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STATIONARY OPERATING CHARACTERISTICS
OF AN INVENTORY MODEL WITH TIME LAG

HERBERT SCARF

In the last several years a number of papers have appeared which
discuss the general problem of the control of inventories. In some of
these papers the problem of selecting appropriate inventory policies has
been treated as a decision problem. This point of view emphasizes the
determination of optimal! inventory policies, that is, policies which maxi-
mize some desired objective associated with the continual build-up and
utilization of inventories. A certain amount of success has been obtained
in characterizing the form of optimal policies when various assumptions
are placed on the relevant cost functions. However, the actual deter-
mination of optimal policies in any specific situation is a task which
generally cannot be solved analytically, and frequently exceeds even the
capabilities of modern high speed computers. This makes it necessary
for some compromises to be introduced.

The point of view which we shall adopt in this chapter is to restriet
our attention to a rather simple class of inventory policies which are

INVENTORY INVENTORY
__ SALES ON _ DELIVERY ON
- HAND h ORDER
NEW ORDERS

actually found in practice and to describe the effects of these policies.
If we introduce a specific inventory policy, the resultant fluctuating in-
ventory level is a stochastic phenomenon, governed primarily by the
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statistical aspects of demand. The underlying stochastic process may be
deseribed schematically as follows.

Items are ordered according to the inventory policy being used ; they
are delivered after a certain length of time has elapsed, which may be
random or constant, and they are then sold according to the demand
distribution. Most of the inventory policies in actual use have a self-
regulatory aspect, in the sense that a depletion of the inventory on hand
induces substantial ordering, whereas an excess of the inventory on hand
results in diminished ordering. This is essentially a feedback phenomenon,
which modulates the size of the inventory.

In our model we shall assume that the demand is an arbitrary process,
in the sense that the distribution of the time between successive demands
is an arbitrary distribution function ®(r). We shall denote the prob-
ability distribution of the time lag by Q(2).

At any time we shall have a certain number, say = units, on hand,
and a corresponding number, say w units, on the books, with some de-
livery dates associated with each shipment on the books. The policy
that we shall examine is the very simple one which tells us to order an
amount D = 8§ — ¢ whenever & 4 w falls to 8, and otherwise to order
nothing,

A distinction must be made between two possible interpretations of
this policy. We have not yet specified whether or not to allow negative
inventories on hand. For example, if we assume that a demand which
occurs when the inventory on hand is zero, may be satisfied by an item
which is delivered in the future, then we are essentially permitting the
inventory on hand to be negative. We may make the alternative assump-
tion that a demand which occurs when the inventory on hand is zero,
is either neglected entirely or satisfied by priority shipment. In either
of the latter cases the inventory on hand is always nonnegative. We
shall refer to the first of these models as the infinite model, and the
second as the finite.

If a choice of S and s is made, and the infinite or finite model is
selected, then a desecription of the system at, say, ¢ = 0, gives rise to
a well-defined stochastic process for the inventory model. In order to
compare these stochastic processes to those previously studied, let us
assume for the moment that the infinite model has been selected. In
this case the number of shipments on the books is precisely the same
as the number of busy servers in a queue with an infinite number of
servers ; customers being assumed to arrive according to the interarrival
distribution ®,(z) (the D-fold eonvolution of ®), and with service per-
formed according to the distribution Q(3). This model is also identical
to the telephone trunking problem [2]. Both of these forms of the proe-
ess have been discussed quite thoroughly [4].

in the finite model with 8 =8 — 1 the number of shipments on the
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books is the same as the number of busy servers in a queue with a finite
number of servers, with the assumption that if customers arrive when
all servers are busy, they leave immediately, and a waiting line is not
formed. This model may also be described as an extension of the type
I and type II counter problems, in which incoming pulses are disregarded
if S pulses are still affecting the counter. This model, with very special
assumptions on the distributions involved, has been studied by Erlang [1].

Let us say a word about the method to be used in analyzing these
models. Suppose for the moment that we are considering the infinite
model, and let us say that the system is in state (m, j) if there are m
shipments on the books and ¢ =S -- mD — j units in current inventory
O<j<D-1). Um<[SD],and j=0,1, -, D—1or §=0, 1,
«--, 8 — D[S/D] if m = [S{D], the number of units held in current in-
ventory is nonnegative and it is natural to assume that a holding cost
h. per unit time will be charged. On the other hand # may be negative,
i.e., demand has exceeded supply, and we assume that a penalty cost
p. per unit time will be charged. If the system starts out in any specific
state, then as time goes on the system will wander from one state to
another, accumulating both holding and penalty costs. Let us denote
the expected costs accumulated in ¢ units of time by C(¢). Then it may
bhe shown that as t becomes infinite C(¢)/¢t approaches a limit which may
be computed in the following way. Let 7, , be the average length of
time spent in state (m, j). Then

lim g(t)* = E h.-:”'m,; + E Paltm, 54

{-sc0 xz0 <l

where z is S — mD — 7. The same procedure may be used to determine
the average value per unit time of any cost or revenue which is a linear
function of the time spent in a given state. The costs may themselves
be nonlinear in the state variables.

There are, of course, other types of costs or revenues associated
with the inventory process. For example, ordering costs do not depend
on the length of time spent in any given state, but are incurred in-
stantaneously whenever a new shipment is placed on the books. Before
we discuss these costs let us discuss the specific expressions obtained
in this chapter for the numbers =, ,.

1. f D=1 (=8 — 1) and demands arrive according to a Poisson
distribution, then for the infinite model,

-o &7 , where a = E('l).

m! E(z)

It is to be noticed that this result is correct for an arbitrary distribution
of the time lag. This result, however, is not original with this book;
it has been previously obtained by a number of authors, and the proof
will not be repeated here,

T, =€
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If D=1 (¢ =8 —1) and demands arrive according to a Poisson dis-
tribution, then for the finite model,

Ty = 0 for m = 0, 1’ ves S.
=T

The value of « is the same as in the infinite case, and again the result
is eorrect independently of the distribution of the time lag. An heuris-
tic proof of this result is given in the body of this chapter. A rigor-
ous proof is given in Chapter 17 of this book.

2. In both this result and the subsequent one the time lag distribution
is restricted to be a negative exponential distribution, i.e.,

Q) =1— ™D,

where L represents the average time lag. In order to describe this re-
sult we shall introduce some notation. .Let ®,(r) represent the D-fold
convolution of ®(r), that is, the length of time for D successive demands
to occur. We define

M(r) = 32 0,5(r) .
1
The quantity M(r) is a very common one in the study of renewal proc-
esses and represents the average number of groups of D successive
demands that occur in the time period (0, r) or the average number of
times that orders are placed in this time period. We shall use the fol-
lowing notation for Laplace transforms :
(s) = re‘“’ dG ) .
0
As a final definition, let us write
~ /1N~ /2 ~fn
(1) e = (3 )i(7) - #(F).
Our main result as far as the infinite model is concerned is to give

an explicit expression for the generating function associated with the
quantities 7, = 7p o+ *** + 7 5o, . This result is that if

Tf(y) = Z:: n'mym ’
then
(2) n’(y)=wb-é~‘(;)—2aﬂ(y—1)". and (1) = 1.

Let us, first of all, remark that corresponding expressions may be ob-
tained for

m(y) = ; Tm s U™

using precisely the same techniques as were used in obtaining the above
expression. We shall not perform the explicit computations here.
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The method that we shall use in this chapter for obtaining the above
result is that of the imbedded Markov chain, a method which has been used
by numereus authors on queueing theory |3]. Of course, as was previ-
ously mentioned, the infinite model is actually a queue with an infinite
number of servers. An alternative and somewhat simpler procedure for
obtaining the above result is given in Chapter 17, and is based on the
work of L. Takaes [4].

In using his ideas, it is not necessary to assume an exponential time
lag. Takaes’ procedure, however, is inapplicable to the finite model,
and we are foreed to return to some modification of the imbedded Mar-
kov chain technigue.

Let usg illustrate the above result when the individual demands are
assumed to arrive according to a Poisson process, with an average num-
ber of demands per unit time equal to g#. Then ®(r) =1 —e™*", and
a simple computation gives

1+ ) -]
;I=Ix oL
For D =1, we obtain a, = (¢L)*n!, so that
w) = ey 35 EHY AL pLexputiy - 1),

n !

ty, =

and =(y) = exp pL(y — 1). This latter funection is, as we would expect,
the generating function of a Poisson distribution with mean gL.
For D = 2, it may be shown that

T szL-i(zﬂL'l/l-.:—y‘)
a(y) =1 (Z#L)i(p'f} 1‘/1‘—:"@&,”,_1 <
where J,.,_, is the Bessel function of order 2uL ~ 1. The quantities
m, may be found by successive differentiation to be
LCpL) s -ran(20L)

m ! (FL)!,ALL-I—M

For D > 2, the functions #{y) are the solutions of a generalized hyper-
geometric equation.

3. The finite model represents a substantially new stochastic process,
which we solve for an arbitrary interarrival time and a negative ex-
ponential distribution for the time lag. For simplicity, we shall des-
cribe the result for s = 8 — 1 or D = 1, though the general result is quite
similar and is given in Section 3 (specifically, equations 25 and 26).

We are interested in obtaining an expression for the generating func-
tion

m =

5
H(y) = E Ty
)

and in order to do this, we define the funection
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Gfy) = g ay — 1Y,

where a; is defined as before (we remember that for the exposition of
this section D = 1), Then our result is

1
(3) 7' (y) = Ef”) >f; E;,( 1)G“(y)
e

(It was brought to the author’s attention, after the present chapter had
been written, that Takaes in [5] had obtained this solution for D =1,)

4. The previous discussion has shown us how to compute the average
value of those costs and revenues which depend merely on the amount
of time spent in the states of the model, under the assumption of
a negative exponential distribution of the time lag. There are, of course,
other costs which are relevant to the choice of an inventory policy. One
of the most important of these is related to the following considerations.
Let us consider the finite model and assume that all demands which
occur when no inventory is on hand are satisfied by priority shipment.
All of the sales may be placed into two categories, routine sales and
priority sales; let us suppose that we are interested in determining the
average ratio of routine sales to total sales, induced by the inventory
policy that has been adopted.

It may be shown, for general distributions ® and £, that

average inventory on order
average routine sales per unit time

This permits us to obtain an explicit expression for the average number
of routine sales per unit time, inasmuch as the average inventory on
order is given by Dn'(1). More specifically, if R represents the average
number of routine sales per unit time, then assuming that the time lag
is represented by a negative exponential distribution, and that D =1,
we obtain

(4) 1= RE() = 5

A similar expression is obtained for D = 1, in Section 4 (equation 27).
There are several other figures of merit associated with an inventory

problem, which are readily calculable in terms of R and the data of the

problem. For example, the average inventory on hand is given by

(5) )= S — BQR - r + BB r — 7 7]
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where S = nD + r, with 0 £ ¢ < D, Another example is the frequency
of ordering, which is given by

(6) =

It is quite possible that a knowledge of the three quantities discussed
in this section would be sufficient to form a judgment about the merits
of a given (s, S) policy. For example, if the holding cost is proportional
to the inventory on hand, i.e., b, = Az, and if the penalty cost is pro-
portional to the number of lost sales per unit time, then the average
costs per unit time may be determined from a knowledge of these quanti-
ties. Let us denote the cost of purchasing ID units by C,. Then the
average costs per unit time are
CoE

hE(x) + fp{El:j — R} +"D

The stockage policy may then be chosen 8o as to minimize this cost.
Even if the costs are not known to be of the specific form mentioned
above, knowledge of the quantities involved in (4), (5), and (6) could
be of considerable importance in selecting an appropriate (s, S) policy.

We shall present some tables of these quantities at the end of this
chapter, on the assumption that the demand follows a Poisson distribution.
If D =1, then the result of Section 1 demonstrates the insensitivity of
these computations to the time lag distribution. On the other hand, it
may be shown that if D = S, the results are again insensitive to the
time lag distribution. This indicates that the value of R, while computed
on the basis of a negative exponential time lag distribution, will be ap-
proximately the same regardless of the time lag distribution, at least
for extreme values of D.

1. The Case D = 1 (Poisson Demand)

In this section we shall introduce the very special inventory policy
which consists in keeping the amount on hand plus the amount on order
equal to a constant S. This corresponds to the case D =1, We shall
also assume that the demand is given by a Poisson distribution with
mean g per unit time. In the next section we shall consider more gen-
eral types of processes.

We ghall begin by assuming that the time between placing an order
and receiving it, is distributed according to a negative exponential distri-

bution with mean L, ie., according to the density funetion
1

—e ™
L

If the inventory policy is to keep the amount on hand plus the amount
on order equal to S, then the state of the system may, at any time, be
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described by an integer w ranging from 0 to S, which represents the
amount on order. At first glance, it would seem necessary to record the
time at which each shipment was originally ordered. However, the
negative exponential distribution for the time lag makes it unnecessary
to do this; for if a shipment was originally ordered at time ¢, and if
it has not been delivered at time ¢ > ¢, then the conditional distribution
of delivery time T is
1 - e—(l/L(T—t)) .

which is the same as if the shipment were originally ordered at time ¢.

In the time interval (¢, ¢ + 4) any shipment on order has a probability
of being delivered equal to

é
[t old),

regardless of when the shipment had been originally ordered. It is easy
to see that the amount on order varies according to a continuous time
Markov process with the following transition matrix (¢ =0, ..., S).

(—p P cee 0 )
1
}: _(P+~E)IP e 0
(Pth=1+t| + oft)
S
0 0 T

\
=TI+ tQ + o(t), for ¢ small.
The limiting distribution 7, is given by the solution of the equation
# = 0, and turns out to be
(2L
m!

L y
JZ;(# 4

which is a truncated Poisson distribution. This result was known to
Erlang [1]. The average inventory on order is given by

Pg_\(pL) a2
L PiuL) where Fylx)=e - T

It may be shown that the long term average number of routine sales
per unit time is given by

#(1 — n5) = #%f(%%

and we may therefore conclude that
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___ average inventory on order

average routine gales per unit time

The next problem that we wish to discuss, again under the assump-
tion that demands arrive according to a Poisson process and that
g =& — 1, is the finite model with an arbitrary distribution for the time
lag 2{1). As was mentioned in the introduction, the proportion of time
spent in any given state is the same as under the assumption of a nega-
tive exponential time lag as long as the mean of (1) is L. We shall
not give a completely rigorous proof of this fact for all distributions, but
only for a subclass of distributions, which is, however, dense in the
class of all distributions. Let us assume that (1) is a distribution for
the recurrence time for a state of a continuous time, finite state Markov
process. What this means is that when a shipment is placed on the
books, it passes through a number of stages not necessarily sequentially,
prior to delivery, and that the length of time spent in each one of
these stages is a negative exponential distribution.

Let us denote the states of the Markov process by 1, 2, ---, &, and
let Q(4) be the distribution of time for a particle to leave state 1 and
then return to it. Let us suppose that the transition probabilities are
given by P,(t) = 3, + qit + o(t) for small ¢. The stationary probabili-
ties satisfy the equations

; mgy =0,
and the mean of the distribution ©(2), which we have called L, is given
by —1/mq. .

It is clear that the inventory model may be described, at any time,
by an integer w, which represents the total number of shipments on
order, allocated to the k states of the Markov process. That is, the
system is deseribed by nonnegative integers w;, --., w,, with w, + +-.
+ 9w, = w. Transitions of various kinds may take place. For example,
if the system is in any state with w < S, it is possible for a new order
to be placed, and the probability that this occurs in a length of time ¢
is given by gt + o(t). Again if the system is in a state with w > 0,
a delivery may occur, and the prebability that this happens is the prob-
ability that any one of the particles in the states 2, .-., k, makes
a transition to state 1, or (W, + --+ -+ wg,)t + o(t). The shipments
may, in a small time ¢, move around within the Markov process with
neither a delivery nor a new shipment occurring. Lastly there may be
no transition at all.. Combining these alternatives, we see that the
stationary probabilities =,,...,, for the inventory model are given by

k k
n“’x"""xI:F -2 th’u] = My _1eew, + sz ”wl"'wiﬂ"‘w,‘(wl + 1)ga

t=l
L3 k

+ 202 Mo ymiee (W + Dy

J‘=2 i=1
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It may be shown, by direct substitution in these equations, that the
limiting distribution 7, ...., is given by the following rule : The probability
of having w shipments on order is

(nLy*
w !
5 (PL)J 3
DT
and if there are w shipments on the books, then the state in which
any shipment may be found is independent of the state of any other
shipment, and given by the probability distribution (=,). In other words,
the conditional distribution of (w,, +++ , w,) given that w, -+ +-- 4 w, = w

is given by

This demonstrates the result discussed in paragraph 1 of the introdue-
tion.

2. The Infinite Model with an Arbitrary Interarrival Distribution and
a Negative Exponential Distribution for the Time Lag

In the previous section the stationary probabilities for the number of
outstanding orders were computed under certain assumptions. The nature
of these assumptions was essentially to make the number of outstanding
orders a continuous time Markov process, and thereby permitted us to
compute the limiting probabilities by means of standard techniques.

However, when the interarrival distribution is permitted to be arbitra-
ry, the number of outstanding shipments is no longer a continuous time
Markov process and some alternative procedure must be used to evalu-
ate the average time spent in each state. In this chapter we use the
method of the imbedded Markov process. As was mentioned in the
introduection, it is also possible to diseuss the infinite model by means
of a method due to Takacs, with no assumptions on either the interar-
rival distribution or the time lag distribution. This latter method, how-
ever, is inapplicable to the finite model, which is discussed by means
of the imbedded Markov process in Section 3.

The method of the imbedded Markov process depends on an analysis
of the number of outstanding orders at a discrete set of time points,
at which points the process is a discrete time Markov process. Let us
refer to the notion of the state of the inventory model, defined in the
introduction. The system is in state S, , if the number of outstanding
shipments is m (each shipment consisting of I items), and if the inventory
on hand is # =8 — mD — 7 where § =0, 1, ---, D —1. For the in-
finite model, m may be an arbitrary nonnegative infeger.

We start the process off at time £, == 0 in state S,,. Let ¢ be the
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time it takes for D demands to arrive. At time ¢, the process will be
in state .S, or in state S,, depending on whether or not a delivery has
been made., Let ¢, be the time when IJ additional demands arrive. At
this time, the process will be at one of the states S, Sy, or S,,. If we
examine the process at the points &, ¢, f,, --+, with the property that
between any pair of consecutive points D demands have been made,
then at these times the process will be in states S, , which we shall des-
ignate by S,. The fact that the time lag distribution is assumed to
be a negative exponential distribution implies that the sampled process
is a Markov process. We shall first determine an explicit formula for
the transition probabilities of the sampled process, and then determine
the limiting distributions. We shall then relate the limiting probabilities
to the average time spent by the original process in any state.

Let us assume, then, that we are at state m, where m is any positive
integer. The time that it takes for D additional units to be sold is
a random variable r drawn from a distribution ®,(r) which is a D-fold con-
volution of ®(r). If no shipments are delivered in time 7, then since
a new shipment is requested whenever D demands have been made, the
system will move from state m to state m -+ 1 at the next sampling
point. In general, if m — k shipments are delivered in time r, the
system moves from m to £+ 1. Now for any definite time =, the prob-
ability that m — & shipments out of the wm are actually delivered is
given by

(7 ey — emcrmyes,

The reasoning behind this formula is that for any shipment on the books,
the probability of its being delivered in time r is
1 — 3“("'“—) ,

and that delivery is independent for all ocutstanding shipments. Since
r is distributed by @,(r), we see that

(7) pmen = (T e o011 - e ompordey.

The sampled process ranges through the states 1, 2, ..., o with
transition probabilities p, .., as given above. We are interested in com-
puting the stationary distribution (p,, .-} associated with this process.
The p’s satisfy the equations

@
pk+l = E pmpm.kd»l ’
m=1

and therefore if

G(:E) = g Dr®
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then we have

( 8 ) G(:’U) é o g Pm, k+1
= S0 | B (Fae oyt — oy do,0)
=S (1~ —zeen [ aoy0

1

'—--—13
il

0[1 (1 — a) wLJ] [1 —a— a:)e*(’”ﬂ] d@,(z) -

This rather complex equation can be solved quite directly if we sub-
stitute

Glz) = N ayz — 1)*, with a, = 1.
0

The integral becomes
Ea} S [1 —(1—=x)e ("'L’iI(a: — 1)re~ ™D d@(7),

and if we equate coefficients we obtain

@y = a’n—lﬂ(%) ,  where JE’(%) = Sjg—mm dM(7),
so that

(9) 6 = 2 Bi(-p ) -+ (% Jeo — 1y

The functions G(z) may be used to compute the limiting distribution (p)
for any D. However this limiting distribution is not, in itself, appli-
cable to the computation of the average revenues and costs. (p) rep-
resents the limiting distribution of the process which is sampled at
time intervals in which precisely D demands have been made, and there-
fore at times when a new order has just been placed on the books. In
the time between two successive samplings the process will be moving
from state to state, and we have to come to grips with this fluctuation
in order to compute the average time spent in any state. If =, , rep-
resents the average time in S, , of the continuous time process, we
propose to compute

D—1
Tom =5 D) Mo, g
=0

This distribution will be directly applicable to the average costs. The
determination of this distribution will make use of the function G(z).
At a sampled time the process moves into one of the states S, ,. Let
us denote by o, the state S,, , + -+- + S, p-;. During the time in which
the next demands are made, the process moves from o, to o,_;, and so
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forth. We wish to compute the expected length of time spent in &,
Ty v, 0, in one cycle of demands. Let us begin by starting off
the system in state S, , at time 0 and determine the expected length
of time spent in the states o, ---, o, during the time interval (0, ),
where ¢t is a fixed number. We denote the expected length of time in
o, by T ,(¢), for k=10, 1, ---, m. Of course '

STt =t.

The fact that the length of time in o, is a negative exponential dis-
tribution with mean L/k enables us to write the following relation.

D D ) + (1 = 2 )T a8) + o),

for & < m, and this yields

Tm.k(t + a) =

T;n k(t) = %Tm—l.x — %—Tm,k!
for k < m. A simple calculation shows us that
Do nlt) = -;ﬁ-(l —e"™BYy i m >0,

It is easy to see that these equations are satisfied by
t
T i(t) = So("rg)e“(fﬂf-)(l — g En Yk g

and therefore the average length of time spent in state o, during one
cycle is

(10) Gy = S:ST (7}: )e-(euu(l — e ERY-k de 4@ (r) |

1]
The average time in the states ¢, o, -+ i8 given by the average length
of time in each state, for one cycle, assuming that we start off the
cycle with a stationary distribution, divided by the average length of
each cycle. If we denote this set of frequencies by (=), then

Trm DE( Epu nm. .

v=m

Let us define
m(y) = 3 may™
Q9
Then
77(2/) DE(T E E by, my

DE(r)S S [1— (1= e @16 — (1 — yle~@D] dE dO(7) .

If we substitute
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Gly) = E a,(y — 1)

in this expression and simplify, we obtain
oy —
(1) W) = i O

with =(1) = 1. This is the result described in the introduction (equation 2).
It is possible, using these techniques to compute all of the limiting prob-
abilities associated with the inventory process. A simple ecalculation,
which we shall not perform here, permits us to determine

7y} = E o, 4™
]

3. The Finite Model with an Arbitrary Interarrival Distribution and
a Negative Exponential Distribution for the Time Lag

In this section we shall discuss the case in which the inventory on
hand is required to be nonnegative, and determine the average time
spent in the states of the system by a modification of the technique used
in Section 2. Let the inventory policy be defined by the numbers (s, 8)
with D =S — s, and let S = nf) 4+ +, where 0 £ r < D, The number
of shipments on the books is an integer m = (0, 1, ---, n).

Let us sample the system, as before, whenever a new order is placed
on the books. It is important to notice that the lengths of time between
successive samplings are not identieally distributed. More precisely, if
the system is in state m, with m < n, at one sampled time, then the
interval of time until the next order is placed on the books iz an obser-
vation from the distribution @,(r). On the other hand, if the system
is in state n at a sampled time (necessarily the number of items on hand
will be #), it may happen that » demands arrive before a shipment is
delivered. This reduces the number of items on hand to zero. No sales
will be made, even though demands arrive, until a shipment is delivered
to replenish the inventory on hand, and therefore the number of demands
that arrive before the next order is placed may be greater than D.

We may therefore say that if m < n, the transition probability p, .+
is given by

(12) P, k+1 = (?;:)S:@_“HL)(I — GV(T“'J)”L-’C d(:‘].u(f) '

which is the same as equation 7. However if m = n, the following
argument is required. Assume for the moment that the time necessary
for the first » demands to be satisfied is r,. (z, has a distribution @.(:),
an r-fold convolution of @(r).) At the time when the rth demand has
just been satisfied, the number of outstanding shipments is 7, with
probability
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(”)e—(mu)(l i
q

As long as ¢ < n, there will be enough items in current inventory to
satisfy all demands until the next order is placed r,., time units later,
During this later time period the number of shipments on the books
changes from ¢ to k + 1 with probability

(D et — 6 c0y-* do,. ()
)]

Therefore the probability that in one cycle the number of shipments
outstanding changes from = to & 4+ 1 without there being an interven-
ing period with no items on hand is

3 Y er — p(T - q . —(Tk{ - p— (7L -
S e — ey e — eyt a0,

g=k
On the other hand, with probability e~ ¢»*'" no shipments will have been
delivered at time ¢, and therefore there will be no items on hand. The

length of time until the first of the n outstanding shipments is delivered
is a negative exponential with mean L/r, and we let 2 be that random

delivery time

r ‘_ﬁ/"""l
F4 D—r — 1
demands
FIGURE 2

variable which represents the time between delivery of the first out-
standing order and the next demand. If we denote the distribution
function of z by FYz) and its Laplace transform by

Fa) = S:e dF(z),

then it may be shown that
~ ~(n
&) - &(7)

Sl-e()]

(1 T n ) 1- ®(L

Therefore the probability of a transition from n to £+ 1 in one cycle,
there being a period in the cycle with no items on hand, is given by

e-(«rrnu.)(n -,I: I)S“e_(mz.)(l L e~ DYl YF*@,__ )t} .
0

(13) Fa) =
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Adding this expression to the above, 1ntegratmg with respect to the
distribution of r,, and simplifying, we obtain

1) pare = (f)] o0 — eyt o,

~ n
®r+1(_L)

T ??')(33)5: D o (8., — 6,

for k=0,1, -+« , n—1. The reader may verify that

n-—1
Epﬂ.k+l =1.
k=0

Let us denote the stationary distribution for this Markov process by
(i »»+, Pa). Let us define, as we did in the infinite model, &, , to be
the average time spent with %k undelivered shipments during one cycle,
assuming the cycle to start off in state m. If m < n, we may apply
the calculation of the preceding section (equation 10) and obtain

(15) B s = S:S;("}’:)e-f'f“(l — ety -¥ g¢ 4@ (7).

However, if m = n a special argument is required.
Reasoning along those lines used in obtaining p, ,.,, we may obtain an
expression for &,,. It is a rather complex expression, and is of no use

to us directly. However, a fairly elaborate manipulation demonstrates
the following important result:

m

Epm p+1y" ‘+‘ T

IR

y— y—1 £
forallm=1,2, ««.,n (for m=n the term p,, .., 18 understood to he
Zero).

We shall now relate =, the average time spent with m undelivered
orders, to the quantities &, ., and p,. It is clear that r, is equal to the

average time in gtate m per cycle, diviled by the average length of
each cycle. Therefore

"
E| pu&’um
=

average cycle length

(17) T = -

The average cycle length may be determined as follows. With probabili-
ty 1 — p, a eyele will begin with less than » outstanding shipments, and
consequently the average cycle length will be DE(r). On the other hand,
with probability p, a cycle will begin with » outstanding shipments.
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Let r, be the time for the first » demands of the cycle to arrive. With
probability

1 — g O
a shipment will have been delivered before this time, and the expected
cycle length will be z, + (D — r)E(+). With probability

e, miL)

a shipment will not have been delivered and the expected cycle length
will be r, + Lin + E(2) + (D — r — 1)E(r). 1t may be shown, from the
formula given above for the Laplace transform of the distribution of 2z
(equation 13), that

E(z) = _EF L

~fn n
()
Combining this, and integrating out r,, we see that the average cycle
length is

(18) C = DE(r) + pE(z) ®(%) -

- 4(3)

2 Dullym
19 T = R
(19) m o

This enables us to write

We are now able to obtain an explicit expression for the generating
funetion

n(y) = 22wl -
We substitute (19), differentiate, and make use of (16), obtaining

L n—i
(20) (g =7¢ pIY T
k=0
L -1 n
=& DY D Dalayrnr
k=0 m=lI

= %i pmg:[l + (y — 1) 21" dBy(r)

mal

~
. In, @'”(E)
1- (%)

by (14), and therefore

[t + @~ DB d@s, — By
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@) 7= {1+ @ VeI + @ — Dol

~ [(n
®r+1(‘ﬁ)
Lpﬂ L i n I - E_ ~ k
+ C L @(%)E(k)(y - 1) [@D-v(L) — ®D—n-1(.1';)j| .
L
Let us denote the transformation that carries f{y) into
[0+ @ = Dee111 + o — Do dBL)
by Tf. 1f we apply the operator T to the function
k

Gly) = f\;\; afy — 1),

defined in the introduction, we obtain

TG, = G, + a6 Ly — 1.

Therefore the solution of the equation

(22) 7 =T+ (y — 1) 5o by — 1)
1=

iz given by

(23) ﬁ:—i 2

(')

In our case

b = Lpa é”‘(%) I:é (f‘,,fj,)_é (—k—-—}_—l):l( " )
T C “ﬂ L TNTL I Nk+1/7

1- &%

for k¥ < n — 1, and zero otherwise. Therefore, after some simplification,

we obtain
ér+1(2) nx(k+1) "(y)[ (kzl):]

TUIe()F wen(EEL)

It remains only to determine the value of the constant p,, and this is
obtained by virtue of the fact that »'(1) = L/C (see equation 20). There-

fore
6(2) (311 -85

1-5(7)5 el (Bp)

(24) =

1
p

If we recall that
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5.(2)

C = DE(r) + p,E(7) —

o)
() 1)

TR o)
()=
)

we see that

(25) 7'(y) =

1+D§ o +(

If D =1, and consequently » = 0, this reduces to

n
w5 ii(a—]i)G*-“”

(26) m'y) = 9
’ . (i)

k=0 Qg

4, A Determination of Certain Averages

A very important figure of merit associated with any inventory policy
is the average number of sales per unit time, which we denote by R.
As we shall show, E is related to the average number of items on the
books (this latter quantity is equal to Dz'(1)) in the following way: R
= Dz'(1)/L. Since ='(1) = L{C, this is equivalent to R = D/C. This
latter equation is correct, since D is the number of sales per cycle and
C the average length of a cycle. The fraction of all demands which
are not satisfied is

1— E@R = !

AN

a; ®r+1( k E 1 )

Another measure of the merit of an inventory policy is the average
inventory on hand. For example, the average cost per unit time due
to a holding cost which is proportional to the amount of inventory on
hand, per unit time, is equal to the proportionality constant times the
average inventory on hand. If the inventory on hand iz z, then =
=8 —mD —j, and E(z) =S — Dr'(1}) — E(j). We shall evaluate E(j)
by examining the time spent in any state =0, 1, ««+, D — 1, during
a given cycle. If j# r, then the average time in j is E(z). Therefore
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(D — 1)E(r) + average time in r = average cycle length =C. If we
divide by the length of the cycle, we see that frequency of time spent
in any state other than » is given by E(r)/C and the frequency in state
r is

1—(D—1)Eg) .
Therefore
EG) = r + BOE 252 - 7],
and

E(a:):S—LR——r+E(r)R|: —!%]

Another important figure of merit, especially if set-up costs are in-
volved, is the frequency of ordering, which is clearly given by R/D.

We shall now present some computations of these figures of merit
under the assumption that demands arrive according to a Poisson process
with mean g per unit time. If we define R’ = R/y, i.e., the average
fraction of incoming demands which are actually satisfied, then it may
be shown that as a consequence of the Poisson assumption, both R’ and
E(x) are functions of pL, which we shall denote by «.

In the following computations we assume that a = 30.

S = 40
2 R E(=)
0 .57 11.7
10 .58 9.9
20 72 11.6
30 .83 11.2

S = 60
] R Ez)
0 .67 20.3
10 70 18.9
20 72 18.8
30 .84 22.5
40 .91 23.9
45 .95 24.9

S=280
s R’ E(z)
0 .73 29.4
10 .76 28.4
20 .79 28.6
30 .82 30.0
40 .9 35.0
50 .94 36.9
60 .99 41.1
70 .99 45.6
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& =100

] R Fix)
0 77 38.8
10 .81 38.0
20 .84 38.6
30 .86 40.3
40 .88 42.8
50 .64 48.5
60 .97 51.4
70 .99 55.8
20 .69 60.6

Let us consider a problem in which it is required to satisfy 95 per
cent of the sales, and keep the average inventory below 40. If the
ordering cost is concave, we would like to maximize D, the size of each
individual order. F¥rom an examination of these computations we see
that (60, 45) and (80, 50) satisfy the constraints, and that (80, 50) is
preferable to (60, 45) on the ground that it yields a larger value of D.
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