose cardinality is equal to the number of players in S,
and whose coordinates are indexed by those players. If u € EV, we represent its
projection into £S5 by u5. Then to describe a game without transferable utility, we
associate with each coalition S the set of utilities ¥(S) in £° that the coalition can
achieve by itself. The sets ¥{S) arc assumed to satisfy some minimal conditions:
they are closed, bounded from above and allow for free disposal of utility in the
sense that if u € V(S) and y € E5 with y <u, then y € V(S).

A utility vector u is then ‘blocked’ by a coalition S if its projection ° is interior
to the set ¥(S). The vector will be in the core if it is feasible for all players acting
collectively, u € ¥(N), and if is blocked by no coalition.

Using this notation, the previous condition on a three person game that
guarantees the existence of a non-empty core can be stated as follows:

-

g

=
|

= (u,, u,, u,) has the property that
u* € V(S) for each two person coalition,

then u € Vy).

This condition, in conjunction with superadditivity and some minor technical
assumptions is sufficient to guarantee the existence of a vector in the core of the
game. What is the generalization of this theorem to general cooperative games?
What replaces the collection of the three two person coalitions for games with
more than three players? The answer is given by the concept of a balanced
collection of coalitions:

Definition 1: Let 7= {S} be a collection of coalitions. The collection is balanced
if 3 weights &, > 0 such that

Definition 2: The game defined by the sets V(S) is defined to be balanced if, for

C gar 11 LAy Tin alan

~J
every balanced collection 7 = {S}, a utility vector

u = (u, Uy, ..., u,) is in V(N)if
we V(S)forevery SeT.

Balanced games have a non-empty core

The main result of my paper “The Core of an N-Person Game’ (Scarf 1967c), is

Theorem I, stating that a balanced game has a non-empty core. I knew that this
theorem was true by some point in the Spring of 1964; in fact I had worked out a
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formidable proof based on Brouwer’s theorem, which I never did publish. My hope
was to provide an argument for the general case, which made no use of fixed point
theorems, and could conceivably be converted into a numerical algorithm that would
permit me to compute a point in the core.

In order to compute 2 point in the core of an arbitrary balanced game, I would
certainly have to develop an algorithm for games in which each set ¥(S), with
S N, consisted of those utilities that could be obtained from a finite number of
utility vectors by the free disposal of utility. Such games would be as far removed
as possible from the class of games with transferable utility, and might therefore
require the use of algorithms which were quite different from the simplex method
for linear programming. Moreover, a general balanced game could be approximated
arbitrarily closely by a balanced game in which ¥(S) was finitely generated for all
proper coalitions S. If I could effectively obtain a point in the core for such finite
games, then I would be able to approximate a point in the core of a general
balanced game as closely as required.

Such a game would be characterized by a finite list of vectors: each specific
¥(S) would contribute a finite set of utility vectors lying in the Euclidean space £ S,
In order to place these sets in the same space £”, I filled out the vectors in £S5 by
adding arbitrary, large numbers for the coordinates corresponding to players not
in S. This permitted me to describe the game by a large finite list, say C in the
paper, of utility vectors in E”. In my paper 1 work with a specific example with
the list

(0 M, M, 12 5 4 M, M, M,

2 9
M, 0 M, o M, My M, 5 2 8

3
C= 6 7
LM1M20M4M5M63810694J

The algorithmic question was to find a utility vector in ¥() which could not be
blocked by any vector in this list. The device of introducing large numbers for the
coordinates of players not in S simply translated this search into that of finding a
utility vector v € V() such that no u € C dominated v in the sense that u > v.
Efficient vectors v in the set obtained from C by allowing free disposal of utility
would certainly have this latter property, but how was one to guarantee that such
a vector would necessarily lie in V(N)?

At this point, I came upon a construction that I have been thinking about in one
form or another for more than four decades. I discovered a very natural, canonical
way of constructing what matbematicians call a simplicial complex: My complex,
C(X), was based on a finite set of points X in general position in E", each point
augmented by the possibility of free disposal. In the paper on balanced games,
each such simplex in the simplicial complex was called an ‘ordinal basis’. In the
problem of computing equilibrium prices for a general Walrasian model of the
economy, the name given to these simplicies was changed to ‘primitive sets’, and
in my subsequent work on indivisibilities in production, a third terminology
‘maximal lattice free bodies’ was introduced to describe precisely the same
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concept, when the finite set of points is replaced by a lattice. When I first came
upon this structure in the context of cooperative game theory, I was, of course,
unaware of its possible uses in the analysis of other, quite different areas of inquiry.
If I had been prescient, 1 would have introduced the construction in a more
leisurely way and maintained terminological consistency.

This informal history is not the proper place for a detailed discussion of this
abstract simplicial complex. An exposition can be found in the video of a talk
presented in Jerusalem at the conference ‘The Economics of Kenneth J. Arrow’
(Scarf 2008). ‘

In each application of this construction: to the core of an n-person game; to the
problems of computing equilibrium prices or fixed points of a continuous mapping;
or to the description of discrete production possibility sets, the simplicial complex
C(X) is used in quite a different fashion. In the game theoretic application, the set
X consists of the vectors in ¥(S) which are enlarged to » dimensional vectors by
adding arbitrary large numbers for the coordinates corresponding to players not in

S. A simplex in C(X) will consist of a set of n such vectors /%, ..., u/" with the
property that
‘w=min [u), ..., u/"]

cannot be blocked by any coalition. Figure 6.2 displays the complex associated
with the above example.

" Bach local minimum on the surface in this drawing defines a simplex in the
simplicial complex. The point in the core is the black dot in the centre of the figure.

Figure 6.2 The simplifical complex.
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The major theorem of the paper is demonstrated by showing that there is at least
one such simplex whose corresponding vector u lies in ¥(V). This will be true if
the n vectors u/}, ..., u/" are derived fromV(S7/"), ..., (S/"), respectively, with the
nsets S/, ..., S/ forming a balanced collection T. For then the vector  would lie
in each such F{S) and from the fact that the game is balanced, the vector u would
lie in V(&) as well.

I'had reached this pomt in my analysis by the Spring of 1965.1 realized that the
existence of a point in the core of a balanced game could be reduced to a purely
combinatorial theorem involving two structures: the feasible bases of the incidence
matrix of players versus coalitions, and the simplicies (referred to in the paper as
‘ordinal bases”) in the complex derived from the sets ¥(S). A generalization of this

combinatorial result annears as Theorem ? and as T remark in Section 4 T conld
combdinaiorial reSull appears as 1 aeorem 2, andg as i remarg m Sechion 4, 1 could

derive Theorem 2 quite readily by a limiting argument from the theorem asserting
the existence of a Nash equilibrium for an arbitrary two person non zero-sum
game. But as far as I knew, the existence of a Nash equilibrium required precisely
those non-constructive fixed point arguments that I had been trying to avoid.

Lemke’s House

But I had an enormous stroke of good fortune: Robert Aumann was visiting the
Cowles Foundation during the academic year 1964—65, and when I described my
problem to him, he suggested that I take a look at a recent paper by Lemke and
his student Howson (Lemke and Howson 1964), which provided an algorithm for
computing a Nash equilibrium for a finite two person non zero-sum game. In a
single evening, I realized that my limiting process would directly translate
Lemke’s procedure into an algorithm for computing a point in the core of a
balanced » person game in which each V(S) was generated by a finite number of
utility vectors. The translation of Lemke’s algorithm through the limiting process
becomes the algorithmic proof of the main theorem in the paper, ‘The Core of an
N Person Game’ (Scarf 1967c).

The major theorem of the paper has been much taken up by computer scientists
under the name ‘Scarf’s Lemma’.

It was a terribly exciting moment for me. I immediately took a course in Fortran
programming and wrote my first computer code for an arbitrary game with four
players. I can remember submitting a stack of punched cards to the attendant at
the Yale computer center, wondering whether the answer would be returned in a
minute or two or whether the calculation would require weeks to complete. The
program, in spite of its primitive inefficiencies, executed quite rapidly. I realized
that I had taken a tentative first step in my project to convert general equilibrium
theory from its role in providing existence theorems for the Walrasian model into
a practical tool for economic analysis.

Lemke’s algorithm has some features in common with the simplex method; a
sequence of pivot steps are carried out until the desired solution is reached. But
the argument for termination is dramatically different from that used in linear
programming. The simplex method terminates finitely because (in the absence of
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degeneracy) the objective function s strictly increasing from iteration to iteration.
The problem being studied by Lemke has no objective function and termination is
demonstrated by a topological argument—essentially a homotopy argument—that
I call the parable of

Lemke’s House: Imagine a house with a finite number of rooms with the property
that each room has precisely two doors. Suppose that there is a room one of whose
doors leads to the outside of the house. Then there is a second door leading out-
side.

The second door can be found by the following algorithm, which also demonstrates
that the second door exists: Enter the house through the known door. Whenever
a room is entered, exit through the other door in the room. Termination follows
from the fact that no room is revisited. Why?

The previous section on the Core discusses the sequence of steps that led, in the
Spring of 1965, to an algorithm for finding a utility vector in the core of a balanced
n—person game. The Walrasian model leads to a balanced game if the neoclassical
convexity assumptions hold and each coalition has access to the same convex
cone as a production possibility set. If the number of consumers is large, a point
in the core will be close to a competitive equilibrium and this algorithm is therefore
a candidate for calculating an equilibrium price vector. But it does not seem to be
an attractive algorithm in practice.

Back to fixed point theorems

In November of 1965; I finally realized that the techniques used to calculate a
vector in the core of a balanced game could be carried over directly to approximate
fixed points of an arbitrary continuous mapping of a compact convex set into
itself. The translation of Lemke’s algorithm becomes the algorithim of my paper
“The Approximation of Fixed Points of a Continuous Mapping’, which appeared
as a Cowles Foundation Discussion Paper in February 1967 (Scarf 1967b).

The innovation involved in approximating fixed points is actually a simplification
of the earlier methods. The algorithm used in calculating a vector in the core started
with a large, finite set of points X m R", and constructed a simplicial complex C(X)
whose vertices were the points in X.

In order to approximate the fixed points of a continuous mapping of the unit
simplex A into itself, we take the points in X to lie on A. The simplices in the
complex C(X) will also lie on A, and in this paper they are given the new title of
‘primitive sets’. As in Sperner’s Lemma, we associate with each point x € X an
integer label I(x) from the set {1,2, ..., n} rather than the vector label used in the
core algorithm. If the boundary is treated correctly, we have the analog of
Sperner’s Lemma: there exists at Jeast one simplex whose vertices carry all of the
labels. Again, if the labels are appropriately selected from the mapping itself, and
the points in X are generously sprinkled throughout the simplex, the completely

labelled simplex will provide an approximate fixed point of the mapping.



But, of course, the important feature of this approach is that the completely
labelled simplex that approximates the fixed point of a continuous mapping is
found by an algorithm rather than having its existence simply asserted in a non-
constructive fashion. The paper contains three numerical examples of exchange
economies whose equilibrium prices are calculated using this algorithm,
augmented by some minor numerical analysis to improve the precision. These -
were, I suspect, the first examples of general equilibrium models, too large to
solve by hand and too complex to solve analytically, that were successfully
addressed by a general. purpose computer code which was, simultaneously,
capable of demonstrating existence. This early algorithm was quite clumsy, but I
remark in the paper on the small time that was required to solve all three problems
and express my hope that really large models, involving perhaps fifteen or twenty
commodities, might ultimately be within the scope of the computational procedure.
1 still have copies in my files of the original code.

The algorithm can be applied directly to a model of exchange, without using
Brouwer’s theorem as an intermediary device. The algorithm produces a sequence
of small subsimplices on the price simplex I, that terminates at a subsimplex
yielding an approximation to the equilibrium price vector. In this sense the
algorithm is always globally stable in contrast to the Walrasian price adjustment
mechanism discussed at the beginning of this section. The evolution of the
Walrasian path depends simply on the value of excess demand at the current price
vector. In contrast, the current state of the simplicial method is given by the n
vertices of the current simplex and the value of excess demand at each of these
vertices. When the simplex is small, we possess, therefore, information about the
excess demands, not at a single price vector, but in an entire full dimensional
region. For me, the major insight is that in order to ensure global convergence, an
algorithm must be based on something like the Jacobian of the excess demand
function as well as the value of excess demand at a point. '

An early paper

Irving Fisher, Yale’s preeminent economist, was born on 27 February 1867. A
celebration was beld in the Spring of 1967 to commemorate the 100th anniversary
of his birth. Paul Samuelson presented an address entitled, ‘Irving Fisher and the
Theory of Capital’, and nine members of the Department of Economics were
asked to prepare papers, bearing on Fisher’s work, to be collected, along with
Samuelson’s address, in a volume entitled Ten Economic Studies in the Tradition
of Irving Fisher. 1 took my cue from Irving Fisher’s thesis.

Fisher’s thesis, submitted in 1891 was remarkable in several respects. It
contained a fully articulated presentation of the general equilibrium model,
assembled by Fisher without any knowledge of the simultaneous contribution of
Walras. But in addition, Fisher constructed an ingenious hydraulic machine that
would solve for market clearing prices in a model of equilibrium. Fisher’s model
had several special features tailored to his construction: there were 3 consumers
and 3 commodities, the utility functions were separable and the initial endowments
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of the consumers were specified in terms of money rather than our customary
presentation by the ownership of physical commodities. But in spite of these
specializations, Fisher’s examples probably require a fixed point theorem to
demonstrate existence; they certainly may have multiple equilibria. Fisher used
his machine as a teaching device in his classes at Yale. Two variants of the
machine were actually constructed, but unfortunately, they have been lost.

My contribution to the volume, ‘On the Computation of Equilibrium Prices’
(Scarf 1967a), described my recently discovered algorithm for calculating
equilibrium prices when production was given by an activity analysis model. The
paper contains a numerical example with 6 commodities and 8 activities.
The example, which was meant to be vaguely realistic, was solved and then
compared to the solution arising when the production set is augmented by an
additional activity. The example was meant to suggest to my colleagues, at Yale
and elsewhere, that these novel numerical techniques might be useful in assessing
the consequences for the economy of a change in the economic environment, or
in a major policy variable—to engage in comparative statics when the equilibrium
model was too large to solve graphically or by hand.

But it was some time before this suggestion was taken seriously. We were in
the 1960s, in the era of large Keynesian macro models in which specific scarce
resources and relative prices were not included; there was, in the air, a suggestion
that the economy could actually be fine-tuned by prescient economic advisors.
The oil shocks of the subsequent decade presented a severe challenge to this way
of doing economics.

At the end of the paper I remark that the time required to solve the problems was
quite small and that I looked forward to the possibility of solving problems with
perhaps 20 variables. In order to discuss subsequent algorithmic improvements,
have to be somewhat specific at this point about some mathematical details. The
algorithm works with a large finite set X on the unit price simplex I, satisfying the
non-degeneracy assumption that no two vectors in X have a common i-th coordinate
for any i. The set is enlarged by the addition of n special vectors that play the role
ofthe n — 1 dimensional faces of T1, and the members of X are given integer or vector
labels, depending on the particular application. A simplicial complex C(X) is then
defined in a canonical fashion, and a path through the simplices in C(X) is followed,
using soine variation of the basic Lemke algorithm.

The algorithm involves alternating between linear programming pivot steps and
replacement operations carried out on the simplices. More specifically, at each
iteration we are given a simplex S with n vertices, and a particular vertex x which
is to be removed. The remaining vertices of S define an n — 2 dimensional face of
S; we then move to the unique other simplex ' that shares this face with S.

This mathematical step has to be carried out over and over again in the course
of the nurnerical calculation, and for numerical efficiency it must not be too
difficult to find the adjacent simplex S'. In the first application of these ideas—
to finding a point in the core—the set X was defined by the characteristic
function of the game, and the replacement required a complete search over the
members of the set X. In applications to the calculation of economic equilibria,
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the points on the price simplex had no intrinsic qualities other than being
sprinkled quite regularly throughout the simplex. The most natural choice for X
was the set of all rational vectors on the price simplex with a fixed, large
denominator, which could ultimately be made larger if we wished to improve
the accuracy of the calculation. But this set of points violates the non-degeneracy
assumption which was required for the definition of the simplicial complex.
This difficulty needs a resolution which is not too complex; the two papers
referred to above use a resolution which requires a search through the prices that
have examined, but not the remaining price vectors. It is not an elegant or
efficient way to proceed.

Terje Hansen

In 1966—67 my class was attended by a gifted young Norwegian graduate student
named Terje Hansen with whom [ was to have a close working relationship during
the next several years. Terje became very involved in the topics being discussed
in the course and began to think of improvements and modifications of the
material. In March of 1967 he published a Cowles Foundation Discussion Paper,
entitled ‘A Note on the Limit of the Core of an Exchange Economy’ (Hansen
1967), in which he demonstrated that the allocations, in a replicated economy, that
could not be improved upon by the small number of coalitions consisting of all
consumers of type i and all but one of the other types, for each i, would converge
to a competitive equilibrium.

Terje then made a very dramatic contribution to the design of fixed point
computational methods. I was planning to visit Bob Aumann in Israel in May and
early June of 1967, and before I left, Terje asked me for some computer time to
try out an idea that would remedy the particular flaw in the algorithms that I have
just described. I suggested that he work out the theoretical details of his
improvement first and I would then provide him with the necessary time on the
computer. When I returned, Terje grested me with a glowing smile and informed
me that he had been successful. What had Terje done? :

Terje proposed that the algorithm work with a system of matrices of a special
form. For each 1</ <nlet

matrices



The computation of equilibria for the Walrasian model 67

is defined by'its first column ¢!, the base column, and a permutation ¢ of the
integers 1, 2, . . ., n such that

citl = i+ oD

with ¢/*1 = ¢! if j = n. For example, ifn=4; c' =(3,5,1,7)'and ¢=3,4, 1,2 then
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.

The collection of matrices has precisely the right features for fixed point
computations:

e The column sums are identical, so that the columns, divided by their common
sums, lie on the unit simplex,

e Ifcolumn ¢/ is removed, its unique replacement is given by the matrix (¢, .. .,
¢, eF !+ ¢/t = ¢, ..., ¢") with the indices taken mod(n). The new matrix
has the same base column ¢! and the permutation in which ¢(;) and ¢(j+1)
are interchanged.

e Ifthe entries in C are > 0, then so are the entries in its replacement unless a row
of C has the form |0, 0, . .., 1, 0, ..., 0)] and we are removing the column
associated with the 1, that is, we are trying to move out of the price simplex.

Each column is given an integer or vector label, the boundary is properly attended
to, and Lemke’s algorithm is used to provide a completely labeled matrix. Terje’s
innovation worked perfectly: it permitted a rapid movement through the collection
of matrices without a complex search. In my paper, ‘An Example of an Algorithm
for Calculating General Equilibrium Prices’, published in the American Economic
Review in 1969 (Scarf 1969), I used Terje’s variant with vector labeling, and, of
course, I continued to use his algorithm in all future lectures and applications.
Terje’s thesis, ‘On the Approximation of a Competitive Equilibrium’ was
presented to Yale in the Spring of 1968. Tjalling was also an advisor on the thesis
and, as usual, he took his responsibilities seriously. I have many letters from
Tjalling to Terje with detailed suggestions about mathematical arguments and the
general presentation of the thesis. Tjalling and Terje subsequently collaborated on
a research project applying fixed point methods to computing a stationary
equilibrium of a disaggregated optimal growth model. Their results appeared in
the paper, ‘On the Definition and Computation of a Capital Stock Invariant Under
Optimization’, published in the Journal of Economic Theory in 1972. Terje
returned to Norway in April of 1968. By the end of that year we had accumulated
a variety of applications of our basic methods, and we had to give some thought
to a suitable form of publication. In April of 1969, we published a Cowles
Foundation Discussion Paper entitled ‘On the Applications of a Recent
Combinatorial Algorithm’ (Scarf and Hansen 1969), that contained a discussion
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of Brouwer’s Theorem, Kakutani’s Theorem, a fixed point theorem originally
suggested by David Gale, the calculation of equilibrium prices when production
is described by an activity analysis model and an application to concave
programming suggested by Terje.

In the Fall of 1969, my wife, three daughters and I embarked on a sabbatical year
at Cambridge University. Our host was Frank Hahn, who had arranged for us to be
guests at Churchill College. We saw much of Frank and other Churchill Fellows:
Roy Radner, Joe Stiglitz, the distinguished humanist George Steiner and the poet
Octavio Paz. | remember, with great pleasure, sitting in on lectures by James
Meade, and meeting Nicky Kaldor, Joan Robinson and Richard Stone. We
frequently visited Ronald and Betsy Dworkin at Oxford, and dined with James
Mirrlees and his wife. I have a lovely photograph of Kenneth lunching with us in
the court behind our flat.

I talked to Frank Hahn about the best mode of publication of our research and
he was insistent that a scholarly monograph was preferred to publication in an
academic journal. And so I began work on the Cowles Foundation Monograph,
The Computation of Economic Equilibria (Scarf and Hansen 1973), which took
several years to compose, revise, organize and shepherd through the publication
process; it appeared in 1973; with Terje listed as a junior author. Irecommend the
monograph; it contains many mathematical results and numerical examples which
cannot be found elsewhere.

As time went on, Terje’s interests moved elsewhere. He became an economic
analyst and commentator on issues of public policy in Norway and elsewhere.
Terje and I had lunch together in New Haven several years ago. He told me about
the details of his life and professional career and described his many publications.
I suggested that I might send him an email message about an issue that we were
discussing. But Terje said, ‘No, I never use email. In fact I never use a computer
at all. I write all of my books and articles by hand. I gave up the computer
completely after writing my thesis.’

Daniel Cohen’s argument

In January of 1968, I received a letter from Bob Aumann telling me about a paper
by Daniel I. A. Cohen entitled ‘On the Sperner Lemma’ that was published in the
Journal of Combinatorial Theory in June of 1967 (Cohen 1967). In this brief note,
Cohen presents an inductive argument for Sperner’s Lemma that uses the Lemke
sequence of almost completely labelled simplices at a crucial point. Here is a
sketch of Cohen’s argument:

Cohen’s Inductive Proof of Sperner’s Lemma: The first step is as before. We take
an n — 2 dimensional face of the simplex I1, say the face [1" consisting of the vec-
tors in I whose n-th coordinate is zero, and remark on the fact that, by induction,
there will be an odd number of simplices, with n ~ 1 vertices, on that face bearing
the complete set of labels {1, ..., n—1}.

Take one of these simplices with vertices, say, v',..., v"~'. It will be the n — 2

dimensional face of a unique simplex in I, with vertices v!, v, ..., v If "
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have an almost completely labeled simplex which initiates a path of almost com-
pletely labeled simplices. Cohen presents the argument, identical to Lemke’s, that
no simplex is revisited and therefore we terminate with a completely labeled sim-
plex or return to the same face 1", with a different simplex from {¢%, . .., v"™'}.

Each completely labelled simplex on the face 1" is therefore paired with another
such simplex on the same face, or it initiates a path leading to a completely
labelled full dimensional simplex in I1. Since there is an odd number of com-
pletely labelled boundary simplices, there must be at least one path leading to a
full dimensional completely labelled simplex in [I—in fact an odd number of
such paths. This completes the inductive argument.

Cohen’s argument is presented for a general simplicial subdivision. If a special
subdivision were used, with the ease of replacement possessed by Terje’s
construction, the path used by Cohen could be traversed rapidly, starting from an
arbitrary completely labelled simplex on the boundary face. But such a path might
return to the boundary face and we would need another completely labeled
boundary simplex to begin a new path. This is computationally unacceptable since
in the worst case we must find, inductively, all of the completely labeled simplices
on the boundary.

The best way to initiate the algorithm

Let me illustrate the procedure with the 2 dimensional simplex previously drawn.

Begin by adding 3 additional vertices, with their own labels, and new triangles
connecting these new vertices to the boundary intervals of the previous simplex
as shown in Figure 6.3. These new vertices are labeled so that no new completely
labelled triangles have been introduced. We start with an almost completely
labelled simplex on the boundary of the enlarged simplex and follow the sequence
of simplicies until a completely labeled simplex is reached.

Homotopy methods

A dramatic set of improvements in fixed point methods was made by Curtis Eaves
in a series of papers published in the late 1960s and the early 1970s. I met Curtis
in the Fall of 1971 when he presented a lecture in the Department of Administrative
Sciences at Yale. We met again at a workshop in fixed point computations held at
Dartmouth College in the summer of 1972 that was also attended by Terje Hansen
and two young graduate students from the Department of Economics at Yale,
John Shoven and John Whalley, who played an extremely important role in
applying these computational techniques to problems of serious economic
significance, along with Tim Kehoe, Jaime Serra Puche, Marcus Miller, John
Spencer and a number of other remarkable graduate students at Yale.

Curtis visited the Cowles Foundation for the academic year 1974—75. Curtis has
a supple and creative geometrical sense. Concepts and mathematical formulations

that were somewhat cramped and formal for me appear in a much clearer geometric
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2

Figure 6.3 The augmented simplex.

setting for Curtis. In one of his papers, for example, Curtis talks about a piece-wise
linear mapping of a convex polyhedron into itself. The regions of linearity are
themselves convex polyhedra; in each such region the mapping is fully defined by
its action on the vertices. This is a geometric rendition of my more formal notion
of vector labelling.

Curtis also offered his own homotopy method in order to obtain increased
accuracy without fully restarting the fixed point algorithm. Define a ¢ylinder
1 x [0,1] as the product of the underlying simplex T1, and a homotopy interval
[0,1]. The mapping of concern, x — £ (), is placed on the face with parameter 0,
and an elementary mapping with a single known fixed point is constructed on the
face with parameter 1. The cylinder is subdivided, and the mappings on the two
faces are extended to a piecewise linear mapping of the entire cylinder into the
unit simplex. For each value of the homotopy parameter 0 <t<1,the corresponding
mapping, x — f (¢, x), will have its own set of fixed points. The computational
procedure proposed by Curtis is to follow the piecewise linear path of fixed points
from the upper face until it reaches the bottom face with a fixed point of the
original mapping.

Our paper, ‘The Solution of Systems of Piecewise Linear Equations’ (Eaves
and Scarf 1976), is a blending of Curtis” homotopy approach and an elementary
notion of an index associated with simplicial fixed point methods. I remember
remarking to Curtis that I knew which of the two possible directions to take if
I were presented with an almost completely labeled simplex in the middle of a
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path of such simplices. Based on the sign of a particular permutation I could
avoid moving in the direction that returned to the original starting position of
the algorithm. Curtis immediately realized that this observation was capable of
the far reaching generalization presented in our paper. For me, this joint work
with Curtis completed a decade long evolution of the early simplicial methods
for computing a vector in the core of a balanced game to their final form as
homotopy algorithms that follow the solutions of a system of piecewise linear
equations.

Applied General Equilibrium Analysis

My good friend and colleague of many years, T. N. Srinivasan, organized a
conference entitled Frontiers in Applied General Equilibrium Analysis, which
was held at Yale University in April, 2002. The conference was attended by many
of my former students and a goodly number of scholars involved in Applied
General Equilibriumn Analysis in one way-or another. It was suggested, at various

times during the conference, that my algorithm for computing equilibrium prices

had initiated this active and important field. The papers presented at the conference
were collected in a volume edited by Timothy J. Kehoe, T. N. Srinivasan and John
Whalley, which was published in 2005 (Kehoe, Srinivasan and Whalley 2005). I
quote from the introduction to the volume written by the editors:

As applications of AGE modeling progressed, they were taken up by govern-
ments and international organizations around the world. The World Bank,
the World Trade Organization, the International Monetary Fund and govern-
ment agencies in the United States, Australia, Canada, Mexico, the United
Kingdom, the Netherlands, and many other countries all had general equilib-
rium models. The field of AGE modeling as an operational tool in govern-

wmant and nalicy cirelas wae laimeahad
1UCHIL aliu }JUAL\{] ViLwIVGO VY QO AdIvidvAL,

(Kehoe, Srinivasan and Whalley 2005: 5)

The dramatic increase in computational power during the last four decades has
made it possible to replace the original Scarf algorithm, based ultimately on
Spemer’s Lemma, by a variety of alternative techniques that perform effectively
on problems of substantial size. Computational ability is no longer a constraint
in solving large examples. As Kenneth Arrow states in his paper in this same
volume:

What the Scarf algorithm did was to give a license to develop CGE models
according to economic logic and empirical validity. The author did not have

v ;e oo )
to modify the model to consider tractability or computability. Once com-

pleted, the model might be solved in some way that, if it worked, would be
less demanding computationally. But the author or authors knew that there
was a way that would always work and that, with steadily and rapidly
increasing computational power, would likely be practically feasible. It was



72 Herbert E. Scarf

this knowledge that geﬁerated the subsequent explosion in applied general
equilibrium models.
(Armrow 2005: 22)

I met Professor Spemer at a conference on fixed point computations held at the
University of Southhampton in July of 1979: I knew that he would be at the
conference, and after I alighted from the train, I approached an elderly gentleman
who was standing on the platform and asked whether he was Professor Sperner. I
introduced myself and during the long ride to the University, we discussed the
consequences of the result that had appeared in his thesis, written some 50 years
earlier. He had never worked in applied mathematics himself, but he was, I believe,
fully enjoying the widespread consequences of his early research.

Note

1 In this paragraph, and several others, I have modified some material that has been
previously published.
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