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A MIN-MAX SOLUTION
OF AN INVENTORY PROBLEM

HERBERT SCARF

1. Introduction

Most of the authors who have written on the subject of inventory con-
trol have made the assumption either that future demand is known precisely,
or that it may be described by a definite probability distribution. In any
specific problem the selection of a definite probability distribution is made
on the basis of a number of factors, such as the sequence of past de-
mands, judgments about trends, ete. For various reasons, however,
these factors may be insufficient to estimate the future distribution.
As an example, the sample size of the past demands may be quite small,
or we may have reason to suspect that the future demand will come
from a distribution which differs from that governing past history in an
unpredictable way.

It is possible to formulate one aspect of this problem in the language
of statistical decision theory. We may assume that the séquence of
past demands represents a sample drawn from the same distribution that
governs the future demands. A stockage policy is deseribed as a choice
of stock level depending on the sequence of past demands. As one
possibility, we may examine all stockage policies and choose that one
which maximizes the minimum expected profit for all demand distribu-
tions. For most inventory models, however, this is too conservative a
procedure, and leads to a stockage policy of never stocking. There are
other principles that may be employed within this framework, such as
the principle of minimax regret. We shall, however, adopt a somewhat
different procedure.

In order to discuss the procedure of this chapter, we shall find it
necessary to make a number of simplifying assumptions about the in-
ventory model to be discussed. We shall assume, for example, that the
only pertinent revenues and costs arise the following way. The unit
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cost of an item is ¢, regardless of the number purchased, and the unit
selling price is r, regardless of the number sold. We shall only consider
a one stage model, and assume initially that, subsequent to the demand
period, leftover items have no salvage value. In a later section, we
shall infroduce a linear salvage function.

This model is very simple to solve if the demand distribution is known
precisely. Let us denote the demand distribution by @®(£). Then if we
purchase an amount ¥y, the expected profit is

—cy + 7 S:min (v, ) dP(8) .

That value of ¥ which maximizes expected profit is given by the solution
of the equation

[av =

What we shall do in this chapter is assume that only the mean (g)
and standard deviation (¢) of the demand distribution are known. These
may be either estimated from the past history or determined in other
ways. We shall then choose the stockage policy so as to maximize the
minimum profit that would occur, considering all distributions with the
given mean and standard deviation. In symbols this means that we
select the maximizing y in the formula

max min [:'rr min (y, &) d®(¢) — cy:] .
H San:# 4
S(E—#)’d°=¢r’

We intend in the next section to obtain the value of y which maxi-
mizes the above expression as a function of g, o, and the ratio of cost
to price ¢/r. The appropriate value of y is related in a very simple
manner to these parameters, and is given by an expression of the form

y=p+of(r).

One of the objections that can be raised against this approach is that
in maximizing the minimum profit we are admitting too many distribu-
tions into consideration, and selecting a stock level y that corresponds
to a very unreasonable type of distribution. For example, there are a
number of specific instances of our problem in which the Poisson distri-
bution seems to describe the future demands fairly accurately. (In this
case o? = p.) As a partial answer to this objection we shall compare the
stock level obtained above with that obtained by assuming a Poisson
distribution. As we shall show, for a large range of values of ¢/r (.05
< ¢fr < .95), the two stock levels are virtually identical. For ¢jr < .05
the min-max criterion indicates a higher stock level than the Poisson,
and for c/r > .95 a smaller stock.
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2. The Mathematical Solution of the Problem
We are interested in determining the value of y which maximizes the
following expression :

Po)= min || min@ o de@ - a).
{tao=p o
S(G-n)’dﬁmc’
The computation of the funetion P(y) is based upon the fact that a
minimizing distribution may be chosen with all of its weight concen-
trated at two points. The proof that only two point distributions need
be examined depends on the following lemma.

Lemma. Let y, o, and o be fized. Then there exists a guadratic func-
tion Q) = @ + B¢ + 18 such that Q(§) < min(y, §) Sfor §= 0 with equal-
ity holding at only two points a and b. Moreover, there exists a two
point distribution situated at a and b, with mean p and standard devia~
tion o.

Let us assume for the moment that this lemma is correct, and let us
designate the particular two point distribution described in the lemma
by F(8). Then it is easy to see that F(§) actually minimizes

S” min (3, £) d2(&)

for all distributions ®(£) with mean # and standard deviation o. For
let ®(£) be such a distribution. Then

|, min v, 8 20(@) = [ min 4, & — Q@290 + [0 dw(e

> 5: Q) dD(E) = a + B + 7(2 + o%) .
But

[ min 4, 0y 2710 = [ Q@ ar)

=a+ e+ 710 + Y,
since @Q(¢) and min (y, §) are equal on those points where F has all of
its weight. Therefore subject to verification of the above lemma, we

bhave demonstrated that a minimizing two point distribution may be
selected.

The proof of the lemma breaks down into two cases.
Case 1,

y< Pt
s £

.

In this case, let
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min (y, §)
A .5

\‘/y Q(¥)

y b
FIGURE 1
It may be verified that Q(¢) is tangent to the curve min(y, §) at §¢=
# + o*/p, and therefore lies below that part of the curve parallel to the
¢ axis. In order to have Q(¢) < & for 0 < £ <y, we must have

2y ¥ 1,
(#+-‘§) (f!+£—’):

and this follows from the defining condition of Case 1. The two point
distribution referred to in the lemma has mass ¢*/(¢* + ¢*) at 0 and
L+ o) ate=p+p.

Case 2.

2
> L7
2¢

In this case the quadratic Q(€) does not pass through the origin, but
is tangent to the curve min (y, &) at two points, one less than y and the
other greater. Let us, first of all, remark that if a two point distribu-
tion puts mass » at @ and 1 — p at b, with a < b, then

o* o?

and p= —— —— .
p—a _ (#—ay 4+

b=p+

Therefore all two point distributions with a given mean and standard
deviation form a one parameter family, indexed by the parameter a
(with 0 < a < p) .

For any value of 0 < a < min (y, ), let us construct a quadratic Q.(¢)
which is tangent to min(y, §) at ¢ = a, and parallel to the ¢ axis at
g =b. Let k{a) represent the height of Q.(¢) above the curve min (y, §)
at £ =0, i.e.

h(a) = Qu(b) — min (y,d) .

The lemma will be demonstrated if we can show that a value of a
exists with A(a) = 0. In order to demonstrate this, let us examine the
function %2 for several values of a. For a =0, a simple calculation
shows us that
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and therefore
MO)< O it y>L=£ET
2 2u
Since this latter condition is the defining condition of Case 2, it follows
that 2(0) < 0.
If y<p, then a glance at the geometry of the situation shows us
that 2(y) > 0. On the other hand, if y = #, then

Pff Qu8) = ¢,

and b — = so that
' im Aa) = = .

a—p
We have therefore shown that there is a value of a between 0 and
min (y, #) with k(a) = 0. The corresponding quadratic satisfies the con-
dition of the lemma, and the distribution associated with this quadratic
is the one defined by the corresponding value of a.

We now turn to a computation of the function P(y). The method that
we have used to demonstrate the above lemma shows us that if y
< (£ + 0%)/24, then a minimizing distribution is the two point distribution
with mass /(¢ + o) at 0 and /(¢ + o) at ¢ + o*/p. Therefore for
Y = (£ +0%)2p,

kY

= PV
P(y) e Rl

For y > (£ + ¢*)/2¢, we may use the following procedure to determine
P(y). Evaluate the expression

rr min (y, §) d® — cy
0

for each fixed v as a function of a, and choose the value of a which
minimizes this function., The answer is

P =t _ Ly pTe ) -
The next question that arises is the determination of that value of y
which maximizes the minimum expected profit P(y). We notice first of
all that the function P(y) is concave and has a continuous derivative at
all points. We shall find it convenient to consider two cases sepa-
rately.
Case 1.

)<
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In this case, the formula given above shows that P(y) is strictly in-
creasing in the interval (0, (¢ + ¢%)/2¢). Since P(y) is negative for every
large y, we see that the maximum will be attained for y > (¢ + ¢%)/2.
We have

Py =r{&EY — Ly E e -

and

Pw)=r {% B %(V(y g-,:;):.-}- cr")} — e

If we equate P'(y) to zero, we obtain
y=p+af(c/r),
/
where

o= 3 (h

-—_‘—/-T—"_(_—i—T_—-a—T) for 0<a<1.

We shall discuss the meaning of this stock level in the next section.

Case 2.

¢ o’
< (1 -—) 1.
T( +%)>

In this case P(y) is initially decreasing. It is a concave function and
therefore always negative, except for y = 0. In this case the optimal
policy is to buy none of the stock. The intuitive idea here is that the
ratio of standard deviation to mean is so high that the transaction is a
very risky one, and unless the ratio of cost to price is low, it is best
not to enter into it at all.

The results of this section may be summarized as follows:

The stock level which mazimizes the minimum expected profit for all
demand distributions with mean p and standard deviation o is given by
0 1(1 f) 1

- + p >

pre(s) 2e)<
where

0= (vee)

It is easy to verify that if this policy is used, the minimum expected
profit is the larger of

(r—cp—~oVe(r—c) and 0,

and that this amount is guaranteed against all distributions with mean
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¢ and standard deviation o. The term (r — ¢)u represents the profit if
the demand is known to be precisely g, and the term oV ¢(r — ¢) may
be looked upon as the loss attributable to an imprecise knowledge of
the demand. The point at which zero units are stocked is precisely the
point at which the loss term becomes greater than the profit term.

3. Some Observations on the Solution

The solution given in the previous section breaks into two parts: If
e(1 + 0¥t > r, we stock none of the item ; if ¢(1 + o*/¢2) < », we stock
an amount y = ¢ + of(c/r), where

1/ 1—2a
1@ = {varza)
This section will be devoted to a discussion of some of the properties
of this solution, and a comparison with the solution obtained by assum-
ing a Poisson distribution.

We notice that the function f(a) is strictly decreasing from 4o at
0 to — at 1. It is positive between 0 and 1/2, negative between 1/2
and 1, and equal to zero at 1/2. It is easy to verify that the relation-
ship f(@) = — f(1 — a) is satisfied. ‘

These properties of f(a) imply the following general conclusions about
the stockage level y:

1. If ¢/r <1/2, you stock more than the mean demand, and the
higher the standard deviation, the more you stock, unless (¢/r)}(1 + o*[¢2)
> 1.

2. If ¢/r > 1/2, you stock less than the mean, and the higher the
standard deviation, the less you stock.

3. If ¢/r =1/2, you stock the mean, independently of the value of
the standard deviation, unless (1 + ¢*/¢#)/2 > 1, or ¢ > p, in which case
you stock zero. '

As we maintained previously, there are a number of practical instances
of this problem, in which it is reasonable to assume that the demand
function is given by a distribution close to a Poisson distribution. We
shall present in the following tables a comparison of the stock levels
obtained by assuming a Poisson distribution (the technigue is the one
outlined_ in the introduction), and by using our stock formula with
c=Vpu.

The accompanying charts indicate that the min-max solution stocks
less than the Poisson for a high ratio of cost to price, but stocks more
than the Poisson for a low ratio. For intermediary values of this ratio
(say, .05 < ¢/r < .95) the two stockage policies agree quite well.

For large values of the mean it is possible to approximate the Poisson
distribution by a Gaussian distribution with mean z# and standard de-
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u=100; ¢=10 n=236; a=6

[ Min-Max Poisson ¢ Min-Max Poisson
* Level Level ™ Level Level
.98 63,7 80+ .98 0 24+
.95 79.4 84 + .95 23.6 26+
.9 86.7 87+ .9 28.0 28 -
.8 92.5 92+ .8 31.5 31+
.6 97.8 98— .6 34.7 35—
.5 100.0 100+ .5 36.0 36+
.3 104.5 105+ .3 38.7 40—
.1 113.3 113+ .1 44.0 44 +
.05 120.6 117+ .05 48.4 47—
.02 134.3 121+ .02 56.6 49+

n=4; =2 p=.25 a=.5

[ Min-Max Poisson c Min-Max Poisson
v Level Level r Level Level
.98 0 1+ .98 0 0+
.95 0 2- .9 0 0+
.9 0 2+ .6 0 0+
75 2.84 3+ .4 0 1-
.5 4 4+ .3 0 1-
.2 5.5 6+ .2 .62 1~
.1 6.64 7+ .1 91 1+
.05 8.12 8+ .02 1.96 2—
.02 10.86 S+ .01 2.71 2+
.01 13.84 10- 005 3.75 3—-

viation V' #. The appropriate stock level would then be given by ¥
= p + V pgle|r), where g(a) is defined by

A comparison between g(a) and f(a) is given by Fig. 2. It may be seen
that for .1 <a <.9, the two curves differ by no more than .2, so that

the two stockage policies differ by no more than .27 4.

4, The Result with Salvage Value

We may be interested in modifying our original assumption that the
excess of stock over demand has no salvage value. For example, we
may treat by the same methods as above, the case in which the excess
of stock over demand may be sold for a reduced price 7, with ' <e¢
< r. The stock levels then become

T SR
.“+0f<::::) (::::)(1+;;_)<1.

This formula reflects the intuitively plausible observation that the
automatic disposal of surplus items at a price #* may be described by
a translation of both the cost and price by an amount 7.



