ON DIFFERENTIAL GAMES WITH SURVIVAL PAYOHF
H. E. Scarf

§1. SURVIVAL GAMES

In a paper appearing elsewhere in this volume, a class of differ-
ential games with integral payoff's is discussed by Fleming [5]. The games
are deflned and it 1s shown that, under fairly stringent conditions, the
game will have a value and each player will possess e-effective strategles.
We shall, 1n this paper, discuss differential games with a survival payoff.
Basically, because of the fact that survival games may last for an infinite
length of time, and the games dlscuased in the reference mentioned above
are explicitly limited to a finilte tlme, the techniques available for the
treatment of survival games are more lnvolved and comparable results are
more d¢ifficult to obtain, than in the case of games with an integral pay-
off. For these reasons, the emphasis in this paper will be on proving a
result which 1s somewhat weaker than the exlstence of a value for sur-
vival games. What we shall do is define a series of approximating games
with a discrete time parameter, and show that under conditlons similar to
those given by Fleming, both the upper and lower values of the approxi-
mating games converge to the same limit, as the grid size for the time
parameter tends to zeroc.

We shall not make any statements about the convergence of opti-
mal strategles; but, ILnasmuch az the value functlons for the discrete games
characterize optimal play, their 1imlt may be expected to give a reasonable
indication of the limiting characteristics of optimal play.

The discrete games that we are interested in are readily seen to
be generalizations of the survival games considered by Hausner, [8],
Peisakoff, [12], Bellman, [1, 2], Blackwell [2], LaSalle {1}, and Milnor
and Shapley [11]. We consider a bounded n-dimensional region R, with
boundary B. A bournded n-dimensional vector-valued function g(x; vy, z)}
is given, which for each x in R elther 1s a continuous vector-valued
functlon on the (y, 2z} unit square, or is a vector-valued matrix. The
game is piayed as follows: A vector x,, Interior to the region R, i{s
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chosen. On the first move, player I chooses a particular value of ¥ and
player II slmultaneously chooses a particular value of 2z, and subsequently
a stra;ght line is drawn from the point X5 to the point X, = X4t

ag(xo; ¥, z). The players then make another cholce of y and =z and we
draw a straight line from X, to Ky = X, + ag(x1; ¥, z}. This process is
repeated until the path penetrates the boundary, at which polnt the game is
terminated. The payoff is defined as follows: We have a function b(x),
defined and continuous on the boundary B; if the game terminates at the
point X, then the payoff to the first player is b(x), and the second
player recelves the negative of this amount. In order to complete the defi-
nition of the game, we should define the payoff In the event that the game
does not terminate, but, as we shall see, this 13 a matter of indifference
to us. Of course, both players are permitted to use mixed strategles at
every stage of the game. In order to indicate the dependence of this game
upon the perameter & we shall designate this game by Ga'

As & tends to zero, the motion of the game tends more and more
to be described by the equations x - g{(x; y, z), and these are the de-
fining equations of a differential game. Let us sssume for the moment that
Gy has a value WB(X), X belng the Initlal starting point. We shall give
sufficlent conditlons for this sequence of functicns to converge, and also
obtain a system of differentisl inequalitles whose solution represents the
limiting function.

Conditions for the existence of Wé(x) are, at present, known
only for the one-dimensilonal case, but as we shall see later 1n the paper,
it 18 not necessary to assume the exlstence of the value. It will actually
be true that both the upper and lower values fﬁefined appropriately) will
converge to the same limit. We define W;(x) to be the best that player
I can guarantee himself, using mixed strategies, in G,. That is, Wy 1is
the Sup Inf over the payoff, in mixed strategies. Wg(x) is defined to be
the Inf Sup of the payoff. It 1s true that wg(x) < Wy(x).

§2. SURVIVAL GAME3 WITH FINITE TIME

As was mentionsd in the previous section, one of the baslc differ-
ences between survival games and the type of games with integral payoffs
treated by Fleming in [5], is that the latter are played for a finite length
of time, whereas, the former may continue indefinitely. It is possible to
modif'y survival games so as to make them last for a finlte length of time,
and we shall devote this zection to a discussion of games of this sort.

The purpcse wlll be to point out some lmportant differences hetween in-
finite survlival games and their finite counterpsarts.

In order to define the discrete analogues of a finite survival
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game, 1n addition to the data given in Sectlon 1, we have to fix a time T,
and also require that the boundary function b(x) be extended continucusly
throughout the interlor of the reglon R. The game

G?_ (XOJ T )
n

1s deflned as follows: Sterting from X, & broken line path is construct-

ed from X, to x,, and from x, to X,; etc., In the same manner as in
the infinlte survival game described in Section 1, with & = % . If this

path penetrates the boundary before time T, the payoff to player I 1s
b(x), and the negative of this amount to player II, where x 13 the point
of penetration. If penetratlion does not occur before time T, then the
game 18 stopped at time T, and the payoff 1s b(x), where x is the
position at time T.

It 1s easy to seé that

GEl (xo, T)
3

has a value, which we denote by

WE (xo, T).
n

We are Interested in determining a set of comditions which are-aufficient
to insure that '

RZ (xo, T)
n

converges as n becomes infinite.

THEOREM 1. If W(x, T) 1s a continuously differ-
entiable solution of the equation

W
3t

fl

Val ( g¥ » g) »
for x 1in the closure of R and ¢ > 0, which
satlsfies the boundary conditions
1. W(x, t) = b(x)} for x on the boundary,
and any t, and

2. W(x, 0) = b(x) for =x in, or on the
boundary, of R, then
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Lim Wi.(xo, T) = W(xo, T) .
n

This result may be proved qulte easlly, elther by an adaptation
of the argument glven by Fleming in [5], or by o simple argument using the
theory of martingales, and we shall not present the proof here. Actually,
one can go even further, and show that W(xo, T) 13 the value of the
limiting finlte-time survival game, 1f this game is defined correctly.

Theorem 1 suggests that the values of the discrete analogues to
an Infinite survival game converge to the sclution of

Val (%%, g) = 0,

which satisfies the boundary condltion W(x} = b(x) for x on the bourdary.
In general, this 1s false. The slmplest way to see that this conjecture 1s
false is to notlce that, in general, the functional equation

Val(-g%,g)=0,

with the assoclated boundary conditlion possesses more than cne sclutlon.
More specifically, there 1s a large class of functions g, for which the
equation

Val (%}c‘- g) -0

is true for every continuously differentiable function W. The class of
survival games which have this property are the furthest removed, in both
technique and final results, from finite survival games, and it is this
class of games which we shall discuas in the remalnder of this paper.

§3. UNBIASED DIFFERENTIAL GAMES

In the previous section it was mentloned we shall restrict our
attention to a specific c¢lass of survival games, which we shall call un-
biased games. They are, roughly speaking, described by saylng that at
each point nelther player can force any particular directlon.

DEFINITION 1. A differentlal game 1s saild to be
unblased if for every x 1in R, and for every
vector ¢, the scalar product (c, gl(x; ¥, 2)),
when considered as a game over the (y, z) space,
has value zero.
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We shall discuss some examples of unblased games in detall later
on, but let us, for the moment, examlne a specific game in the plane. Let
the region and the boundary value be arbitrary, and let g(x; vy, z) be in-
dependent of x and equal to the matrix

{1, 0) {-1, 0) {0, 1) (o, -1)
{o, -1) {1, 0) (-1, 0) {o, 1)
(0, 1) (o, -1) {1, 0) (-1, 0)

("1r 0) (0; 1) (0, '1) (1; 0)

This game 1s a speciflc example of a general class of unbiased games, 1.e.,
when g(x; ¥y, 2z} 1is given by a cyclic matrix with row-sum equal to zero.
The optiﬁ&l strategy for either player in any projection of the above
matrix, i.e., for any linear combination of the matrices, is to play each
row, or column, with probasbility one-fourth. Inh the game Ga’ all of the
elements of strategy customarily associated with a game are lacking; if
both players play optimally, the resulting stochastlc process 1s a simple
random walk in which the point moves by an amount &, with probability one-
fourth 1n the north, east, south, or weat directlons. The value function
Wo(x1, xe) satisfies the equation

- 8)

Wﬁ(x1, xa) = &-W(x], Xy + 5) + ﬁ-wa(x], X,

1
+ E-Ws(x1 + 8, xz) + %-Wa(x1 - B, Xe) »

and is close to b{u) when x 18 near the boundary point up. It is well-
known that, as & tends to zero, these functions converge. The 1limit func-
tion is harwonic in R and assumes the boundary value b(x).

In the general case our results will be somewhat simiiar; the
primary difference will be the replacement of the Laplaclan by a consider-
ably more complex differential operator. We need some definitions.

DEFINITION 2. We deline Dyz to be the first-order

linear differential operator

k 5]
g (x; 5, 2) = -
%; ox

The operator D§Z is defined to be

2 gx; v, 2 (x5 ¥, 2) —-—E—-ae 5 -
K, 2 ax"ax
»
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DEFINITION 3. We define the operator L{f) to be

5 A2
Lim Va.l”(Dyzd-—a- z)f"/&.

& — o+

This latter definitlon is very important for us, and neesds some
comment. Tet us flrst apply this definitlon to the cyclic game just dis-
cuased. In this case 1t is easy to verify that the matrix

" (DYZ ' %D§Z) f "

becomes
r ) 5 5 5
£y + 5 Ly -f, v 5Ly fo v 38 BT R P
B 5 5 8
L, v+ 5Ly, LR EET -y gy For 3y
B B 5 5
fot 5 TR R £, + 51, -ty v 5 £,
3 5 8 B
-5y v gLy, Tovgly -fo+rafpy Byvz Ty |

which 1s 1tself cyclic and therefore has the value o(f,, + f,,). If we
divide by & and let 8 tend to zero, we see that L(f) 1s, aside from
a constant factor, the Laplacian.

Another interesting case occurs when the functions g(x; y, 2z)
are agaln Independent of x and are glven by the two-dimensional matrix

(1; O) ("13 0)
(-1, 0) (1, o)
(o, 1) {0, -1)

(o, -1) (o, 1)

This game 1s unblased, and the matrix

becomes
£ *'g‘fn - 5 *%fn 1
- % 14 £y« %’f11
fp + 3 Tpp - T, + 3 Tpy
|- fp + 3 o £+ 3 Tap
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The maximizer can ensure himself of at least g-Max (f11’ fss) Dby playing
elther the first two rows (if f., > f£,,) or the last two rows (if

fap > f11) with equal probebilities, and the minimizer can hold him to at
most this amount by playing the two columns with equal probabilities. It
follows that L(f) = 5 Max (f,,, £,,)-

The definitlon of L{f) may be put into another form by means of
a result due independently to Gross [7] and Mills [10]l. It is based on the
observation that L(f) 1s equal to the derivative of

5 2
Val "(Dyz +§Dyz)f"

with respect to B, when & 1is zero.

LEMMA 1. Iet P(f, x} represent the class of opti-
mal strategles for the maximizing player in the game
"E&zf": and Q(f, x) the corresponding class for
the minimizing player. Then

- 1 .
L(f) g%; gig ffe Dyz(f)dp(y)dq(z)

There iz an analogous statement for matrices. The proof of the
statement for matrices may be found in the paper by Mills; the proof of the
statement for the continuous case follows the same lines.

§4. THE MAIN RESULTS

We have given one example, the cyclic case, in which the limit of
the value functions exists,and is equal to the solution of the Laplace
equation which assumes the correct boundary values, that 1s, which is equal
to b(x) on the boundary. In general, the result will be analogous to
this; the value functions, or, i1f these do not exist, the upper and lower
values, wlll converge to the sclution of L(f) = 0, which is equal to
b{x) on the boundary. Our actual technique will be to approach this re-
sult from above and helow, in much the same manner that super- and sub-
hermonic functions may be used to approximate harmonic functions.

THEOREM 2. ILet L{f) be the operator associated with
an unbiased differential game. Let £(x) be a func-
tion wilth continuous bounded derlvatlives up to the
third order in some open set 8 contalning the closure
of R 1in its interlior, and which satisfles the con-
ditions:
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1. L{f) >c >0, for all interior points of R,
2. f(x) < b{x) for x on the boundary B.

Then:
Lim Wg(x) > F(x).
=2 2

—

PROOF. Let us first of all choose & g0 small that, if x 1is
an interior polnt of R, then x + bg(x; y, 2) 1s in 8. We now define
& strategy for the first player in Gg» by defining a set of probability
distributions dp{y; x, ). If the position of the game 1s x, then the
first player is to play y with probability dp(y; x, 8). We define
dp(y; x, &) to be any optimal strategy for the first player in the game

& 2
(DYZ+—2—DYZ)f .

let us examlne the varlatlons 1n the function f(x) as this strategy de-
velops. We know that

f{x + bg(x; v, z)) = f{x) + agyzf(x)

2
B° 2 3
+ Tr—r%zf(x) + 8°r(x, 5) ,
where r(x, 8} is bounded for all & and X Iin the reglon. If we imagine
the play to have started at X, and 1f (xn) represents a typlcal se-
quence of plays, then we may say that

5 2 3
E (f(xn)lxo, sees Xy ) > f(er) + B Val " (Dyz + -Q-Dyz) r “ - 5°M.

The way in which we have chosen the strategy for the flrst player impliles
that

E (f(xn)[xo, e, xn_1) > f(xn_I) + c8® - 8,

and for & sufficiently small

052

E(f(xn”xo’ tecs X1r1--1) zf“(xn—l) M-

Since the function f(x) 1s bounded Inside the region R, we
can deduce that with probability one the sequence (xn) will leave the
region. Let n* represent the random varilable which is the length of time
that the process continues; that i1s, n* 1s the number of steps, starting
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from X, and continulng until the process penstrates the boundary for the
first time. It is a standard result from the theory of martingales that
E(f(x,,)) > f(x,) [4, p. 302]. The point x_, 1s within &M of the
boundary point x, if this 1s the polnt of penetration of the boundary;
and since f 1s continuous, we may conclude that E(b) > f(xo) - €, where

e tends to zero with 8. It follows that
Lim Wy(x) > £(x).
—.-_bo

It 1s not difficult to give conditions which guarantee that the
class of functions satisfying the conditionsa of the theorem is not empty.
One condition, which we shall not use later, is that |g(x; y, z)|° be
bounded away from zero. Consider the function f£(x)} = %lxl2 - d, where
d is a positive constant chosen so large as to make f£(x) less than the
minimm of b{x). Then D?Z(fl is equal to |g{(x; ¥, z}le, and if ¢
is positive and less than the minimum of %4g(x; ¥, z)1? we eagily obtain

Jf + v, (0 )amiy daata) > o

for any distributions p and g. Applying Lemma 1, we See that L{f) > c.

It iz clearly possible to reverse the conditions of Theorem 2,
‘ard obtaln an upper bound for

T Wi(x)
5 —» 0O
We would, in this case, be dealing wlth the analogue of a superharmonic
function. Continuing in this spirit, let us deflne two classes of functions.

DEFINITION 4. A function f£{x) will be said to be in
class M+, i1f 1t has continuous bounded derivatives up
to the third order in some open set containing the closure
of the region R, satisfles L(f) > c¢ > 0 1nslde the
reglon, and is less than or equal to b on the boundary.

DEFINITION 5. A function f(x) willl be said to be in
class M, I1f it has continuous bounded derivatives up
to the third order in some open set containing the
closure of the reglon R, satlsfies I(f) < c < 0 in-
side the regilon, and is greater than or equal to b

on the boundary.

Our results so far may be summarized by saying that any function

* 1s a lower bound for

in M
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Lim wg(x) .

5 —s 0

Tt 1s also true that the polntwise Sup of all functions in M+, which we
denote by W+(x), i3 a lower bound for '

Iim wg(x) :

5 e O

and similarly the function W (x), defined to be the pointwilse Inf of
all functions in M~, forms an upper bound for

Tim Wg(x) .
5 —0
Suppose that we can demonstrate that WHix) = W (x) = W. Then
WHx) < Lim Wi(x) ¢ TIE Wglx) < W (x);
§ ——0 B —e0O

and 1t follows that Wy(x) and Wg(x) both converge to W. Our goal will
therefore be to impose & sufficient number of conditlons on the differential
game so that, first of all, the classes M' and M~ are each non-empty
and second, that W' be equal to W . We shall, in the following theorem,
present such a set of conditions. They are certalnly unnecessarily strict,
and it is quite probable that a closer snalysls of the problem will un-
cover o more satisfactory set of sufficlent condltions. We shall, in the
discussion following the theorem, present several alternative sets of
conditions.

THEOREM 3. Let the functlons g{x; y, z) have the
property that any palr of optimal strategies in the
scalar product game (c, g(x; ¥, z)), for c differ-
ent from zero, produce E{(c, g{x; ¥, z))al > 0.
Uniformly in x.

Let W{x)} be a functlon with continucus bounded
derivatives up to the third order in socme open set
containing the closure of R in its interior, and
which satisfies the conditions:

1. L(W) = 0, for all interior points of R,

2. W(x) = b(x), for x on the boundary B,

3. The gradient of W is different from zero
in R.

Then W;(x) and wg(x) both converge to W(x}.
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PROOF. Let us first notice that the condition imposed on the
functions g(x; y, z) is sufficlent to guarantee that the classes M’ and
M are both not empty. We use the same [unction as before, that is,

f(x) = |x| - d, so that I§ (£) = |g{x; ¥, 2)|%, which in turn is great-
er than [{e, glx; 7, 2))] /|cl for any non-zeroc c¢. It follows that 1f
both players play optimally in (c, g(x; ¥y, z)), then E(Qyzf) >0, and
this 1s sufficlent, if we recall Lemma 1, to put f 1n M*. In a similar
manner, a member of M~ may be defined.

A1l that remains to be shown 1s that W' 1s equal to W . Let
us conslder the functions

W (x) = Wx) - ¢ Max b%(x) + eW(x) .
XeB

We wish to show that each one of these functions is in M'. It 1s clear
that W_{(x) ¢ b(x), for x on the boundary. Let us now show that
L(W ) > o. If we refer to Lemma 1, we recall that L(H ) 18 equal to
5 Max Min E( We), when both players play optimally 1n the game Dyzwe'
But zw€ 1+ aew)gyzw, 30 that 1f e 4is chosen so0o small as to make
(1 + 2e¥) positive, we see that L(W.) is equsl to z Max Min E(TC,W.),
when both players play optimally in D W. But since 2ZWE is equal to
{1 + 2eW) z" + 2¢( W) ,  We con01ude that L(We) = {1 + 2eW)L{W) +
2eE(( 7 W)€l. 8ince L(W) = 0, and our assumptions about the nature of
g{x; ¥, z) and the non-vanishing of the gradlent of W imply that
E((D;, )} > 0, we see that W, 1s in M'.

W' was defined to be the sup of all elements in MY, so that

W, sW. Wnen ¢ tends to zero, W, tends to W so that W< W'. In
the same manner we conclude that W > W . We have remarked previously that

Wo> W'. It 1s therefore true that W' = W~ = W, and the theorem is proved.
§5.  REMARKS

1. We would, first of all, like to comment upon some of the con-
ditions imposed in Theorem 2. There are many examples 1n which the con-
ditions of Theorem 2 are viclated, and in which convergence occurs. If we
examine the example in Section 3 in which L{(f) turned cut to be
Max(f1, fe), we see that it violates the condition that optimal strategles
in any projection actually produce non-zerc motlon in that projection (this
is the verbal translation of the first condition in Theorem 3). It 1s,
however, true that if L{(W) = 0, then L(W + %alxia) is greater than
zero for positive o, and less than zero for negative o. This is
sufficient to prove that there are functions arbltrarily close to W which
lie in M+, and ones which lie in M~, and this 1s the basic idea of Theorem
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2. It ls also possible, in this case, to dispense with the condition that
the gradient of W be different from zero. In general, if L(f + -g-]xl2

is greater than L{(f) for o positive, and less than L(f} for « nega-
tive, then the exlstence of a solution to L(W) = 0, with the correct
boundary conditions, is sufficlent to yield the concluslon of Theorem =z.

It would be very interesting to see what classes of games produce operators
with this property. It is, of course, the non-linearity of the operator
L{f) which makes 1t difficult to obtain any general results about ita
behavior.

2. We have restricted our treatment sc far to unblased differentlal
games. In this type of game, nelther player has the option of forcing the
expected change of position to be in a favorable directlion. He must, at
egach stage of the game, rest his hopes upon the variance of his cholces.

It 18 preclsely thls feature of unbiased gamesa which gives rise to oper-
ators which resemble elliptic second-order differentlial operators.

In general, survival games are not unbiased. For example, 1f we
expect the limiting game to have pure strategies for each player, then 1t
seems unreasonable to lmpose a condition which makes the choice of the
variance the only strateglc element. It 1s qulte possible, however, that
in a game which 1s not unblased, the players may, at various moments, be
forced td pay some attention to the variance of thelr moves, so that the
resulting play will be governed by a combination of flrst- and second-
order operators.
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