13

The Optimality of (S,s) Policies
in the Dynamic Inventery Problem

HERBERT SCARF
Stanford University

1. Summary

This paper considers the dynamic inventory problem with an ordering cost
composed of a unit cost plus a reorder cost. It is shown that if the holding
and shortage costs are linear, then the optimal policy in each period is
always of the (S,s) type. More general conditions on the holding and
shortage costs are given which imply the same result. ‘A similar result is
also given in the case of a time lag in delivery.

2. Introduction

An elaborate discussion of the history and general features of the inventory
problem may be found in [2]. We shall content ourselves here with a brief
description of the type of model introduced in [1] and discussed by a number
of subsequent authors ([2], {3], [4]).

A sequence of purchasing decisions is made at the begmnmg of a number
of regularly spaced intervals. These purchases contribute to a build-up of
inventories which are then depleted by demands during the various intervals.
We shall assume the demands to be independent observations from a common
distribution function, though varying distributions may be treated by the
same technique.

Various costs are charged during the successive periods, and the objective
is to select the purchasing decisions so as to minimize the expectation of
the discounted value of all costs. There are, generally speaking, three types
of costs: a purchasing or ordering cost ¢(z), where z is the amount purchased;
a holding cost A(-), which is a function of the excess of supply over demand
at the end of the period; and a shortage cost p(-), which is a function of
the excess of demand over supply at the end of the period. Holding or
shortage costs are charged at the end of every period, and ordering costs
are charged when a purchase is made. We shall assume initially that
purchases are made only at the beginning of the period and that delivery
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is instantaneous. In Section 4 the case of a time lag in delivery will be
discussed.
" If the stock level immediately after purchases are delivered is y, then the
expected holding and shortage costs to be charged during that period are
given by

(1 — o + | se —nowar  yzo0,

1 Lyn=1{"
L BE — Y)(ENE y<0,

where ¢ is the density of the demand distribution.

Let us assume that the inventory problem has a horizon of # periods and
that the problem is begun with an initial inveatory of x units. Let Gi(x)
represent the expected value of the discounted costs during this n-period
program if the provisioning is done optimally. (The discount factor will be
denoted by «, and will be between 0 and 1.) Then it is easy to see that
Ca(x) satisfies the functional equation

@ Cal®) = rvnzin {c( y—2+ L+ chan_x(y — ) dE } ;
z 0

and that if ya(%) is the minimizing value of y in (2), then y»(%) — x represents
the optimal initial purchase. The purpose of this paper will be to show
that under surprisingly weak conditions the optimal policy will be of a very
simple type. .

Let us begin by reviewing some of the work that has been done on the
one-period problem (z=1, and C;, = 0). The single-period problem is
essentially a problem in the calculus and a considerable amount is known
about it, in distinction to the sequential problem [2, chap. 8. The simplest
case is when the ordering cost is linear, i.e., c(z) =c -z In this case the
optimal policy for the single-period model is frequently defined by a single
critical number %, as follows: If *r< %, buy ¥—x, and if x> %, do not
buy. Analogous results frequently hold in the sequential problem, the optimal
policy being defined by a sequence of critical numbers i, %, ---; see [3].
A sufficlent condition for these results to hold is that L(y) be convex, a
condition which obtains when the holding and shortage costs are each convex
increasing functions which vanish at the origin. A number of other sufficient
conditions for the one-period mode! and the dynamic model are given by
Karlin in {2, chaps. 8 and 9, respectively].

The situation is considerably more complex when the ordering cost is no
longer linear. We shall concentrate on the simplest type of non-linear cost:

_{0 z=0,
@ C(z)—{K-i-c-z z>0.

K is usually described as the reorder cost.
With this type of ordering cost the optimal policy in the single-period
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model is frequently defined by a pair of critical numbers (S,s) as follows:
If x<s, order (S— x), and if x> s, do not order. There are examples in
the single-period model in which such a policy is not optimal. However, if
the holding and shortage costs are linear functions of their arguments
[h(w) = h -« and p(u) = p - «], or more generally if L(y) is convex, then the
optimal policy for the single-period model is (S,s) [2, chap. 8}

However, even with the assumption of linear holding and shortage costs,
the literature is very meager on the properties of optimal policies for the
dynamic model. Bratten has shown (see {2, chap. 9]) that if the density of
demand is decreasing, the optimal policy for the dynmamic model is defined
by a sequence of pairs of critical numbers (S, s1), (Se, s2), =--. The only
other result is due to Karlin [2], viz.: if ¢ has a monotone likelihood ratio,
if the holding and shortage costs are linear, and if ¢ + 2 > ap, then the
optimal policy is of the same sort. Both of these results are rather restrictive,
the former because it requires a decreasing density, and the latter because
of the severe constraint on the costs.

In this paper we shall show that when the holding and shortage costs are
linear, or more generally when L(y) is convex, and the ordering cost is as
described above, the optimal policy in the dynamic problem is always of the
(S, s) type without any additional conditions.

The two results mentioned above are based on a study of the functions

@ Galy) = ey + L(3) + ag”cn-w — Bo(®) dF .

It is optimal to order from =z if and only if there is some y larger than x,
with Ga(x) > K + Ga(3); and if we do order from x, it is to that y > x which
minimizes Ga(y). [See (2).] When either Bratten’s condition or Karlin’s
condition is assumed, it may be shown that Gi(y) decreases to a minimum
and subsequently increases. If the minimizing value of y is denoted by S»
and if s, is defined by

)  Galsw) = GalS) + K,

then the policy defined by (Sa,ss) is indeed optimal. However, a few
numerical calculations are sufficient to show that the functions G» do not
always have this regular behavior; they may actually have a number of
maxima and minima. The idea of the proof given in this paper is that
although Gr may have a large number of maxima and minima, the oscilla-
tions are never sufficiently large to cause a deviation from the (S, s) policy.

Explicitly, what we shall demonstrate is that if L(») is convex, the
following inequality holds: Lef @ = 0; then

(6) K+ Gn(a + x) - Gn(x)‘—— GG;(x) g 0.

To see that (6) implies that the optimal policy is (S, s), let us examine the
accompanying graph of Ga(x), which illustrates a typical case in which more
complex policies are to be expected. With this type of graph for G., we
would order in interval I to the point S, not order in interval II, order in
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IIl to S, not order in 1V, order in V to S and not order in VI. But if (6)
is correct, this sort of graph is impossible; for let *t+ 2= S and x be the
point in III at which the relative maximum is attained. For this value of
x, Ga(x) =0, and (6) implies that K + Ga(S) — Ga(x) = 0, which contradicts
the graph. The same argument may be applied to the point S,

K
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3. The Case of Zero Time Lag

In this section we consider the case in which delivery of orders is instanta-
neous. It will be shown thatif L(x) is convex and the ordering costs are
given by (3), the optimal policies are of the (S, s) type.

In order to demonstrate (6) we shall make use of the following definition:

Derintrion. Let K =0, and let f(x) be a differentiable function. We say
that f(x) is K-convex if

(7 K+ fla+ 2 — flx) —af (x) = 0, for all positive a and all x.

If differentiability is not assumed, then the appropriate definition of K-
convexity would be,

® K+fla+x—f—a [L"):{L"“—b)] >0.

Inasmuch as our applications will be to differentiable functions, we shall use
(7) rather than (8). It may be shown that (7) implies (8), and of course (8)
implies (7) if f(x) is differentiable.

There are a number of simple properties of K-convex functions which
will be of some use to us:

(i) O-convexity is equivalent to ordinary convexity.

(i) If flx) is K-convex, then f(x + k) is K-convex for all 4.

(iii) If fand g are K-convex and M-convex, respectively, then af + 87 is
(K + BM)-convex when « and S are positive. This property may be
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extended to denumerable sums and integrals whenever the interchange of
limits is permissible.

Now let us turn our attention to a proof of (6). We shall show inductive-
ly that each of the functions Gi(x), Gi(x), ++- are K-convex. G: is clearly
K-convex, since Gi(x) equals cx + L(x), which is O-convex and therefore
K-convex. Let us assume that G, +++, Ga are K-convex. If we examine (4),
we see that in order to demonstrate the K-convexity of Gn..{%), it is sufficient
to show that

S'c,.(x — Bell) dE

is K-convex, and by properties (ii) and (iii) above, it is sufficient to show
that Ca(x) is K-convex.

The K-convexity of Ci(x) may be shown as follows. We first notice that
the argument of Section 2 demonstrates, as a consequence of the K-convexity
of Ga(x), that the optimal policy for the n-period problem is (S, s). In other
words, if S, is the absolute minimum of G.(x), and if s, is defined as the
value of x < S, satisfying K + Ga(Ss) = Gn(sa), then the optimal policy is to
order to S. if x < s, and otherwise not to order. Therefore

K+ C(Sn"‘x)"i'Cn(Sﬂ)aK—CI"i'Gn(Sn) < $n,

® Calx) = { —cx+ Go(®) 2> 5n.

We shall use (9) to demonstrate the K-convexity of C.(x). We distinguish
three cases, using the notation of (7).
Case 1. x> sa.

In this region Ca(x) is equal to a linear function plus a K-convex function
and is therefore K-convex.

Case 2. x<sn<x+a
In this case
K+ Calx + @) — Calx) — aCh(x) = K+ Calx + @) — Calx) + ac,

and this is positive since

Ca(x) = min {K +o(y— 9+ L)+ ag:c,._x(y — E)(E) df}

y>z
£K+ca+ Lix+a)+ cxrcn-l(x-!- a—§EeE)df
0
=K+ ca+ Cilx + a).

(We use the fact that x + a > s», and therefore it is optimal not to order
from x + a.)

Case 3. z+ a< sa.

In this region Ca(x) is linear and therefore K-convex. This completes the
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induction, and demonstrates the optimality of (S,s) policies for the case
considersd in this section.

4. The Case of a Time Lag in Delivery

When there is a time lag in delivery, the character of optimal policies is
very much dependent upon whether excess demand is backlogged or expedited;
see [2, chap. 10]. If excess demand is backlogged, it is known that the
optimal policy is a function of stock on hand plus stock ordered but not yet
delivered, whereas if excess demand is expedited, the optimal policy never
has this simple form. We shall restrict ourselves to the backlog case.

Let the time lag be denoted by 4, so that an order placed at the beginning
of a period is delivered 1 periods later at the beginning of the period.
Consider a problem with a horizon of »n periods. Let x represent current
stock, x1 stock to be delivered at the beginning of the next period, and
generally speaking, %; stock to be delivered j periods later, where j =
1,2,---,A—1. Let Cilx, x1, +-+, 2a1) be the minimum expected cost for
such a program. Then it is easy to see that this function satisfiles an
equation analogous to (2), namely

(10) Cn(x, X1, o0y xA—I)

= min {a(z) + L)+ “E Cosle + 31— &, 30+, OV EE}
20 0

and that the minimizing value of z in this equation represents the optimal

purchase.

We shall next demonstrate that if L(x) is convex and the purchase costs
are given by (3), the optimal policy is described by two numbers Sa and s»
as follows: If x4+ xm+ -+« + xa1> sa, do nNot order; if x+ 5+ -+ + 201 < Sn,
order up to Sa.

The proof begins with a repetition of the argument in [2, p. 159]. It
follows from (10) that C, may be written in the following form (for n = ):

(1)  Calx, z1, Xz, ¢ -+, 2am1)
= L(x) + aS-L(x +a—8EeE)dE+ ---
a

+ aHS' " E"L (x4 + 5 s ENoE) -+ plrnn) dEs - dEn

0 [ iml
+falx+ i+ o+ aaa),
where fa(x) satisfies the functional equation

Y

12) falw) = rzr;ion {c(z) + akg .. E:L (u +z— g"t‘>¢(§‘) coe BN dEL -+ dEN

+ aS:fu_l(u +z— Ewl®) dE } -
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it follows also from (10) that the minimizing value of z gives the optimal
purchase if

A-1

x+ Zx;=u.
=1

(The initial conditions are fi{u)= --- = filw) =0.) If we write y = u + 2,
then (12) is identical with (2), except for the fact that L(¥) has been replaced
by

oe o A
axg e S L(y - 2';’()(&’(&'1) s p(EN) dEL -« - dEa
1] [ (=]

However, if L(y) is convex, then its replacement is also convex, and this is
all that is necessary to repeat the argument of Section 3. This concludes
the proof of the optimality of (S,s) policies in the time-lag case.
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