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1. Decision Problems

The last decade has seen a rapid spread of the use of scientific dis-
ciplines in the rationalization of management decisions, a movement
symbolized by the terms ‘‘operations research” and ‘* management
sciences.”” There has been a steady interplay between the more careful
formulation of business problems and the development of mathematical
tools for their solution, such as linear programming, information theory,
gueueing theory, and various new concepts in statistics.

The problems of business management come under the general head-
ing of decision problems. A decision problem has typically four parts:
(1) a model, expressing a set of assumed empirical relations among a
set of variables; (2) a subset of decision variables, whose values are to
be chosen by the firm or other decision-making entity ; (3) an objective
Sfunction of the variables in the model, a function such that a higher
value represents a more desirable state of affairs from the viewpoint of
the firm ; and (4) computing methods for analyzing the effects of alter-
native values of the decision variables on the objective function. Ide-
ally, we would like to have computational methods which lead to an
optimal solution—that is, to the determination of those values of the
decision variables which maximize the objective function subject to
the constraints implied by the model. Where no optimal solution can
be found {as often happens in the present state of decision theory), we
seek at least to determine the value of the objective function for any
given set of values of the decision variables. We may refer to this
sort of solution as a descriptive solution. We shall have oceasion in
this book to develop both optimal and descriptive solutions for different
decision problems.

In the present work we are interested in descriptive solutions prima-
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rily as an aid to determining good policies. Such solutions may at
least enable us to accept or reject certain values of the decision varia-
bles as leading to satisfactorily high or unsatisfactorily low values of
the objective funection, or to compare a limited number of salternative
policies. In this way, deseriptive solutions are a partial substitute for
optimal solutions. Moreover, in other contexts the economist, interested
in describing the economy as a whole rather than in giving advice to
individual decision-makers, will be able to make use of the techniques
developed here for descriptive solutions whenever he is in a position to
make assumptions about the decisions of the entrepreneurs. Such
studies have been made, usually in connection with business cycle
analysis (see, for example, Abramovitz [1], chap. i and pp. 127-31:
Whitin [16], chaps. ii and v), but usually only with respect to grossly
oversimplified models,

The term ‘‘computing methods’” is, of course, to be interpreted
broadly as the mathematical specification of algorithms for arriving at
a solution (optimal or descriptive), rather than in terms of precise pro-
gramming for specific machines. Nevertheless, we want to stress that
solutions which are not effectively computable are not properly solutions
at all. Existence theorems and equations which must be satisfied by
optimal solutions are useful tools toward arriving at effective solutions,
but the two must not be confused. Even iterative methods which lead
in principle to a solution cannot be regarded as acceptable if they
involve computations beyond the possibilities of present-day computing
machines.

The acceptability of a solution is thus relative to computing technol-
ogy. With modern developments, straightforward simulation of intricate
situations with little or no loss: in essential features is sometimes
posgible, so that descriptive solutions are possible with little abstraction
or preliminary mathematical analysis. Some use has been made of these
procedures in the study of inventory problems. A procedure of this
sort involves a priori selection of what is considered to be a reasonable
class of inventory policies. Each possible policy is then tested in the
computer’s simulation of the model, and the appropriate policy is
selected according to the objective function.

In most practical problems of any complexity, however, if the number
of reasonable strategies is at all large, the machine time of simulation
is apt to be prohibitively costly, if indeed it is at all possible. Tt is
at this point that theoretical discussions of decision problems become
essential. In a descriptive solution it may be possible, given initial
assumptions about the elements of the model, to give a quantitative
description of its workings by theoretical analysis. The role of the
computing machine is then reduced to the evaluation of formulas, which
will usually be far less costly than direct simulation. There will still
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remain the problem of choosing among alternative policies by carrying
out the computations for each. But in some cases we can actually
arrive at optimal, not merely descriptive, solutions, and this is the
best situation of all.

Immediate application to practical problems is not the sole justification
of theoretical work. We do not expect that the results of this book
will always or even frequently be applicable directly to practical prob-
lems. We do feel that they represent progress in understanding the
phenomena involved. The situation is analogous to that in many branches
of applied mathematics, in which theoretical constructions furnish
the conceptual framework for practical decisions rather than a complete
procedure for decision-making in all cases. In many cases, the model
is not a complete representation of the true situation in all its com-
plexity, but a simplified version amenable to analysis. The solution to the
model will not be strictly applicable in all its quantitative features; but
it will call attention to the chief qualitative features of the appropriate
policy, the form it will take, and the directions in which it ean be
expected to vary with changes in the underlying parameters. This
qualitative information can be very useful in improving the intuition
of the decision-maker, helping him to organize his data and his direct
knowledge, and reducing the field of alternative policies to manageable
proportions.

2. Inventory and Production Problems

We shall not attempt to give a precise definition of the area to be
included under the heading of inventory and production problems. Only
through a study of typical models can one acquire a sense of the scope
of the subject. An inventory is a stock of goods which is held or stored
for the purpose of future sale or production. Some of our problems
deal only with inventories, others with situations in which the possibility
of holding inventories has repercussions on production policy by loosen-
ing the relation between production and sales, In some cases studied,
it would be rather difficult to identify any component of the problem
as being an inventory in any strict sense. But there is a similarity of
structure in all these problems in that there is an element of interaction
between the present and future policies; decisions made today affect
the limits of and profitability of future decisions.

An inventory problem might, for example, involve deciding how much
typing paper to stock each month for an office, or how many spare
parts to keep on hand for a given machine. When production is in-
volved, the inventory problem might require determining how much wheat
to plant per year or how much gasoline of a certain variety to have
blended. How much water to release from a dam for electricity and
irrigation purposes is an inventory problem ; how many workers to hire
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for a given labor force is another. Inventory problems may involve
scheduling, production, determining efficient distribution of commedities
in certain markets, finding proper replacement policies for old equip-
ment, determining proper prices for goods produced, or combinations of
these elements.

3. Cost and Revenue Considerations

Basically, inventories constitute an alternative to production in the
future. To have available one unit of product tomorrow, we may either
produce (or purchase) it then or produce it today and store it until
tomorrow. The choice between the two procedures depends upon their
relative profitability, Heciding inventories usually involves storage costs:
it also means that eapital is tied up which might be invested elsewhere,
On the other hand, it may be that production tomorrow is more expensive
than production today for any one of several reasons. If unit production
costs increase with the scale of operations and if more is being planned
for tomorrow than for today, it will be cheaper to produce an additional
unit today. If, on the other hand, unit production costs decrease with the
scale of operation, it may be profitable to produce a great deal today to
derive the benefits of the economies of scale and store the product for
tomorrow. Changing the rate of production may be so costly that it pays
to produce more today than is needed today and the opposite tomorrow,
holding inventories to bridge the gap. It may even be impossible to
produce tomorrow. In general, a failure to meet demands will result
in some loss by the firm. We will now examine these various cost
elements in somewhat more detail.

The Cost of Ordering or Producing. In stocking any commodity, there
will be a cost ¢(2) to ordering or producing a given amount z of the com-
modity. Various assumptions about the cost function ¢(z) appear reason-
able in different eircumstances. The simplest is that the cost of ordering
is directly proportional to the amount ordered. Another common situ-
ation is that ¢(z) is a concave function of #z, which means that each
additional unit costs less. A special case of this would obtain when ¢(z)
is composed of a cost proportional to the amount ordered plus a set-up
cost which is constant for z positive and zero for z = 0. In production,
the set-up costs can be due to the preliminary labor and other expenses
of starting a production run (e.g., setting a lathe); in ordering, the
set-up term is due to the administrative expenses of processing the order.
Concave cost functions also arise whenever there are economies to large-
scale production, usually by making profitable the use of more expensive
machinery. If the firm is ordering rather than producing, any economies
of scale in the firm from which the ordering takes place will be reflected
in quantity discounts.

On the other hand, ¢(z) may be a convex function of z when addi-



20 STRUCTURE OF INVENTORY PROBLEMS

tional output requires hiring additional workers and purchasing additional
equipment without increasing the size of the plant as a whole, so that
production becomes less efficient. In a specific problem, a realistic cost
function may be made of pieces, each of which is either concave,
convex, or linear.

Storage Costs. A second set of costs is assoclated with the stock of
inventories on hand (the cumulated excess of supply over demand).
Storage or handling costs may be incurred by the actual maintenance
of stocks or the rent of storage space; or, in a more generalized form,
they may be a measure of obsolescence or spoilage.

For example, a firm’s fleet of trucks gives rise to storage costs in
the forms of maintenance and of replacement because of aging or
obsolescence. Another firm produces electronic equipment that becomes
defective if stored without use. In this case the value of a certain
fraction of the current inventory could be considered as a storage cost;
an alternative procedure would be to consider the cost of repairing a
defective item as a storage cost.

It will usually be assumed here that storage costs are proportional to
the gize of the stock of inventory, and for many purposes this approxi-
mation is adequate. However, other cases should be considered. For
example, if storage takes place in a warehouse, the unit storage cost
may jump from zero (when the amount stored does not exceed the
capacity of the warehouse) to a large positive number (representing the
cost of hiring space elsewhere).

Discount Rate. If a firm produces or orders and then stores, it is laying
out money which will not return to it for a while. It could, instead,
have invested this money elsewhere, say in government bonds which
are absolutely secure and yield a return of 4 per cent. The firm thus
has the alternative of receiving $1.04 a year hence for each dollar
invested today. Therefore, it should regard any return of $1.04 a year
hence in its production and sales operations as equivalent to $1.00 today ;
or, put alternatively, a dollar profit a year hence is to be evaluated as
equal to a dollars today, where a = 1/1.04. The quantity a is referred
to as the discount rate. Thus in arriving at the net benefits of an
inventory policy, the net receipts of the current period should be added
to ¢ times the net receipts a year hence. The discount rate for dollars
two years hence would be @ since if the bond investment alternative
were adopted, the entire $1.04 available one year hence could be rein-
vested. Similar considerations apply for further periods.

The period of one year is, of course, chosen arbitrarily for illustration.
However, it is clear that for short periods, ¢ may become very close
to 1; hence, in an inventory problem where the relevant time horizon
is very short, discounting is unimportant, and for practical purposes we
may let ¢ = 1. The discount rate is of most consequence when the
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planning period of the firm extends into the far future. The dis-
counted returns of the very far future become negligible.

We have introduced the concept of discounting with regard to the
alternative of investment in government bonds, but other alternative
investments may be available to the firm. For example, a firm with
several types of processes may have within it an alternative investment
which has a higher rate of return than that on government bonds; in
that case, the discount rate should be computed from the best alterna-
tive investment available.

Penalty Costs. The storage cost arises because supply (including both
current output and acecumulated stocks from the past) exceeds demand :
the penalty cost arises when demand exceeds supply. It may be im-
possible (or possible, but too costly) to guarantee that demand will be
met under all circumstances, especially when future demands are uncer-
tain. The failure to meet demands generates costs, though in different
ways under different circumstances. A simple example of penality costs
occurs in stocking spare parts for a given machine. When the parts
are not available, the machine becomes inoperative and its output is
lost to the firm.

Although the form that penalty costs take is related to the structure
of the model, which will be discussed below, two extreme cases may
be visualized here. One possibility is that if a demand occurs beyond
the available inventory, it will be met by a priority shipment. In this
case, the penalty cost would be measured by the difference between
the cost of priority shipment and the cost of routine delivery or pro-
duction. Another extreme case is that any demand which cannot be
satisfied out of stock is backlogged and satisfied when the commodity
becomes available. In this case, the penalty cost would be the loss of
the customer’s goodwill and his possible future unwillingness to do
business with the firm. Such a penalty cost is real but may be very
hard to measure in any precise sense.

As in the case of the cost function for ordering or production, a
variety of assumptions about the shape of the penalty cost function are
possible in varying circumstances. The simplest, again, is that penalty
costs are proportional to the amount of shortage. In industrial
applications, it may be that the penalty cost should be a convex function—
i.e., small shortages are of little consequence but larger ones create
more than proportionately great difficulties for the customers. In
military applications, it is sometimes held that a given amount of ma-
terial must be available for success in a mission and that any short-
age at all will cause failure; in that case, the penalty cost function
is discontinuous, being a positive constant for positive shortages and
zero for a zero shortage.

Revenues. In the models studied in this book and indeed in most of
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those in the literature, it will be assumed that both the price and the
demand for the product are independent of the firm's control. Under this
assumption, the stream of revenues from sales is the same regardless of
the inventory policy of the firm, and hence can be disregarded in further
analysis except for the situation in which the firm is unable to meet a
demand. This situation c¢an be handled by including in the penalty
cost the price which would have been obtained by sales.

Other assumptions about price and demand are possible, as we have
seen in Chapter 1, Section 3. The cases studied here are of the con-
stant-price variety, but one may also consider the perfectly competitive
and imperfectly competitive cases: in the first, prices are given to the
firm (though possibly changing over time), but sales are completely
within its control: in the second, both price and sales are decision vari-
ables, but sales are a given function of price.

Cost of Changes in the Rate of Production. In some cases, a change
in the rate of production leads to costs which are different from those
associated with continued production at the new rate. They are asso-
ciated with the derivative of the rate of production, not with the rate
itself. Partly they are what is referred to in economics as ‘‘the excess
of short run over long run costs.”” Thus an increase in production
may require a rapid increase in some variable factors for a period
in which other factors, such as equipment, cannot be increased, and
therefore a temporary increase in total costs will oceur which will be
reduced as relatively immobile factors become adapted to the new
production level. There are other elements in the cost of changing the
rate of production: the hiring of inexperienced personnel, the need
for learning new organizational methods appropriate to a higher produe-
tion rate, the breaking-in of new equipment. There may even be
costs to reducing the rate of production, such as those involved in
separation of personnel (intensified by guaranteed wage plans) or in
making special provisions for the care of inactive equipment. Ordinarily,
the costs involved in reducing the rate of produetion would be expected
to be much smaller than those involved in increasing it.

Salvage Costs. Suppose we analyze an inventory problem only with
respect to a single time period. Then at the end of the period we may
have stocks left over. These stocks have a value; at the very least
they can be sold for some price. A salvage value must therefore be
included in analyzing the problem ; the negative of the salvage value
is referred to as a salvage cost. The salvage cost may be positive if
there is a cost to disposal of the surplus. For most purposes, it is
more appropriate to assign the inventories a salvage value which is equal
+o0 their value to the firm itself in its future operations. In this sense,
the salvage cost is a fictitious cost which would not appear in the prob-
lem if an analysis were made of all future time periods.
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4. Demand

Inventories are, of course, held for the ultimate purpose of satisfying
demands. A number of alternative assumptions are possible and appro-
priate in different circumstances.

As we have already noted, virtually all work in inventory theory
assumes that the demand is independent of the firm's eontrol, although
other assumptions are certainly reasonable in some conditions. Even
with this restriction, we may still have the choice of assuming
that demand can be perfectly foreecast or that it cannot, and that
demand conditions do or do not remain stable in future periods.

The case where the demand for the commodity in subsequent time
periods is regarded as known may be referred to as the deter ministic
case. In most of the interesting analyses in this field, the demand is
not assumed constant over time. We thus have a sequence of future
time periods for each of which the demand is assumed known, though
it will in general vary from period to period. The deterministic case
is studied in Part II of this book.

If the demand is not assumed to be known ahead of time, it is very
convenient and sometimes justifiable to assume that the demand in each
future period is a random variable with a known probability distribution.
Although in principle this distribution may be known to change from
time to time (e.g., when there are seasonal! fluctuations or a long-term
trend), in practice we are confined to assuming the distribution of
demand to be the same in each future time period. A variation of
this assumption is that the size of each demand is fixed but that the
times at which the successive demands come are random variables.
Under this assumption demand is considered as a continuous time sto-
chastic process, and this is frequently more appropriate when it is pos-
sible to place orders at any moment of time. In most examples in
which this concept is applied, the assumption is made that the times
between successive demands are independent identically distributed
random variables.

Even under these restrictive assumptions, the determination of opti-
mal policies remains difficult. Because analysis of the stochastic case
has been confined to the situation of identically distributed demands,
the deterministic case is sometimes a better approximation when demand
conditions are in faet changing over time.

Even a fuller study of the stochastic case would not exhaust the
realistic possibilities. It is not always reasonable to suppose that the
probability distribution of possible demands is known to the firm. One
possibility is to apply eriteria for decision-making under uncertainty which
do not presuppose knowledge of a probability distribution—e.g., the min-
max rule (see Chapter 12). In an inventory problem which is extended
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over time, there is the possibility of estimating the probability distribu-
tion of demand from the successive observations and using the est-
mates to arrive al successively improved inventory problems. The
combination of estimation and decision-making in an inventory problem
is a complicated sequential decision problem which has not yet been
explored.

5. Deliveries

Another important element in the mechanism of the inventory process
is the lag in delivery of the commodity after an order is placed or a de-
cision i3 made to produce. If demand is assumed to be known with
certainty, this lag is of no consequence ; all that is required is that the
orders be placed correspondingly earlier. In the case of uncertain de-
mand, however, the assumptions about delivery are important, since the
information about the amount needed for ordering changes with time.

The existence of lags in delivery is an essential element of inventory
holding in so far as it serves as protection against uncertainty, for if
deliveries could be made instamtaneously without extra cost, the firm
could place its orders after knowing what the demand is rather than
before and thus avoid all possibility of penalty costs.

Delivery lags may enter the models in several different ways. In
some cases it is appropriate to assume a fixed lag between order and
deiivery. In others the lag is a random variable with a known distri-
bution. Finally, one may permit more generality by admitting two
kinds of shipments: one a routine shipment with a lag, the other a priori-
ty shipment without lag but at a higher price.

6. The General Structure of Inventory Models

Discrete vs. Continuous Time. In some models, we assume that all
orders and deliveries take place on a succession of equally spaced time
pointg, In some cases this can be regarded as reasonable from the
point of view of normal business practices. In other cases it must be
regarded as a simplification for analytic convenience, notably in the case
of random demands, where the assumption is made that the demands
in successive periods are independent random variables ; this assumption
is very unlikely to be wvalid when the periods are sufficiently short.
The transition to continuous time in such models will require formula-
tion of demands as a eontinucus time stochastic process. We believe
that such a reformulation will turn out to be not merely more realistic
but also ultimately simpler to handle analytically, but it has not yet
been accomplished.

There are two situations in which time has been treated as a contin-
uous variable. In one, it is assumed that demands occur as a continuous
or at least plecewise continuous function of time, and that the corre-



STRUCTURE OF INVENTORY PROBLEMS 25

sponding amount ordered or produced is a similar function. In view of
the preceding remarks, it is not surprising to find that such models so
far assume deterministic demands (see the studies in Part II). In the
past literature, similar models have been treated by assuming time as
discrete, but as might be expected in the light of experience in other
branches of applied mathematics, the continuous approximation leads to
notable simplification. There is indeed the initial difficulty that some-
what deeper mathematics is needed (calculus of wvariations instead of
ordinary calculus, in effect); but the simplification of the resulting
algorithms and proofs, and in particular the ease of obtaining qualitative
conclusions, seems to us an overwhelming argument.

The second situation is that in which the demands come discontinu-
ously at time points which are not equally spaced but occur at random.
In such cases of discontinuous demand, it is frequently natural to assume
that orders can be placed at such points. Then time is a continuously
varying parameter, but ordering and demand are discontinuous functions
of it.

Stock-Flow Identities and Nonnegativity Conditions. If the commodity
dealt with is not in any way perishable, there is the obvious identity
that the stoek on hand at the end of any. period equals the stock on
hand at the beginning of the peried plus the amount delivered to the
firm less the amount sold by it. Let x, be the initial stock level in a
period, y, the stock level after ordering, z the amount ordered, and
r, the amount sold, The stock-flow identity can then be written as

(1) =Y — 2,

(2) Togr = Y, — T

Equations (1) and (2) hold in éach time period. These identities are
valid if time is taken as a discrete variable, or if time is taken as a
continuous variable but with discontinuous demands and orders. If time
is taken as continuous, and demand and ordering or production as
continuous or piecewise continuous functions of time, then the distine-
tion between z, and y, disappears, and (1) and (2) are replaced by

(3) W) )

or, in integral form,
(4) | u(t) = y(0) +{ 1ate) = (e e

The above identities raise the important question of the relation
between sales », and demand £,. The two cannot bhe identical in all
circumstances because the demand may be such as to make the inventory
#,., negative. Since this is physically impossible. some assumptions
must be made and several alternatives are reasonable under different
circumstances.
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(a) It is almost invariably assumed that demand will be met if physically
possible—that is, that in the case of discrete time or discontinuous demands,
() ro=¢§& if &=y .

Although one can conceive of cases where it would pay to leave a
demand unsatisfied and incur the corresponding penalty, usually it is
reasonable to suppose that this is not the case.

(b)y One possible assumption is to insist on policies for which =z,,, is
never negative-—that is, that demands are always met so that

(6) y, = & for all ¢.

Such an assumption is usually made when demands are deterministic
{see Chapters 4-6), though it is not logically necessary; a firm may
find it more profitable not to meet the demand (an example is given in
Chapter 7). When demand is uncertain, it may be very costly or even
impossible to require that (6) hold for all possible values of the demand.

{¢) When we admit the possibility that demand can exceed the inventory
on hand, there will be a shortage & — y,. Whenever this quantity is
positive, there will be a penalty p, which we take to be a function
(¢, — y.) of the shortage. There are several possible assumptions about
the firm’s behavior in dealing with the shortage. One is to order the
necessary goods for immediate delivery, the firm paying a premium
over the usual price for this service, In this case, the customers are
satisfied, and the penalty is interpreted as the premium cost of imme-
diate delivery. In that case, (2) is modified to
(7) T, = max (0,y, — &),
and is necessarily nonnegative. It then follows that y, is nonnegative
since z, = 0.

{d) A second possible situation when a shortage occurs is that the
unsatisfied demand is never met. Thus the customer may go elsewhere
for his goeds or he may have an immediate need which eannot be
postponed. The firm again has a penalty, which in this case reflects
the loss of customer goodwill rather than the cost of priority shipment,
Also (7) holds in this case. Thus the two cases are mathematically
identical, though the interpretation of the penalty is different. We shall
refer to both of these as the mon-backlog case, as opposed to the case
to be discussed.

(e) A frequent policy in case of shortage is to leave an unfilled order
on the books and satisfy it as soon as possible. Again we must assume
that there is some penalty reflected in price, or at least in customer
goodwill, for failure to satisfy the order immediately. In this case,
however, a negative inventory has meaning, since it represents the
cumulated total of unfilled orders. Such a negative inventory is usually
referred to as a bucklog. The penalty function has the same role as in
the non-backlog case, but the stock-flow relation (7) is replaced by
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(8) x:.ﬂ:yr_sf,‘

Static Models. Let us now turn to the time structure of inventory
models. The simplest case has but one time period. A production or
ordering decision is made at the beginning of the period, so that the
inventory y is determined ; then the demand occurs and the revenues
and costs are determined by the demand and the inventory. Much of
the earlier work in inventory theory has dealt with such models, and
some are studied here. Static models form a reasonable approximation
when the item is perishable, or when it obsolesces rapidly because of
technological change or fluctuations in styles (e.g., women’s dresses).
In such cases, whatever is teft over at the end will not be used further
as an inventory. Nothing at all may be left; if something is left,
there is a salvage cost of eliminating it, which may be negative if it
can be disposed of for some other use.

Of the costs listed in Section 8, the discount rate wili not he relevant
in the present case. We will use the subscript ¢ to designate the time
period considered even though we are considering a static model, in
order to make use of the formulation in dynamic extensions. The profit
7w, will be the revenue less the costs. The revenue equalg price, r,
times sales, which in accordance with the previous section equals & —
max (0, § — %.). The ordering cost is ¢(z,), the penalty cost is o(2, — v,)
and is zero unless the argument is positive, the storage cost iz assumed
to depend upon the inventory y, and is designated as A(y,), the salvage
cost is v(y, — &), and the cost associated with changing the rate of
production is G(z, — 2,2,). Then we have

(9) = =76 —max(0,& — w)] — efz)

— (& — yz) - h(yt)_?}(yt —&) — Gz, — 2.
If the demand ¢ is known, then the problem is to choose 2z so as to
maximize (9); of course z,., is given, and y, is determined from (1). If
the demand is considered to be a random variable, then 2, is chosen to
maximize the expected value of (9).

Since in any case ¢, is independent of the firm’s control, the term
ré, can be ignored when comparing policies. The term r max (0, & — u.)
can then be absorbed in the penalty function. The problem in the
static model can then be restated as that of minimizing the loss,

{10} "{'?!.(zt‘i"z) = C(Z;) + (& — ¥ + R{y) + 1"(% — &)+ Glz, —z.2,)

or, if & is a random variable, to minimize the expected value of 7, -
For a particular static situation z,_, is given, and the last term ecan be
absorbed into the first.

In many, perhaps most, cases, the value of the inventory left over is
precisely that it can be used in the future as a new initial inventory.
This is not properly accounted for in the static model. However, the
static model is an approximation to the dynamic in two senses: First,
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there exists a suitable salvage cost for the inventory which would cor-
rectly represent its value for future use; and whereas the exact deter-
mination of this value would be equivalent to solving the full dynamic
problem, in many cases an approximation based on judgment and past
experience would provide an acceptable basis for determining the optimal
valae of #z, in the current period. Second, because of this property
there is some similarity between the mathematical form of the solutions
to the static and the dynamic problems, and therefore experience in
solving the former is of great help in suggesting the approach to the
latter,

Dynamic Models. Tf we consider more than one period, we have a
loss such as (10} for each future period. As we have seen earlier,
the future losses have to be discounted to make them ecomparable to
present losses. Thus in a two-period model, the discounted stream of
losses becomes

(11) Az, 221901) - -217‘(ZIE$I) + a.@f(z2|9:1) '

where we put the dependence on the initial stock of inventories, =z,
into evidence. Notice that %7 is dependent on the decision z, and the
sales £ in the first period since it depends ornf x,, which in turn is deter-
mined by 2z, and & through relation (7) or {8). If demand in the two
periods is deterministic, we wish to choose 2z, and 2, to minimize (11)
subject to the constraints (1) and (7) or {8).

When demands are random, the minimization takes a more complicated
form, one which is of the greatest importance. It is not necessary or
advisable to choose a definite value for z, at time 1. At time 2, more
information will be available, in that a specific value of the random
variable £ will have been observed and the stock level at time 2 will
be known. What is required is that whatever decision is made at any
time be a function of all the information available at that time.
Hence we need to choose a policy which preseribes how we shall choose
2z, under all possible alternative values of the observation £¢,. The minimi-
zation problem is to choose a number z, and a function z,(¢) so as to
minimize (11) subject to the restraints. The idea that we choose not a
definite set of actions for the future but a strategy specifying how to
act under all possible contingencies is of fundamental importance in all
problems involving behavior over time where uncertainty is present.

Before generalizing the dynamic models to more time perieds, let us
observe that the salvage cost in (10) should appear only in the last time
period ; for other time periods it is assumed that any leftover inventories
appear as the initial inventories x,,, of the next period. Only at the
end of the entire horizon considered are they ready for scrap. From
now on, then, we assume

{12) 2zl = e(z) + h(y) + pé —w) + Gz, — Z,_1) .
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To take account of salvage cost in the last period, we rewrite (11):
(13) Az, 2l = {zlx) + a.{zle) + Vi, — &),
where V iz salvage cost discounted to the initial period. If we go be-

yond time period 2, the loss in time period 3 has a discount factor a?,
and so forth. Then for T time periods, (13) is generalized to

(14) Awm=§wt¢ww+vm—&y

There is really no logical horizen, though for practical purposes we
may act as if there were, In principle, there is no difficulty in con-
templating an infinite sequence of time periods, in which case there
would be no salvage term, and the total discounted loss is given by

(15) Aele) = 0" F (zla)

The symbol z as an argument of the function 1 stands for the whole
finite or infinite sequence of z,’s in (14) or (15). If demand is determin-
istie, then the problem is to choose the 2,’s so as to minimize (14) or
(15), If demand is taken as a random variable, then for ¢ > 1, z. s
chosen, not as & number but as a function of all the random wvariables
which have been observed before time f. Such a specification of func-
tions constitutes an inventory policy, and it is desired to choose an
inventory policy which minimizes the expected value of (15).

Similar remarks apply if the demands are considered as arriving
continuously. However, a precise formulation of this case does not
exist in the literature except in the circumstance where the demand
process is deterministic. "In this case, as indicated above, it is customary
to add the constraint that inventories must meet demands, so that
£ <y, and the penalty term in (12) disappears. As noted in Chapter 1,
Section 4, such problems have been studied in the earlier literature,
with ¢ identically equal to zero; and a definitive solution for this case,
with the additional assumption of Increasing marginal costs, has been
given in the important paper of Modigliani and Hohn [14]. The cost of
changing the rate of production was introduced as a consideration by
Hoffman and Jacobs [10], and solutions under special circumstances given
by them and others.

When we consider time as a continuous variable, the infinite sum in
(14) is replaced by an integral. The finite difference as the argument
of G then becomes a derivative, and we have

;
(16) Wzlz) — S {c[z(t)] + By + (‘(jf)} it .

In Chapters 4-6 we present algorithms for minimizing (16) for various
special cases of the functions entering into it. In the stochastic case,
where the demands in successive periods are considered as independent
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random variables, the function G has been ignored in every study we
are aware of, including those in this volume. This model was first for-
muiated and studied by Arrow, Harris, and Marschak [3], though, as
we have seen in Chapter 1, Massé had earlier formulated a special case
along similar lines. Arrow, Harris, and Marschak did not, however,
consider all possible inventory policies but restricted attention to the
class of so-called two-bin or (s, S) type polieies.

7. Types of Analysis

Optimization. The highest hope for analysis of a model is to find a
constructive method for determining the optimal strategy. As we have
explained, there are two variants of this aim: one is to find a proce-
dure which will provide a practicable computing procedure for determin-
ing the optimal strategy, given all the parameters of the problem ; the
other is to characterize the solution sufficiently sharply so that its
qualitative characteristics can be studied closely. These two aims are
distinet and may not be realized in the same way. The second aim is
important if we accept a model, as we frequently do, not as literally
true but as true enough to suggest the nature Qf the solution.

We are usually interested in finding the solution as a function. Even
In a static model, a theoretical analysis usually seeks to determine the
ordering or production, z, as a function of the initial stock @, even
though it is a given magnitude in any concrete situation. In dynamic
models, as we have seen, z, for each ¢ greater than 1, is a function of
the random variables observed up to time 7. Let us now examine the
optimization in a dynamic model a little more closely by considering the
case T = 2, as specified in equation (11).

For any given z and &, z, is determined. Then, to minimize 1, we
have to choose the remaining variable, z,, which only occurs in the last
term. Hence, we choose 2, to minimize the last term, taking =, as
given (if £, is a random variable, we minimize the expected value of
the last term, but again z, is taken as given, since it is known at the
time the choice of 2, is to be made). We thus have a function z(x,).
If we substitute the function for z, in (11), we have left a single de-
cision variable 2z, which now enters not only the first term but the
second, through x,. We then have to minimize with respect to Z,.

Let us apply the same approach to the case of an infinite number of
time periods. In this case, because we are assuming that the various
losses have the same functional form, a very interesting simplification
emerges. At time 2, the decision-maker is again facing an infinite fu-
ture of the same structure as that faced at time 1; the discount factor
applied to the losses in period ¢ is a’~2, which differs only by a constant
factor from the discount factor applied in period 1. The only difference
is the magnitude of the initial stock, which is now 2z, instead of z,
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Fquation (15) may he written
(17) Mzl = (2|} + adzle,)
where z stands for the infinite sequence of 2’s beginning with z. Con-
sider the choice of 2, at time 2: the range of alternatives and the
losses are the same as at time 1 except in so far az the initia! stock of
inventory is different, and hence the value of 2, chosen would be the
same as the value of 2z if x were to equal z,—that is, the optimal
policy must have the form of requiring that z, be the same function of
x, that 2z is of 2. The same argument extends to all future times.
The optimal policy then takes the form of specifying a function ¢ and
then requiring that z, = ¢(x,) for all . Notice that z, depends, among
other things, on all the demands £, ..., &_, in periods preceding time
t; hence, implicitly, 2, is a function of these demands, as we observed
was necessary in the stochastic case (see p. 29 above).

By an obvious change in notation, let A(¢lx) be the loss if the optimal
policy is -defined as just shown by a funetion ¢ and the initial inventory
is z. For such a policy, (17) can be written

Agla) = 2 (zl) -+ al(glx,)

Since for an optimal policy z must be the optimal choice, we can
write
(18) Agle) = min [ 7' (ale) + al(¢lr,)] .

il
Equation (18) is a functional equation which must be satisfied hy the
function ¢(x) which defines the optimal inventory policy.

It is important to realize that an assumption has been tacitly made
which permits us to summarize all of the relevant information at the
start of a period in the knowledge of the stock level alone. This as-
sumption is that there is no time lag in delivery ; if this were not the
case, the size and dates of all orders which have been placed but not
vet delivered would be included in the summary of relevant information.
The introduction of time lags makes it impossible to reduce the optimal
policies, or for that matter any effective policy, to the simple form
z, = ¢{ir,) as described ahbove. For example, if there is a time lag of J
periods of time, then the relevant information at the heginning of the
nth time period includes not only the stock level at the beginning of
this period, but also a specification of all orders placed during the pre-
ceding (4, — 1) time periods. Stockage policies are therefore sequences of
functions of 1 variables rather than merely one variable. Of course, if
the inventory problem is symmetric. in the sense that for each period
the decision-maker faces the same problem, the sequence of functions
may be collapsed into one function of i variables. It is occasionally
possible to make additional simplifications if more restrictive assumptions
on the model are made (sece Chapter 10).
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[t is sometimes of interest to consider the time lag as not fixed bhut
random. 0f the values that the random time lag may assume with pos-
itive probability are sufficiently large, it may be essential to include all
past orders along with the present stock level in the specification of
information.

A functional equation frequently occurs as an analytical expression of
a recursive situation. It is the symmetries and the recursive character
of the dynamic inventory problem that permit the derivation of relation-
ship (18). Recursion relations are traditionally used in examining a
process over time ; they are at the heart of many analytical studies of
stochastic processes, as well as the basis of the theory of differential
equations. [t is therefore not surprising that relationship (18) plays a
fundamental role in the analysis of dynamic inventory problems.

As we have seen in Chapter 1, the approach defined in (18) was ap-
plied In special cases by Shaw and by Hart in the 1930’s, and more
systematically by Massé, and the reasoning behind it was used by Wald
in the development of sequential analysis. (Wald’s own expositions made
such specific use of the statistical problems concerned that the use of
the functional equation is somewhat obscured ; it appears more clearly
in the exposition and development of Wald's work in Arrow, Blackwell,
and Girshick |2].) The functional-equation approach was applied to the
inventory problem in the form used here by Arrow, Harris, and Mar-
schak [3], who, however, restricted attention to functions ¢ of a specified
form. A general formulation was given by Dvoretzky, Kiefer, and
Wolfowitz [8], who proved the existence of a solution A(x) to (18). The
proof consists of choosing an initial A (x) and defining 2,(x) recursively
from 4,.(x} by (18). DBecause a <1 the functions .(x) converge ex-
ponentially fast to a solution A(x) in accordance with the classical
methods of successive approximation

Thus the functional-egquation approach can be used to establish the
existence of solutions to (18) and to provide a method for computing the
solution in prineiple. The existence theorem can, however, be stated
and demonstrated more simply and directly ; see Karlin [11]. The
possibility of recursive computing methods has been examined by Bell-
man [4| and applied to many different fields. However, the practical
range of these computing methods is limited Lo relatively simple prob-
lems. What is perhaps even a more serious limitation is that they
usually cannot be used to determine the qualitative features of the
solution ; they only provide a numerical method for determining the
function ¢ for a given setl of cost assumptions.

The underlying principle of the functional-equation approach, that a
policy which is optimal over the entire period considered is optimal
starting from any point in the interval, is an important component of the
solution to any conerete problem, but it is not a sufficient basis
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for analysis. What we would like are theorems which indicate the
qualitative nature of the function ¢, as determined by qualitative fea-
tures of the cost functions. Such qualitative information not only is
interesting in itself as a guide to decision-making, but also, by restricting
the range of policies which needs to be examined, greatly improves the
possibility of successful computing.

It is worth emphasizing that an explicit functional equation in itself
is not the solution to the problem. By analogy, the claim that a phyvs-
ical problem is resolved if the differential equations which describe the
phenomena are known is never acceptable unless the detailed gualitative
description of the solution is ascertained, or efficient numerical approxi-
mations to the solution are available. The same applies with regard to
the study of (18). In order to deduce the deeper qualitative properties
of the optimal policy, as distinguished from establishing its existence, it
seems necessary to bring to bear more powerful mathematical tools.
More exact knowledge of the solution in most cases requires further
assumptions about the nature of the cost functions and the form of the
demand distribution. Determining the relationship of the form of the
solution to the parameters of the model entails a formidable problem of
classification, one of the most challenging problems of inventory theory.

The theory of maximization, whether in the form of ordinary caleulus
or in that of the calculus of variations, plays an important role. Many
new tools are needed and some are presented in the following chapters.
In some cases, where suitable convexity properties of the functions in-
volved can be assumed, the tools of nonlinear programming are of great
assistance in qualitative.analysis (see Koopmans [12] and Chapter 7
below). If all cost functions are linear, then the problem may formally
be regarded as one in linear programming. A straightforward reduction
to a standard simplex procedure is almost always computationally im-
practical, but in some cases a simplex method which exploits the special
properties of the problem can be used (see Dantzig [7], Bowman [6],
Manne [13]). But especially in problems involving stochastic demands,
none of the standard methods are applicable, and new ones must be
developed ; see the studies in Part II1. Here attention is concentrated
on finding conditions that will guarantee that the optimal policy has
some simple form, such as the two-bin policy (see below).

Nonnegativity and other boundary conditions are used extensively in
the following analyses. Roughly speaking, the optimal policies are fre-
quently characterized by alternating phases, in some of which one or
another houndary constraint is operative while in others the solution is
an interior one. The interior scgments can frequently be found to have
a simple form, and the problem is reduced to determining when one
phase ends -and another begins.

One interesting approach which ignores these boundary conditions has
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been developed by Simon [15] for the stochastic case. He assumes that
all cost functions are quadratic. The restrictions implied by the bound-
ary conditions are supposed to be expressed in his model by rapidly
increasing costs. Then it can be shown that the first step in the opti-
mal policy, z,, is the same as it would be if all random variables were
in fact assumed to be known equal to their expected values. This per-
mits a considerable simplification of the analysis: indeed, the solution
becomes independent of the probability distribution of demands. We
mention this approach as an interesting alternative to the direction
emphasized here, but it is probably a valid approximation only in a
limited range of cases.

Chptimdzation with Restricted Ranges of Strategies. Because of the
difficulty of choosing an optimal policy out of all possible functions ¢(x),
we may use intuition part way by assuming that the functional form
of ¢ is known except for a finite set of parameters. The funectional
forms are chosen as those types of policies used in practice and dem-
onstrated to be optimal in cases where such analysis has proved
possible, Perhaps the most frequently studied policy of this type is
the two-bin or (s, S) poliey, which is implemented as follows: Order
or produce only if the present stock level falls below some given value
s. When ordering is done, the stock is increased to a second value S.
The study of Arrow, Harris, and Marschak referred to above confined
its attention to choice among such policies—that is, to choosing the
optimal values of s and §. The authors show that the total expected
cost incurred from use of an (s, S) policy satisfies a renewal equation,
which is solved. The actual underlying renewal process describing the
flow of stocks is directly investigated in Chapter 156, The methods of
Chapter 15 extend to the analysis of other kinds of inventory policies.

An ordering rule closely related to the (s, S) policy, based on a single
critical level, proceeds as follows: Whenever any demand comes In,
ordering is immediately effected to replenish the stock consumed, so that
a constant stock level is always aimed at. The decision problem here
is to choose the optimal level of stock. In terms of ocur previcus no-
tation, the (s, §) policy can be described by a function ¢{x) which is 0
if t =298 and § —a if x < 8. The second policy is the special case where
§ = &; it may be useful to remark here that this policy seeins best
when there is no cost to ordering which is independent of the magnitude
of the order (no set-up cost).

Bellman, Glicksberg, and Gross [5] determined the optimal policy for
the case in which the ordering an(} penalty cost are both linear. Ex-
tensions of these results are contained in Chapter 9 of this volume.
Dvoretzky, Kiefer, and Wolfowitz give some sufficient conditions for
establishing that the optimal policy is an (s, S) policy for the single-stage
inventory problem (they assume that the penalty cost is a fixed con-
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stant whenever suffered, and that the ordering cost is composed of a
linear term plus a set-up cost).

Operating Characteristics of Inventory Policies. Instead of optimizing,
we may turn the problem around and ask what the effects of a given
inventory policy will be. A given policy, together with a given speci-
fication of random demands, determines a stochastic process involving
Inventories and production. We may then ask what the expected costs
would be. If we do not want to specify the cost functions, we may
find instead the probability distribution of the magnitudes which enter
the cost functions, such as the stock of inventory, the amount of shori-
age, and Llhe amount ordered over time. I[f we do specify the cost
functions, we may be able to discuss choosing the policy parameters to
minimize expected costs. Other criteria may be used for selecting the
parameters of the policies once the performance characteristics of these
policies are determined. For example, a reasonable ordering rule could
be that policy minimizing the expected storage costs among all policies
of a given class which guarantee not to exceed a prescribed maximum
probability of run-outs {shortage) per period.

Processes generated by simple policies such as the two-bin policy or
the process determined by random demand and delivery pose very in-
teresling mathematical problems. The processes are related to many of
those studied in recent years, such as the processes arising in queueing
and counter problems.

Stationary Distributions.  An important role in the theory of stochastic
processes Is played by the equilibrium or stationary distribution for a
gpecified inventory ;.Jolicy. The distributions of the stock level, shortage,
or ameount ordered will usually tend to converge in time to some limit.
These distributions are easier to study than the distributions correspond-
ing to a finite section of the process, and it may be argued that in the
leng run they are more important. Again we can use these distributions
to choose the parameters of the policy so as to minimize expected loss
—in this case, long run expected loss.

These stationary costs are closely related to the solution of the dyvnam-
ic model where the discount rate a is 1. The precise statement of
this result is as follows. If i'(x) (where « is the discount rate) rep-
resents the total discounted expected costs accrued when effecting the
prescribed policy, then

}inl’l (1 — a)it™{(x)
is exactly the long run expected loss. Aw equivalent way of computing
this stationary cost is by averaging the losses for = periods with =
growing arbitrarily large. It should also be observed in this case that
long run costs are independent of the initial stock level.

Knowledge of the stationary distribution is fundamental, in that its
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determination involves no specific assumptions concerning the cost ele-
ments of the inventory model. The stationary distributions, whenever
they exist, are a function only of the given policy and the nature of
supply and demand. In this respect equilibrium distributions may be
regarded as a description of the fluctuations in stock size resulting from
the given poliey in operation for a long period of time.
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