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A factor of considerable importance in the study of inventory or
production processes is the time lag involved in effecting policies. Time
lags, which generally represent an inability of the process to respond
instantly, occur in a number of different forms. In the inventory
problem the most important type of time lag is that which represents
the time between placing an order and its subsequent delivery. There
are situations in which this lag is sufficiently small so that it may be
disregarded. However, in many practical cases the lag is of fundamental
significance and its neglect would result in the selection of inappropriate
inventory policies. In this chapter we shall assume that the time lag
is constant. Inventory models in which the time lag is assumed to be
a random variable with a known probability distribution are investigated
in [5] and [6].

Our model will be essentially that of Arrow, Harris, and Marschak,
with the addition of the lag factor. We shall attempt to characterize
the optimal inventory policies and indicate their dependence upon the
lag. We shall also examine a version of a stationary model associated
with an inventory problem involving a lag. The basic model is as
follows: The three principal cost factors as usual are ordering cost
e(z), handling costs A{z), and penalty or shortage costs p{z). The
distribution of demand is given by a positive continuous density function
- ¢{¢). This simplification is introduced in order to expedite the analysis
and is definitely not erucial so far as the qualitative nature of the
results is concerned. At the expense of tedious detail, it is possible to
modify our methods and extend our results to an arbitrary distribution
of demand. Between delivery and order we assume there is a lag of
4 periods of time with A fixed. When delivery is made it takes place
at the start of each period.

Let x represent current stock size. This includes all stock brought
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in from past orders. Let y, ¥, -+-, ¥... represent the outstanding
orders such that y, is due in at the start of the next period, y, is to
be delivered two periods hence, etc. Define z to be equal to the stock
to be ordered at the start of the present period. Finally, let Az, v,
Yo *++, ¥ao) = minimum expected logs following an optimal policy where
(. ¥, Yo -, Ya_) expresses all the information about the current stock
level as well as the amounts of goods whose orders have been submitted
and are to be delivered during the fellowing 2 — 1 periods.

In discussing this model, it is necessary for us to specify more
completely how excess demand i3 to be taken care of. Two possibilities
are usually considered. First, if demand exceeds supply, the extra
demand can be thought of as satisfied immediately through priority
shipments. Another interpretation of excess demand, which leads to
the same model, is to consider such demands as lost sales. We shall
refer to this model as model I, as distinguished from mode! II, which
embodies an alternative assumption about excess demand.

In model I, the functional equation satisfied by f is easily seen to be

(1) S Y0 Y o) Ynr)
= n;lzllgl {C(Z) + L(ﬂ?) + Oif(yn Yo » 0 s Ua-ns Z)S:&O(E) dé
+ aS:ﬂx — £+ th Ys 0ty Yaen Z)?’(E) df}

where
Lia) = | bz — p(e) ¢ + | wte — 2)et@) e,

the total expected cost, exclusive of the purchasing cost, for one period
when z is available and where a represents the discount factor. The
general existence theory tells us that the minimum of (1) is attained
{4]. The final integral terms of L(z) correspond to the two contingencies
according as demand exceeded supply or supply was sufficient to meet
the demand during the first period. These terms express all future
expected cumulative costs based on the ordering policy z. Through
analysis of (1) we shall be able to characterize the form of the optimal
ordering poliey.

A second possible way of treating excess demand is to allow for
deferring this demand to a later period. This makes it necessary for
the current stock level variable @ to assume both negative and positive
values. A negative value of # means an amount of goods owed to
consumption. We assume that the penalty cost of keeping a negative
stock level will cumulate if goods are owed for several periods. The
functional equation for A, ¥, ¥ -+ ,¥a-) may be derived as before.
We obtain
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(2) A&yt o0 Ya)
= min [o(a) + L) + a| Mo~ + v -+ 0w D2 |
where L(x) is the same as before when z > 0 and
Lie) = | (e — 2)ete) e

for = negative. It is important to take note of the differences between
(1) and (2). We shall refer to the case in which negative inventories
are permitted as model II. The other situation, where excess demand
is considered as lost sales, we have called model I.

A third case of the lag problem would correspond to a situation
where some of the excess demand in any given period may be deferred
to a later period, while the remaining sales represent lost profits or are
satisfied by other means. This is probably the most realistic case.
However, in our present discussion we restrict attention to the cases
described in models I and II.

Basic differences in the form of the optimal solution in these versions
of the inventory problem will be demonstrated,

The following two results manifest one difference:

THEOREM 1. For model Il (equation 2), the optimal policy

A, Yy, Yy + 00 Yams)
s @ function of the sum x + ¥, + ¥, + +++ + ¥y only.

THEOREM 2. If in model I (equation 1), it 18 necessary fo order «
positive amount when the stock is small, and unprofitable to order a positive
amount when the stock is large, then no optimal policy 18 a function of
the sum.

One way to interpret Theorem 1 in the language of management is
as follows: One should not view stock level exclusively in terms of
the physical quantity of stock on hand., Explicitly, stock size shall
consist of stock on hand plus stock coming in. In the case where
excess demands can be deferred, the decision as to how much to order
1s to be based on this definition of stock size. A moment’s reflection
will convince the reader that this is indeed plausible because of the
fact that the extra demands can be made up in later periods. This is
definitely not the situation of model I. Tt will be shown later that the
optimal poliey z(z, ¥, ¥, -+ - . ¥..) in model I does not depend functionally
in any simple way on its arguments.

The validity of Theorem 1 has been recognized previously. Nevertheless,
no proofs have been given in the literature and, generally speaking,
little care has been exerted in distinguishing the inventory problems
corresponding to the two models described above, We shall continue to
emphasize the distinction in view of the differences in the form of the
optimal policy.
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We turn now to a discussion of the nature of the optimal ordering
rule.  To this end, let us assume that the ordering cost is linear—i.e.,
¢(z) = ¢ - 2. The principal assertion for model II is

THEOREM 3. If h(z) and p(z) are convex increasing and efz) =c- 2
the optimal policy z* = 2*(x, Y., Yu =+, ¥h.) 48 of the form: There
exists an T such that

¥ =max (0, E~(@+y + -+« + ).

The critical value ¥ may be determined by solving an appropriate
transcendental equation (see equation 33). The statement of Theorem
3 is very similar to the results obtained in our general dynamic studies
for the case of linear ordering cost [3].

For model I, the solution is strikingly different. We indicate the
result for model I, under the assumption that 2 = 1.

THEOREM 4. If all the cost functions are linear, then the optimal
policy z*(z) in model I, with 2=1, has the property that z*(x) is
continuous and of the form

) >0 x<z

Z*x) =0 r=T .
Moreover, z*(x) 18 strictly decreasing for = < z while the difference
quotient of z*(x) 43 in absolute magnitude strictly smaller than 1.

For 0 < o« < & the optimal policy calls for a positive ordering but the
amount ordered decreases as a function of current stock level. Never-
theless, the level to which ordering is done is an increasing function
of . On comparison with [2], Section 2, the reader will observe that
the optimal policy z*(x) possesses the same properties as the optimal
ordering rule for the one stage inventory model with convex ordering
costs. The same is true when one deals with lags involving more than
one period. This suggests that the way in which a lag in delivery
influences the decision process is analogous to that of a convex ordering
cost. This is in sharp contrast to the belief that a lag factor must
propose the use of an (s, S) policy., We have pointed out elsewhere
[2] that (s, S} policies are intrinsically bound to the case where ordering
costs are concave functions of quantity of goods ordered. This appears
to be the only reason for employing policies of the (s, S) type.

The conditions of Theorems 3 and 4 may be weakened so as to allow
A{x) increasing while p(z) is either conecave or convex. In that case,
the density of demand ¢(¢) must be restricted to be a Polya frequency
function. The analysis for these cases follows along the lines set forth
in [2] and [8].

The first four sections are devoted to demonstrating the assertions
of Theorems 1 through 4, as well as some extensions and refinements
of these results. The final section is concerned with the stationary
distribution generated by policies of the form indicated in Theorem 3.
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However, we investigate these policies only for the interesting circum-
stance of model I where excess demand in any period results in lost
sales and profits, so that the implication of Theorem 4 is that these
policies are not optimal. The stationary distribution in the case of one
period lag is completely determined. Some special results are obtained
when the duration of lag is more than one period. The special results
are of sufficient interest to suggest possible general consequences for
the stationary structure of inventory models with lag in delivery. We
also carry out the optimization for a linear cost structure with respect
to the parameter S which is the level at which stock is kept.

1. Proof of Theorems 1 and 2

In this section we present the proof of Theorem 1. The analysis is
elementary and consists of deriving the qualitative properties of the
optimal policy by an examination of the functional equation (2). Indeed,
inspection of (2) shows that this equation may be written in the form

(3) f(m,yn%: "‘:%-1)
= n:;? [c(z) + a(x) -+ aS:f(:v + Y= E Yy oo, Ynons 2)9(E) d&]

= afz) + min [ o(a) + | 7@+ v = &4 -+ uhcr, A0l 2]

When the minimum of (3) is performed, it is evident that z* is a
function of the form 2z* = 2z*(x + ¥\, % ¥ "+, ¥r_1). Inserting this
value into (3), we conclude

(4) .f(m! Yis Yz * = yAﬂl) - a‘(x) + b(:ﬂ <+ Yo U Y o0 y.\-l) .

This equation shows that the optimal loss depends on y only through
the sum of @ + y. The representation (4) for f may be used in (3)
again and we find

(8)  Sl@ vt ror  tho)
= a{x) + 12ion{c(z) + aS:[a(x + 4 — &)
PO+ = B Y G 2) [906) 2]
= a(x) + a\(z + )
+ rx}zi? |:c(z) + ag:b(:v Tt Y Yae, 2)0(E) dé} .

This expression of the functional equation for f shows that z*(z, w, w.,
*e+y Ya-y) is of the form z* =z2*x + v + ¥ ¥+, ¥ao)). Inserting
this result into (5) gives

J@, v, Yo o0 tao) = (@) + az + y) + (@ -+ Y + Yy Yay vy Uan)
Iteration of this idea yields the results:
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(6) fla, v, Yo oo, ) =@ +alx +u) + e +y +y)+ -
‘a4t oo + ¥ao)

and 2*(x, Y1, Y *++ , Yao) 18 of the form 2* = 2@ + 4y, + 4o + =+« + 7,-1).
This completes the proof of Theorem 1.

The expression of (6) and its derivation possess an additional
interpretation of interest for the inventory problem. The function a(z)
represents the expected costs, excluding the ordering cost factor c(z),
incurred through the first period as a function of the present stock
level. All the future deliveries %, ., ++-, ¥.-, cannot evidently affect
the present costs, and it is obvious that the amount ordered z cannot
be relevant until A periods later.

Examination of (5) implies that a,(x + y,) expresses (except for the
ordering cost) the costs incurred during the second period. It is
intuitively clear that such costs are functions of x + ¥, the total stock
delivered by the start of period two.

Analogously, ez +y + -+- +y,) represents the expected -costs,
excluding ordering, incurred in the future during the (r 4 1)st period.
The fact that a, is a function of = +w + --- + ¥, i3 again logical
because of the natural meaning ascribed to the quantities y,, %, <+, %,
which represent goods delivered prior to the rth period. Finally,
projecting 4 periods into the future, we find that a,_(x 4y + ---
+ .-} represents the total expected costs for the ith period and
beyond, including ordering cost in the first period. The aggregation of
the ordering costs incurred for the first period with the total expected
costs due to handling and shortage for the ith and subsequent periods
seems natural in view of the fact that the quantity of goods ordered
influences the inventory control problem for the first time at the ith
pericd. "This means that the optimal ordering rule has the property
that we order that amount now which minimizes total expected costs
projecting 4 periods into the future and thereafter. The procedure of
making the decision now by examining costs starting 4 periods in the
future is a recognized practice. The previous discussion substantiates
this mode of operation., We shall see later that this is not a valid
method in dealing with a model of type I.

We now turn to a proof of Theorem 2. Let us assume, to the contrary,
that there is an optimal policy z which is of the form z(x +y + ---
+ 9i-,). We shall show as a consequence that the policy of never ordering
is also optimal, thereby contradicting the assumptions of Theorem 2.
We shall demonstrate this fact for 2= 2; the proof, however, is
perfectly general.

Let us assume that the function =z(u) has only a finite number of
discontinuities (this is correet if the policy is unique; if the policies are
not unique, then a particular one of this form may be selected).
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Lemma 1. Let 2(i) = % > 0. Then
)
a?;f(m; ¥),

evaluated at y = z, 18 independent of x, for = = .
ProoF. Let us select any value of (x, ¥) with 2+ y=1u. If we
define

6@, 45 2) = {ola) + L@ + artw, O] @ de + o fw + v~ ¢ Do) 2t}

it follows from equation (1) that # is a root of

G _

oz
Inasmuch as the optimal policy is a function of the sum, it follows that
z is also a root of the same equation with (x, ) replaced by (z + 2,
y — k), and therefore we obtain '

G _ G

feb o2y
If this guantity is evaluated directly from its definition, it is seen to be

i I N
« Tl sto(s)de,

, forz=12z.

and we therefore obtain
FNY2) gy for z=3 ,
0yoz
this relation being valid for any y = u. The proof of the lemma follows
by integrating with respect to y.

This lemma may be applied in the following way. Since 2(x) has
only a finite number of discontinuities, it follows that the range of z
consists of a finite number of disjoint intervals. Let z and 2z, be any
two points in the same interval (we assume that z is optimal for x 4 y
=u, and z for u, with », =< u,). It follows from Lemma 1 that

Ay, 2) — My, 2) = S ?ﬂg’;—?)- dz

- K(Z[, zz) ’
for any y < u,. Therefore, for z + y < u,,

G(m, Y 21) = G(fb‘, h zz) + {C(Zl) - C(Z,)} -+ K(Zl, Z-_.,) .

Now, since z, is optimal for = + y = u, we see that z, minimizes ¢(z) +
K(z, z,) for all z in the particular interval in question. Therefore if
(x, ¥} is a point with @ 4 y < %, and which has an optimal policy in
the same interval, this policy can do no better than z. If u,is chosen
close to the max (x + y) for all (2, ¥) which have an optimal poliey in
the interval in question, we obtain
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LEMMA 2. If there i3 an optimal policy in model I which i8 a function
of the sum, then there exists a function 2(u) which 18 constant over a
finite number of intervals, such that z(z + y) 18 also optimal.

Let us now assume that we are discussing a policy of the sort
described in Lemma 2, and let # be a point at which the function z
has a jump, from z, to z,. From considerations of the continuity of G,
it follows that both z and z are optimal at %. In other words, if
x 4 y = u, then G(z, y; z)= G(x, ¥; %), and consequently

8G(=z, yi2) _ 0G@, y;2) _ 0G(@. %) 8G(@, i 2)
8x oy dx oy

Evaluating this equation by a direct reference to the definition of G,
we see that

fwiz) — W2 g <y,
ay oy N
Therefore fly, z) — f(y, %) i8 independent of y, and we obtain, as in the
proof of Lemma 2,

Gz, ¥ 2) = Gz, ¥ @) + () — e(z) + [y, ) — Ay, )] .
for all 2 + y < u. It follows that

oz) —col) + [y z) — Sy z)] =0

for # + v = u; Dbut this condition is independent of y, and therefore
G, v, 2) =Gz, y; 2) for all z 4+ y < u.

This argument shows us that z, is also optimal in the interval below
the discontinuity %, and permits us to form a new optimal policy with
one less jump. We have therefore demonstrated

LEMMA 8. If model I has an optimal policy which 48 o function of
the sum, then it also has an optimal policy which tells us to order the
sume amount regardless of the stock levels.

The assumptions of Theorem 2 are incongistent with Lemma 3, which
proves Theorem 2.

2. Characterizations of the Optimal Policy for Model 11

The proof of Theorem 3 will be presented in stages. We first deal
with the case of a one stage lag. The proof of this theorem is carried
out by truncating the number of periods to n and subsequently letting
n— . Let fu(x) represent the minimum expected cost if # is available
now, given that only n future periods are to be taken into account.
Analogous to (2), we find that

(7) fifzy = min fe - 2 + L@ + aS:fn-:(x + 2 — E)p(e) de|

where
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®) Loy =[ne—ap@d+ e —2e@d  =>0
and [ "pe— @ de,  w<o0.

In order to avoid an unnecessary enumeration of cases, we impose
the assumption that

(9) lim  p(z) >

l —«o

¢ .

This is an exceedingly mild restriction. For example, if the penalty
costs are linear p - 2, then (9) states

p>1"%,
a
Since a is usually very close to 1, this is undoubtedly satisfied.

Let z¥(zx) represent the optimal policy for the n-stage problem. The
general theory asserts that f,(z)— flz) where flx) satisfies (2). We
shall establish that zy(x) converges to an optimal policy z*(z) for the
full dynamic problem, with z*(z) explicitly determined. The proof is
by induction on the number of periods =.

Suppose we have shown that

I, — @ x < X,
1 * =
(10) A = | eoa
where Z, is the unique solution of the equations
(1) c+al fiia —op@ @ =0.

Suppose further that Z, has the properties that
(i) Zp = &ars
—c+ L'(x) r< T,

m)ﬂmﬁzﬂmrwﬂygw—aﬂaﬁ ¢ > E

(ili) f.(x) is a convex function of z. Moreover, the second derivative
of f, exists everywhere except possibly for z = Z, where the
right- and lefthand second derivatives exist;

(iv) — fu(@) = -- fi_(z) for all z.

Assuming that properties (i) through (iv) and equations (8) and (9)
are correct, and that z¥(z) is determined by means of (10) and (11}, we

establish that these same properties are valid for the ordering rule for
z¥a(x). Indeed,

12 fado)=minfo- 2+ La) + of fulo + 2 — @) de}
Differentiating the bracketed expression with respect to z yields

(19) e+ af fiw+ 2 - @ az.
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We replace  + z by w and regard (13) as a function of w. Explicitly set
(14) Hyw) = ¢ + aS:f,:(w _ 2)e(e) dt .

From (i), it follows that H,(w) is increasing, and by (ii) and assumption
(9), H.(w) has a negative value for v — — . But

lim Hy(w) >0

so that H,(w) has at least one zero. Since ¢ is strictly positive, it
follows, because of the special form of H,(w), that H(w) is at worst
necessarily constant for a half interval stretching to —o and then
strictly increases as o traverses the infinite line from left to right.
Hence, H,(w) has a unique zero, %,,,, Because of (iv) we find that
H{w) = H..(w) and hence Z,,, = %,. Inspection of (13) in conjunction
with (14) implies that if = < Z,,,, then the minimum of the bracketed
quantity of (12) is achieved for =z .(2) = Z,,, — 2 where Z,,, is the
unique solution of H,(w) == 0. To continue the induction we must check
all the properties (i), (ii), (ili), and (iv) for f.... The truth of (i) Z,..
= #, has already been indicated. Since

¢ [Buu — 2] + L{z) + arfn(a':m —Oe@) dE = < F,,
(15)  fon@) = ) :
L@) + af ix — o)4(e) ae 2> T,

we obtain (ii). We next verify condition (iv). For & > Z.., = Z,, using
the induction step, we get

— finlz) = —L(z) — aguf,ﬁ(w — §e(§)ds =z — L(z) — agof,:q(fv" — E)p(€) dE
=—fil=z).

For < Z,, it follows that —f,..(x) = —f(x). Finally, let &, < ¢ < Z,.1,
then —f,.(x}=¢ — L'{x). But ¢> —alf._(rx —¢)dé in this range.
Combining, we get —f,..(z) = —f.(x) and the proof of (iv) is complete.
Since L(z) iz convex and f.(zx) is continuous, it follows readily that
fox) =z 0 for all = +# #,.,. From this we conclude easily that f,., is
convex and behaves as indicated in (iii). The induction step from = to
n + 1 is finished. To complete the proof it is necessary to verify all
the properties of (i) through (iv) for f, and f. where fi{x) = L(z). This
requires the same kind of reasoning as in the general case and we
omit the details.

Allowing = to tend to infinity, we deduce the existence of #, necessarily
finite, such that
r—ux x <z
0 r=

and such that Z is the unique solution of the equation

(16) @) = |



ARROW-HARRIS-MARSCHAK MODEL WITH TIME LAG 165

an o+ al i@ - e@rae =0,

where f is convex.

We shall now derive a transcendental equation from which # may be
computed. The functional equation (2) with 2* described in (16) hecomes
for 2 < &,

&) = ol — @] + Liz) + a| 7@ — ho(e) e .
Hence
(18) fl®) = —c¢ + L'(z) for the interval z < & .

The expression (17) involves f'(u) for u < % which is known through
(18). Consequently, Z is the unique solution of the equation

(19) of(l — a)] + aSD"L'(E — Op(e)de = 0.

The uniqueness is assured by employing an argument analegous to the
method by which we demonstrated the fact that H,(») possessed a unique
solution. To sum up:

THREOREM 3a. If the assumptions of Theorem 8 are satisfied and the
length of the log ia 2 = 1, then the optimal policy i3 of the form

z*(x):{:u—:c < &
0 r=I,
where T 18 determined as the unigue solution of (19).

To further illustrate the methodology, we continue by presenting an
analysis of the two stage lag problem. This case already embodies the
features of the general proof. The functional equation in the two stage
lag truncated to » periods (rn > 2) ean be expressed in the form

(20)  fiw,u) = min {o- 2 + L@) + of fula + 4 — € 2@ e} .
Suppose we have shown that f,_, possesses the following properties :

() fa-alz, w) = L(z) + bail + 31);

(ii) z:—l(xi W) =Ty — & — Y for  + < Tnor

=0 otherwise ,
where Z,., is the unique solution of the equation

(21) ¢+ ag;”b;-z(w — () dE = 0 ;

(i) Z, = oo

—c+ arL’(m + oy — E)e(e) de hot < B
(v) e +w) =g .. ,
o Lia+u~ 0+ of bite + v — e &2
. i + & g jﬂ‘l

and is continuous in the variable » + y, ;
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(v) b,_, is convex in its argument and b,_,(x) > 0 for all u except
U = &y, where right- and lefthand derivatives exist ;
(vi) —b,_y(u) = —b,.,(u) for all u .
We advance the induction by demonstrating that all these properties
persist as we pass from n — 1 to »n. Inserting (i} into (20), we deduce
that

22)  flw, ¥) = L(z) + aL'L(x + oy — (e de

+minfe - 2+ o] bute + u+ 2 — (6 a2)

zzl

= L(x) + bz + ),
where

@) b+ w)=al Lo+ v - Op@© d

+minfe -z + as:bﬂ_l(:c oy + 2 — (e de} .

z20
The derivative of the bracketed term of (23) with respect to z yields
(24) o+ a Bie@ + 1+ 2 — D9 d = Kw)
with e =+ 9y, + 2.

Since b,_,(w) is convex, we conclude that K,(w) is increasing. Analogous
to the analysis of (11), we find that K (w) possesses a unique zero
which we denote by Z,. By use of (vi} we deduce that Z, = Z,_,. The
derivation of the analog of (iv) for b, (x + y) is straightforward,
Because of the definition of Z, we observe also that b, is continuous.
The truth of (vi) is demonstrated as previously by considering three
cases: T+ Y < Tueyy T+ Y > Ty, a0d Ty < 2 + ¥ < T We illustrate
only the third:

bz + ) = —¢ + aS:L'(x oy — E)p(e) de
But, w = & -+ ¥, > T, implies —c < alb, (w0 — §)p(§)dé . Hence,
b + ) < aS:L’(x + o — )ple) de
+ aS:b;-z(m + o — () dE = ba(® -+ 1) ©

Property (v) is verified for b, by straight differentiation.  This
completes the induction step. The truth of (i) through (vi) for f; is
obtained by direct calculation with fi{(x) defined as L(x), and fi(x, ) set
to equal

aSjL(m +o— E)ple) de .

Letting n tend to infinity, we deduce that the optimal policy is of
the form
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T—T—y r+y<E

] —_
2@ w={ riroy.
It remains to show how to evaluate Z. The limit on % in (i) yields
(25) Az, y) = L(z) + b(x + u) ,
where
—c + ag-L’(w — £)p(e) de w<F
(26)  b(w) = ’

aS:L’(cu — )ple) de + ajn'b'(cu e & >,
and F is the unique solution of
@7 ¢+ aL’b’(:E — &)p(8) ds = 0.

Observe that to evaluate (27) we need to know &'(x) only for u < Z.
But by (26), over this range

b = —c + of L' ~ el de

Substituting this value of d'(u) into (27), we deduce that  is determined
as the unique solution of
(28) el — a) + a’S:S:L’(zi — & — Ne@)e(N dedr = 0.

The analysis of the two stage lag case is complete. We state the
results for the general 1 lag model. The induction proof in this case is
the natural extension of the preceding arguments. We have

(29) S, vy Yo ooy 1) = Lix) + Lz + ¥) + L:(a: +h )+
Bl W G o A e T R o S I ot o A SR TAE SRR 'Y
and
EZ—(@x+m+vt -+ )
(80) 2*(@, Y1y Yo =+ s thor) = forz+wy+--- +ha<Z
0 otherwise,
where

{(31) L(u) is defined as equal to S:L,_,(u —9e&)ds, Ljfu)= L,

and

—c+ aS'L;-g(w — £)(8) de 0 < F
(32)  blo)= g i
Lio — &) + “So Viw — 8e@)dE o >7F.

The critical value Z is computed as the unique solution of the equation
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(33) ol — @)
+ aS” : -S:L’(ﬁ b G — e — EIPEP(E) o P(E)dE e dE = 0.

The principal consequence of our discussion is the following important
theorem :

THEOREM 3b. If the hypotheses of Theorem 8 are satisfied and the
length of lag is A periods, then the optimal policy 18 of the form described
in (30) where T is determined satisfying (33), or equivalently

(34) ol — o) + a*S:L:\-l(é — OpE)dE=0.

It is interesting to observe that T as a function of the length of the
lag is increasing, provigled a is chosen sufficiently close to 1. Let z,
denote the unique zero of

[Lisw - 0@y ae = 0.
Since L..,(#) is convex, we obtain
Loy, —&8z=L._(y.—&6-7)

for any £ and 7% positive, and strict inequality holds somewhere.
Therefore,

@) 0= L. —op@d > [ Lt — ¢ ~ D@ dear
= {TLitw - v de

Since
[ty — ooy ae

is an increasing function of ¥, we may conclude because of (35) that

Yre1 > Y;
The critical values Z, are the solutions of the equation
(36) ol— ) + &L - wede=0.

Obviously, as a — 1, Z,— y,. Consequently, for a sufficiently close to 1,
‘ 5]<5§2<"‘<5A_:.

The accompanying tabulation of the critical values for 1 = 1, 2, where

_ peie

?(E) - ’"'"'"k‘!"_""

is of some interest. Here « =1 and % = p. In particular, we see that

if the demand density is an exponential with unit average demand, the

optimal level of stock for one lag period is 1.68 and for two lag periods

is 2.67. On the other hand, if the demand has a density which is a

gamma of order one with average demand unity, the optimal guantity

of stock to hold if delivery involves a lag of one period is 1.83, and

r
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Optimal z*
o5 Lag of One Period Lag of Two Periods
oost 1.68 267
H #
i 2 2
2t p - b = =
utte | ~(1.83) ‘ ~(2.83)

for a two stage lag, 2.83. This might be explained as due to the fact
that the median as a function of the order of the gamma distribution
is increasing. In fact, as the order of the gamma family becomes
infinite, the demand distribution concentrates at a point and is
therefore predictable. In this case, the optimal policy for a 1-stage
lag would be 1 4+ 1 times mean demand.

3. Solution of One Stage Lag, Model 1

We devote this section to a discussion of the proof of Theorem 4. A
recapitulation of the set-up of the infinite stage inventory model in the
presence of a time lag of one period should be helpful.

The purchasing cost is assumed to be linear ¢ - 2. The penalty cost
is also taken to be linear (p(x) = p - ), while the storage may be an
arbitrary convex increasing function. The costs at each succeeding
stage will be discounted by a factor a.

The distribution of demand is given as usual by a positive continuous
density function ¢(¢). Let f{z) equal the minimum expected loss
following an optimal policy given that z is the current available stock.
The functional equation satisfied by f is a special circumstance of (1)
and reduces to

@7) ) =min[e- 2 + L) + @@ ¢(@) & + af N1z + 2 = Op(e) ¢
where, as before,
Lz) = o — @) e + [ Tnte — ey s

The variable z takes on only positive "values as distinguished from
the situation of model II, since excess demand in any single period may
be regarded as satisfied by other means. Whenever demand exceeds x
in a given stage, the quantity z which has been ordered will represent
the totality of stock available at the start of the following period.
Otherwise, = + z — £ is the stock size of the second period. These two
contingencies are expressed by the last two terms of (37). As before,
our method of analysis approaches the dynamic problem through a study
of a sequence of truncated models. We first solve the problem when
we consider only looking ahead for a total of »n periods. Then, allowing
n to become infinitely large, we can deduce the form of the optimal
policy for the dynamic model. For n = 1,
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JSi(x) = rréin{c «z 4 L{z)} .

Clearly, the solution is z =0 and f, has the properties —f/'(z) < p and
fi"(#) > 0. We advance an induction argument for the truncated problem
of n periods to that of n + 1 periods. We suppose the following
properties regarding the solution of the n-stage problem :
(i) If z¥(x) represents the quantity ordered according to the optimal
policy, taking account of all possibilities that may arise for a
totality of n periods in the future, then

(38) —1<_d%<0forx<5,. and 2¥®) =0 for 2 = Z, ;

(the value zero for Z, is not excluded);
(i) —fiu(x) = p (fi(x) exists and is continuous) ;
(iili) fi'(x) >0 for allLlz > 0;
(iv) lim fi(=)=0.
The functional equation for the (n + 1)-period problem is

(39)  fiul@) = min [c c 2+ Liz)
+al fie+2 - 0@ & + ar) e 2]

To perform the minimum operation of (39), we differentiate the
bracketed formula with respect to 2. This gives

@) c+al fie+2— 0@ d + @] w©) d = Kiz; o).

In view of (iii), K«z; «) is a strictly increasing function in each variable
when the other variable is held fixed. By (iv), Kiz; ) is positive for
z sufficiently large. Let z¥,(x) denote the unique zero of (40) if such
exists; otherwise set z¥,,(x) = 0. z¥ () is bounded by (iv). Furthermore,
since z¥,,(x) is obtained as the unique solution of the relation K, (z; z)
= 0 (x fixed), it follows that z¥,.(z) is a continuous function of . Since
K, (z; ) strictly increases with z, we deduce also that zy,, has a
continuous derivative and

(41) %ﬂ <0 for &< F,, With 2%(@) = 0

for = beyond Z,,,. Differentiation of K, (z¥.(x); ) = 0 with respect to
@ produces the relation

(42) 0= (1 + -‘%"}‘-)S:f;’(x + 2z — §)e(§) d&

+ £ o0 af 22

By (iii) and (4_1) we conclude that
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dz¥, (z)
4 Bhacndls 3 a0 .
(43) 1+ >0

Insertion of the optimal ordering rule of 2X.(x) into (39) yields
@) fro@) = ¢ 2@ + L&) + o] £l + 22u(0) — 0(6) a2

+ afn(zrfﬂ(x))S:?(&) ds .
We get

o £z + @) — 9@ & + L@ 7 < Fan
(45) fau(z) = .
ol filz — 0@ dz + L) 22 Fpy .
But
- = —{ W - ae@ e + o v© dt 5 o 902t
and —f,(z) £ p by virtue of the induction hypothesis. Consequently,

@8  ~fiu@ s +op| e@de + o[ o@de <p forala.

We have verified properties (i) and (ii) for the (n 4 1)-period inventory
problem ; (iv) follows in a straightforward manner. We next show the
truth of (iii). Let ¢.< Z,,,. From (45) we find

fiita) = [a] £tz + 2tuie) - gt ae 1 + B2 ]

+ afie @) - po@) + [ W@ — De(©) dé + K@)

Except for af,(zf.(x))¢(x), all terms are positive in view of what has
been proved, the original hypotheses, and the induction hypotheses.
Because of (ii), this term is dominated in magnitude by pe(z).
Consequently, f,..(z) > 0 for the range ‘¢ < #,,, as desired. Similar
arguments show that f,.,(z) > 0 when z = Z,,,. The induction step has
now been completed.

Our next objective is to proceed to a limit with n — c. Since each
z¥(x) is a continuous differentiable decreasing function of x with

dz (@) < ¢,

we may select a limit 2*(z) which is a continuous decreasing function
of 2. 2*(z) has the form

(47) M) >0 =<z, 252) =0 =z > &,
and satisfies

48)  flw) =ec - 2%@) + Liz) + ag:ﬂx + () — E(e) de
+ﬂz*(:v))g:sv($) dé .
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From (456) follows

an’(x +M@) —Oe@)de + L'@) e <&
(49) flla)={ =
cifw—aﬂ9&+Lu) x> F.

By consideration of difference quotients replacing differentiation of (49),
we deduce, analogous to the argument of (47), that Az) is strictly
convex. In fact, since f,(x) and f,(x) converge uniformly to f{z) and f'(x),
respectively, we infer that f is convex and f'(x) exists everywhere and
obeys the striet inequality —f'(z) < . The last fact may be seen from
examination of equation (45) after letting »n tend to infinity.

The relation K,(x; 2*) = 0 implies that z*(&r) for z < Z solves the
equation
(50) 0=c+ ago P&+ 2 —E)p(E)de + f’(z)ch(E)dé .
Since f is strictly convex, it follows that 2*(x) for = < Z is strictly
decreasing and the slope of z*(z) is an absolute magnitude strictly
smaller than 1.

All these arguments put together establish the validity of Theorem 4.

It is very difficult to find an efficient method of computing z*(x)
explicitly. The qualitative structure of z*(x) as suggested by the
assertion of Theorem 4 is the only guide to the form of z*(z). Rules
for z*(x) which possess these characteristics depending on one or two
parameters may be proposed, and the parameters can be selected to
optimize a further criterion. One example of z*(z) which fits these
prescriptions is

Bz — z) < I
0 r=I.

(51) (@) = {

This procedure depends on the two parameters, f and Z (0 < 8 <1,
according to Theorem 4), which are to be determined to satisfy two
other conditions. The form of 2z*(x)} as given in (581) cannot be the
optimal rule. The optimal rule z*{x) is necessarily a continuougly differen-
tiable function, whereas this property is not satisfied for the example
(51) when w = Z. Nevertheless, the simplicity of the form of z*(x) merits
its consideration. The stationary structure of these simple policies will
be studied in a separate publication,

4, The Analysis of “‘Simple’” Policies in an Inventory Model with
Time Lag
In the previous sections we were concerned with the characterization
of optimal inventory policies in the presence of a time lag. It was
shown that given s certain cost structure, the model II inventory
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problem (in which excess demand is deferred) has a simple optimal
policy—i.e., the stock on hand plus incoming stock should be kept equal
to a certain critical number Z. On the other hand, in the type I problem
(in which excess demand is lost), the optimal policy is never of this
simple form.

There are examples in both military and industrial areas in which the
simple policy described above is used, even though the situation is most
naturally thought of as a type I inventory problem. In this section
we shall analyze the operating characteristics of such a policy in a type
I situation, with a view to selecting an optimal value of Z.

Case 1: One Stage Lag Stationary Inventory Policy. We consider an
inventory policy such that the quantity available now, plus the amount
delivered next period, will equal Z. The transitions that transpire over
one period can be deseribed as follows: Let the pair (x, £ — x) have
the meaning that the first component represents the amount available
at the start of the present period, and the second component is the
quantity to be delivered at the start of the following peried. If ¢ (an
observation according to the density ¢(£)) is the demand of the period,
then

(52) (, & — 2) > (& — 2« + max (0, =z — &), min(z, §);

that is, & — « + max (0, = — &) will be the stock available next period
and min (z, ) is the amount ordered to arrive one period in the future.
If ¢ <z, all the demand was satisfied with available stock, while if
¢ > x, &£ — x represents lost sales. If current stock size « is a random
variable with density f(z), the distribution associated with the random
variable measuring stock available at the next pericd, g = Tf, may be
deduced easily from the expression of the transition law (52). In fact,

(53) g(y) = Al — y)SZ_y(p(é)dE + ¢(& — y)S:_-_yﬂE) dé for 0<y=7.

The quantity # — z + max (0,  — §) can equal y according to two different
contingencies. & > x requires that Z — # =y. This case corresponds
to the first term of (53). When & < z, then y =% — ¢ and we obtain
the second term.

The process is said to be in an equilibrium state if aglyy = Ay)
Assuming that an equilibrium distribution of the form of a density
exists, we get from (53)

(4) 7o) =2 ([7_w@ az)([_suran).
If Fy) = S:f(u) du, integration of (54) gives

(85) Fly) =11 — F(@ —- Il — ®Z —v)].
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This equation may be thought of as the stationary transition relation
involving general distribution functions and may be derived independently
of any restrictions as to the form of the equilibrium distribution F'.
Replacing ¥ by 7 — y yields

(56) Fx —y) = [1 = Fylll — ()] .
Insertion of (56) into (55) gives
(57) Fly) = Pyl — Pz — y)]

1—[1 — @yl -z ~y]

The representation of (67) always expresses F(y) in terms of ®©. It
follows that the integral equation (53) possesses a unique solution
exhibited by formula (57). The unigueness of the stationary solution,
together with the compact range of possible values allowed for u«,
implies (according to a standard method of stochastic processes) that
the distribution of = converges after n periods of time as = tends to
infinity, in the sense of average convergence, to the unique stationary
distribution F(y) given by (57).

The stationary distribution (57) having been determined explicitly, we
next turn to the task of computing several quantities of direct interest
in inventory analysis. To best illustrate the approach, we restrict
attention to the special density ¢(¢) = ie"*. Our methods may be
adapted readily to apply to the general case. Equation (57) reduces to

(58) Fy) = = I:e“’ —~ 1] _ev—-1
1l — e

and the density is

g—-Az
59 = ——ev,
(59) foy =

The probability that demand exceeds supply is
(60) Pri¢>y) = ﬁfty)w(s) dé dy

>y
e—.\.'t

= [oonrena + Jo@ar = <2

e

[ — 1 + 2e-].
The expected quantity of lost sales is

(61)  E (penalty) = M(s — YA)(E) dy dé

= f<p($) d¢ S:(E — Ay dy + 55-90(6) dESf(ﬁ — ) y) dy

z
e — 1"

Another relevant quantity involves handling or storage. Two possible
interpretations arise. In some circumstances, handling or carrying costs
are functions of stock on hand at the start of each period. In other
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examples, the significant part of handling costs is associated with goods.
on hand at the end of each period. An intermediate case consists of
treating handling cost as a function of average amount on hand for the
full period. 1If handling is a function of original stock, then expected
cost suffered from such sources is

(62) furway =" 1= "

If handling cost is evaluated as a function of excess supply over demand

—-or in other words, the amount on hand at the end of the period—

then

(63) S;‘S:(y - apeywdidy =3 © T~ 2 = F (handling)

Let p and A represent marginal penalty and handling costs. One

important and useful criterion function is

(64) AE (handling) + pE (penalty) = h[a’:- evt+1 -2-] + p[—“’w} .
e — 1 4 e — 1

The minimum with respect to #, where = 0, is achieved at the positive

root of the equation

(65) h{(ens — 1) — 2iFers} + plers — 1 — ATers) = 0 .

This equation has a double zero at the origin, a single negative zero,

and a single positive zero. The fact that the formula of (65) can have

at most four zeros is a consequence of a known result concerning

exponential sums. If A = p, then (65) yields z = 1.036/4.

Other optimization problems with different weighting attached to the
penalty and holding costs can be performed by these same methods.
The knowledge of the stationary distribution is of fundamental
significance, Various cost structures may be added routinely to the
format of the model. '

Cuase 2: The k-Period Lag Stationary Inventory Policy. The model
is the same as before except for the change that the lag in delivery
lasts k > 1 periods. Ordering is always done at the close of a period
and purchased orders are delivered at the start of a period. The state
of goods can be represented by a (k -+ 1)-tuple
(66) Lo Yo oty Yooy T — Y — 0 — Y
where x is the stock available now, y, is to be delivered at the start
of the next period, y, will arrive two periods hence, etc., and finally
F—ax—Y — +++ — Y, 15 scheduled to be delivered at the kth period.
The ordering policy has the characteristic that total stock level {present
+ incoming} is maintained at the constant quantity #  If the demand
through the first period was £, the description of the state of goods
becomes
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k=1

(67) (v, + max (0, z — &), %y Yoo +*-, Yeor, T — & — 3y, Min(x, &) .

im}

This means that the stock level at period two is the random variable
Yy, + max (0, x — £). The quantity to be delivered the following period
would then be y,, etc. The amount ordered at the end of period one,
which will arrive after the lapse of % periods, is obviously min (z, £&).
The value max (¢ — z, 0) is a measure of lost sales and the random
variable max (0, x — £) represents quantity of goods subject to holding
costs.

If the process has been in operation infinitely long in the past, we
may assume that the state of the system has reached equilibrium. Let
Fla, o, as, --+, &) denote the stationary distribution of the state
(Ty Yoy Yo *** s Yu-ry & — & — Yy — *++ — Y,.y), Where «, stands for z, «,
for 4, -+, «, for y,.,. Clearly, the variables are required to satisfy
the inequalities of the system, o, = 0 and

k
T =7

iml
The final variable «,,, is evidently determined by the condition that

R+

Ja, =%

i=1
and is not an independent variable. Hence, a,., may be suppressed in
writing the distribution F' as a function of its arguments. Suppose for
simplicity that the stationary distribution has a density fla,, ., «--, @),
In most examples the equilibrium distribution is in fact a density. The
general case may be dealt with analogously at the expense of more
tedious complexities.

We now derive the integral equation that f must satisfy to qualify
as an equilibrium density for the process. We must analyze how it is
possible for the state of goods to be (@), a, +-+, ay). This can happen
in two ways. First, if previously the state of the system was (4, £.

++, 3 and demand ¢ was less than /3, then in order for the state of

the system to.be (a,, «,, +++, @) after one period, it is necessary that
(68) A, + ﬂl —E=a, fi=a, fo=a, -, By =y,

and
k
T — Eﬁt = a, .
i=1

All the equations together imply that

L3

t=%—Ya and FB=Z— ) a-—p.

iml i=2

This is valid provided
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k
B> E=Z -

{demand fell short of supply during the initial period).

The gquantity £, can be thought of as a variable, and we have that
the event of (68) occurs with probability

k
(69) (’.C‘(ﬁ - Zal)g 1:2 f(u! I — Eaz — U, &, &y +e-, akq) du A
{m] 2

Finally, if demand ¢ exceeds 5, then

&
B = a,, P =a, .-, Be = o 5‘“2131:0&,
=1

and
E> 8=z — éat .
The probability of this event is
(10) & — Dety o s a,c_l}f ROLE
i=1 -y

il
The terms (69) and (70) exhaust the various possibilities and taken in
conjunction yield the integral equation for f:

P "
(71) fas, ayy <0y a,) = flE — ;au Ay Ky “* -, ab—l)S % @(§)ds
-1 7S a,
R
&
k z “:2:"”1' k
+ ‘P(:E - Eai)g k~ f(u’ T —'Eai — U, &y, O3+, ak—l) du .
iwl ":"Z"‘i =2

1l
The fact that density solutions exist can be demonstrated by invoking
standard ergodic theorems., The explicit computation of these solutions
in general is very complicated. A more'thorough investigation of the
solutions of this equation will be undertaken in a later publication. In
the remainder of this chapter we specialize to the specific density ¢(4)
= e, A direct verification shows that

(72) f(al, Oy = v ax) = Cer=
satisfies (71) where C is a normalizing constant. Uniqueness can also

be established. The detailed arguments of this fact will be presented
elsewhere. The marginal density of «, is

h’(al) = S"'Sf(ah Ay, ***, ak)da‘n daSr A dak

teaa
2

= Ce"“xj-- -Sdaz, datg, =0+, doty ,

Bt wan ®
7 k
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the integration being extended over the region

(g, 20, i=1,2,8,+--, k, and}_a, =% — a,),

- Toz

or
(73) Ma) = c(a;)(ﬁ(T—_gll)_)_!;_em.
and
— Ak
(74) C(x) = A _
_ AT) AZ)?
e*x-—[1+1x+%ﬁ+ oo ﬁ]

The various steady state inventory quantities such as preobability of
shortage and average inventory level may be computed readily from the
knowledge of (73) and (74). For example,

(78)  E(shortage) = 55(5 — htle@) de dy = [ nw) € — wpte) ak ay
_C(@) 3
2ok
The expected carrying costs are evaluated by the formula

(76) E (holding costs) = ") tw — )@ dz ay = { ) v - 1570 |ay

k+1)  k+1Zq-

R R T
We specialize to the case ¥ = 2, and expected costs equal to
(77) hE (holding costs) + pE (shortage costs)

- 3 3 z z i
I e e [ i |
e gyl U e g
The minimum of this is achieved at the unique positive root of the
equation

e I —

(18)  h(e¥ — 1 — 23) + (%,m + “T”)(exz(zaa — ) -2~ @) =0.

For » = p, we have & = 1.35/4. This may be compared with the optimal
policy in the one stage lag, where & = 1.04/1.
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