17

INVENTORY MODELS
AND RELATED STOCHASTIC PROCESSES

SAMUEL KARLIN
HERBERT SCARF

i. Introduction

As several of the chapters in this book indicate, the discussion of
inventory and production models gives rise to a number of stochastic
processes of a complex character. In this chapter we shall discuss some
additional questions connected to the two processes introduced by Scarf
[5]. The relevance of these processes to inventory theory is elaborated in
the introduction to Chapter 16, and will not be described in any detail in
this chapter. The first of these processes may be viewed as a queue
with an infinite number of servers, or a type Il counter problem. The
second process may be interpreted as a queue with N servers in which
customers depart if all of the servers are busy [5]. In this chapter we
shall describe some of the known results about processes of this sort,
and demonstrate several new results. It should be mentioned that the
interpretation in terms of inventory theory focuses attention on some
novel aspects of these stochastie processes.

One physical situation which differs somewhat from those described
in Chapter 16, to which the model is applicable, is as follows: We
imagine a central mail order house which receives orders from a number
of sources. The time interval between successive orders is assumed to
be a random variable with a known distribution ¥. Each order re-
quires a random length of time to fill (referred to as the lag) which we
assume to be gample observations based on a known distribution 2. All
orders originate independently and are handled independently.

One quantity of interest is the number N, of unfilled orders at a
given moment of time #, where initially the state of the system (num-
ber of unfilled orders) is zero. A second problem is the stationary
analog ‘of the first problem, namely, to determine the distribution of the
number of unfilled orders N* at the present time, given that the proc-
ess has been going on infinitely long in the past. The distribution
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theory related to these variables can be obtained as an application of
general theory concerned with the shot effect, developed by Takécs (6],
[7]. Our contribution in this case is to highlight the relevance of these
ideas to the study of inventory models. This is the principal subject
matter of Section 2. In particular, if d¥* = pe-*"d¢f, which means that
orders in time constitute a Poisson process, the distribution of N, is
Poisson with parameter

pwj—n@n@.

In Section 3 we shall introduce a new stochastic quantity whieh in
the language of queueing theory represents the time necessary for all
of the servers to finish their current work. A functional equation is
obtained for the distribution of this random variable, which is solved
completely when customers (orders) arrive according to a Poisson proc-
ess, and which may be analyzed quite readily for other special cases
(¥ = gamma distribution of integral order). For the Poisson process,
the stationary distribution function of this maximum is given by

—~a T ey
Plo € g} = ¢ #Y0oMe

In Section 4 this stochastic quantity is generalized so that instead of
rime necessary for service on all outstanding orders to be completed,
we determine the distribution of the time necessary for all outstanding
orders but one or two, ete., to be filled.

Section 5 is devoted to a study of a modified version of the model
discussed in preceding sections of this chapter. We assume that only
limited facilities for service are available, so that whenever N orders
are being served, all additional orders are refused. This modification of
the model examined in Seection 2 cannot be treated by the methods of
Taksaes. The problem was solved for an arbitrary interarrival distribu-
tion and a negative exponential service rate by Scarf (see also [8]). In
this chapter we investigate the case where the input process is Poisson
and the service distribution is general. The infinitesimal character of a
Doisson process is exploited in order to derive partial differential equa-
tions satisfied by the distribution of random variables analogous to those
slddied in sections 3 and 4. [t 1s then shown (assuming a continuous
service distribution) that the limiting distribution of N* is a truncated
Poisson. A special case of this result was treated in (3] (see also [8]).

Sume resuits are appended at the close of the chapter discussing the
cirecumstances in which the parameters of the Poisson process depend on ¢,

2. The Distribution of the Number of Qutstanding Orders for General
Input and Service Distributions

In this section we shall apply the method developed by Takées in [6]
to a generalization of one of the inventory models discussed by Scarf
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[65]. The reader is referred to [5] for a full discussion of this model,
which may be summarized as follows. Demands for an item arrive
singly with an interarrival distribution given by ®(t). Every time that
D items are sold out of current inventory, a shipment of D more is
requested, and this shipment is delivered with a time lag whose dis-
tribution is £(4). If we assume that the process begins with S items
in current inventory and 0 items which have been requested but not
delivered, then at any future date the sum of the items in current in-
ventory plus the items requested will lie between S — D + 1 and S.

Two different models arise, depending on how we treat the situation,
of a demand arriving when no current inventory is available. In this
section we shall assume that such demands may be satisfied by sub-
sequent deliveries. This permits the number of items in current inven-
tory to be negative.

Let w(¢) represent the number of shipments requested but not yet
delivered at time ¢. This may be represented as follows. Define
1 0=2v—wu

0 otherwise .

(1) f(u,»u):{

Then if 7, rs -++ represent successive sums of independent observations
from W(r) (the D-fold convolution of @(r)), and A, 4, --- represent
independent observations from Q(1):

(2) w(t)=2ﬂt-"fmﬂn)-

T8t

For any y, define =(y;¢t) = E(y*®). This is, of course, the generat-
ing function for the number of undelivered orders at time ¢. We shall
obtain an integral equation for this function. Let us examine w(f)

under the condition that =, = r. Then under this condition
f(t“‘fsil)'f'@(t—f) [/

3 w(t ={

(3) () 0 r>t,

where w is independent of f({ — r; 4) and has the same distribution as

w. . Therefore
a(y it — DEy ™ <t
4 E(y*¥lr, = 1) =
(4) Wl =) = {] L
This may be simpufied to
a(y it — {QE — ) +y -yt —7) <t
(5) {1 { Poor
r>t.

We obtain n(y, t) by integrating r with respect to its distribution ¥{(r).
Therefore

(6) ny ) =1 ¥ + |#wit — Dy — D1 — A~ 9]+ 1} ¥,
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If we expand =(y, £) as a power series in y about the point 1,

(7) "W, 1) = Datie - 1",
then the factorial moments a,(¢) satisfy the equations
(8) af(t) =1,
a(t) = S;an(t — B dv() + S:an_,(t — 1 — Ot — )] d¥() .

This set of equations may be expressed very simply in terms of the
renewal quantity M(r) based on the distribution ¥(z), i.e.,

(9) M(r) = S0

where W(r) represents the n-fold convolution of the distribution ¥(r).
We have, solving the Volterra equation (8) by the standard method,

(10) aft) = 1,
%m:{ﬁmu—ﬂu—nw—ame.

These equations furnish a recursive procedure for computing the fac-
torial moments, and hence the distribution of the number of shipments
requested but not yet delivered at time ¢.

Let us, as a first example, apply these equations to the case where
¥(r) =1 — e, i.e., requests for shipments are a Poisson process. Then
M(z) = ur, and

4
0

(11) a(t) = uS Goor(t — D)1 — Ot — )] dr

- uS:an-l(E)[l — ()] de,

and hence
a(t) = uay, ()1 — )] .
Therefore
(12) —%gﬁl=My—nu—nmhmw,
and
(13) oy, 8) = exp {utw — D[ 11 - 02},

which is the generating function of a Poisson distribution with mean
3
uf11 - aena.
1

7(y, ») is the generating function of a Poisson distribution with mean
uly(4).
As a second example, let us apply the above equations to the case in
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which 2(4) =1 — ¢"¥™, i.e.,, a negative exponential distribution for de-
livery time. This is the untruncated version of the problem treated by
Scarf [5]. The equations become

a(t) =1,
a,(t) = S:a,,_l(t — r)e~me'™ dM(r) .

If we denote the Laplace transform of the function a,(t) by a.(s), and
the Laplace transform of the measure M(¢) by Mf(s), then these equa-
tions become

afs) = L,
L)

and therefore

(14) 8.(8) = __1_n;r4(3) M(s 4 n; 1)‘

Now we know that
t,(o0) = lim sd.(8)
20

(in this case the conditions for the application of the appropriate
Abelian theorem are easily justified). so that

ﬂ-—l

An(o0) = — H M( )hm sSne"‘dM(t) :
But
sleravey

1i‘r§035 o+ dM(t) = lim - Su v S:;d\ﬁ(i)

L

— U
D
where » is the average number of demands per unit time.
_ M (_3)
a,{co) =D EM "
As a third example let us apply these techniques to the case in which

the time lag is a constant 4. We shall show that if ¥ is not a lattice
distribution, then

Therefore

—\Vn-w =
1 #5[1 1de n =0

lim mo(t) = ¢
I—+oo __;TS [\p(n—-]) —_ 2\1]'(7!) + \Ir(ﬂ-l-l)]d& n > O ,
0
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where m,(t) represents the probability of n undelivered orders at time &¢.
Let us begin by computing the factorial moments a,(¢), by means of
equations (10). If ¢ < i, we see that

a(t) = S;a,.,l(t — D dM()

so that
a.(t) = M™(3) ,
the n-fold convolution of M{(¢). On the other hand, for ¢ > 1, we have
a (t) = 5 st — 7) dM(7)
=M
- S MAD(t — 2) dM(z) = SDM""”(E) dM(t — €) .

E=A A

If we integrate this by parts, we obtain, for ¢z > 2,

@(t) = M) {M(t) — Mt — 4)} + S:{M(t — &) - M(t)} dM™-D(§) .

We now apply a theorem of Blackwell and Doob ([1], [2]) which implies
that if W is not a lattice distribution, then

lim {M(t) - M(t ~ &)} =

= |m

Therefore, if ¥ is not a lattice distribution,

lima,(t) = M("-l)(,z)i - S'\g dME-1(g)
{0 # a

&=~

1Py e 10
= _.S Mo de = “S Gooil8) dE .
p o o

In order to obtain lim r,(¢), we examine the generating function a(y, t).
t—rom
We have

timy, ) =1+ @71 50— 1p{a@ e

{—o 0

=1+ =D o e
P
Therefore
rfo0) =1 — lg‘me) d
7 Jo
and

o) = —I-S'[nn_l(.s) — n(&)]dE for >0,
F Q

Since it i3 clear that m,(§) = ¥®*D(¢) — ¥™(&) for &< 1, the above
result follows.
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3. The Maximum Time for Service to be Completed

In this section we shall discuss another quantity assoclated with the
process deseribed in Section 2. We define the random variable m(¢) to
be the time necessary for all of the shipments outstanding at time ¢ to
be delivered where initially there were no unfilled orders. In the nota-
tion of Section 2, we may write
(15) m(t) = max {4, —(t — ), 0} .

Let us define, for any ¢, F{y, t) to be the distribution function cor-
responding to m(t). This is in contrast to Section 2, in which a generat-
ing function rather than a distribution function was discussed. We
shall obtain an integral equation for thiz function. Let us examine

m(t) under the condition that -, = . Then under this condition
max {m(t — 1), 4 — (¢t — 1)} r<¢

16 t :{ |

(16) m(t) =1, o

where #m is independent of 2, and has the same distribution as m.
Therefore

prob{m(t)gyh]:l_}:{F(y,t—r)ﬂ(y+t~r) Tt

1 vt
and if we integrate out the condition, we obtain
(17) Fly, t)y=1—¥() + S Fly, t — o)y + t — =) dW(r) .
n

It is to be noticed that generally there will be a non-zero probahility
that no shipments are outstanding at time ¢£. This reflects itself in the
fact that F(0, t) > 0, in most cases.

With relatively general assumptions on the functions £ and ¥, this
equation may be solved by substituting a power series in ¢ for F(y, ¢)
and equating coefficients. We shall not discuss this method in detail.
Successive approximations may also be employed in order to obtain
numerical evaluations of (17). Let us instead examine the above equa-
tion in the special case in which the time between successive requests
for shipments is given by a negative exponential distribution. In other
words, W(z) =1 —e*. Then

(18) Fly, ty=e* +u SF(y, t— Dy + b — e dr .
0
Making the substitution ¢ — r = £, this becomes
t
Fly. t) = e + “S Fly, )y + le~'er di .
1]

This shows us that F(y, t) is differentiable in ¢, and we may write



326 RELATED STOCHASTIC PROCESSES

(19) WD — a1 - o + 018w 0.
Using the initial condition F(y, 0) = 1, we obtain
(20) Fly, ) = exp (—ugw[l - (&) ds) :

If the distribution of the time between successive requests for shipments
is a member of the I' family of distributions, then a procedure similar
to the one above will give us an ordinary linear differential equation
for F(y, t), but of higher order than the first. Indeed, suppose
ave) = YT g k=1
= .t l‘('ic) . (k=1).
The integral equation (17) becomes
k 13
(21) Ry, 1) = Pyt) + 1%55 Fly, 0y + Xt — &)t dt
0
where
® g kEk=l,=uf
Bt ;emg urEeT
«t) e Tk) a
is a polynomial of degree k¥ — 1. Differentiation of (21) % times and
then cancellation of the common factor ¢+ yields

oK k o1 g k) e
22 o LA 2 08 L.
(22) e +(1)u ftE-? +(2u gEe-t v

k\ . 8 'F k
+ (%‘)u‘ "W— + .. + (k)utF = Q(y —I- t)F .
The initial data are obtained after each successive differentiation of (21)
by setting £ = 0. We obtain F(y, 0)=1 and

a8F FF R

(23) E(U: 0) = ’"a’i?(yr 0)=---= MBF-‘T(% 0)=0.

For general Q, it is very difficult to explicitly solve (22) for F. If
E=2and Q(y +¢t)=1— e (lag is an exponential distribution)},
then the solution of (22) may be represented as a combination of hyper-
geometric functions. For an arbitrary %, the representation of the
golution can be expressed in terms of generalized hypergeometric fune-
tions. One particular case of importance is where

1 w>a

Q{(u)z{() u<a.

This is the physical circumstance where the lag in delivery is of fixed
length a. Of course, for this case F(y, t) = 1 for ¥y = @ and consequent-
ly (v, t) need be evaluated only for the range y < a. In this situation,
(22) reduces to the pair of equations
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BPF | (k) 0F 2
(24) EF+(JWEFT+ +u“@ J 2L puwr=0
yv+i<a
FF | (k) #F oF
(25) ”E‘+G%%WI+ "“@ J———O y+tza.

Inspection of (21) will uncover the fact that
k-1
Fly, t), -+, St

ott~!
are all continuous for y + ¢t = a. From (21), we deduce directly that
e kek-le—uf
26 ,t:Si___ f .
(26) Flg )=\ - 0 dé fory-+t<ao

Turning to the range y + t = @, we observe that the algebraic charac-
teristic equation associated with (25) is

(27) (¢ +uf —u*=0.
If w denotes a primitive kth root of unity, then the solutions of (27)
are all distinet and are indeed

(28) &, = —u + Uw r=20,1,2, ¢+, k—1.

The general solution of (25) may now be explicitly constructed from
knowledge of the roots «,. In faet,

ck-1
(29) Fy,ty=3 Aer fory+itza,
=0
where A, represents arbitrary constants. These constants are to be
determined so that
8F gr-1F

YT Ty '"'matk_l

ot

are all continuous for t =a — y (¥ £ @). These conditions translate into
the system of linear equations

where [=0,1,2, .-+, k — 1, from which the constants 4, are uniquely
determined since the matrix of the coefficients is the familiar Vander-
monde matrix with «, distinet. For the special case k& = 2, we have
in particular

a—y

(1 + wt)e y+i<a
|:1 + (u _ —1;:)((1. _ y)] uga-wy u'(a 5 -y Pt (2=y) -2

y+tzaand vy < a
1 yza,

(31) Fy, t) =
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4. Extensions

We shall now introduce a stochastic quantity which is somewhat
more complex than the time necessary for all outstanding shipments to
be delivered. Let us designate the random variable m(t) by m?). Let
m,(t) represent the time necessary for all outstanding orders but one
to be delivered, and in the same way m,(¢) is the random variable

e Ry mo(t]

|
|
{
|
Aal |
Az [
|
A . }
3 mt(t)
1
(t)
\ \ mylt
0
T T2 T3 Tyt
FIGURE 1

which represents the time for all of the outstanding shipments but k% to
be delivered. Of course, if there are = outstanding shipments at time
t, the variables m(¢) will be zero for kX =»n. All the random variables
m,(t) are defined with m(0) == 0. Fig. 1 will clarify these definitions.

Let Fz, +--, ., t) be the joint distribution of myz), ---, mlt).
We shall use an argument similar to that given above, to obtain an
integral equation for this quantity.

In order to simplify the exposition, let us begin with the case £ = 1.
Let us examine (m(t), m(t)) under the condition r, =r. If r > ¢, then
(mdt), m(2)) = (0,0). On the other hand, if r < ¢, then (my(2), mi(t))
is equal to the highest two of the three quantities 4, — (¢ — ), m{t — 1),
m, (t — ), arranged in descending order. As before, 4, is independent
of (mft — ), m(t — r)) and this latter couple has the same distribution
as its unbarred counterpart, at time ¢ —r. We wish to obtain an ex-
pression for

prob {m(t) £ =, m(t) £ = |7, =7} .
We shall only consider z, = z,, If r > ¢, then this probability is equal
to 1. For the case in which + < ¢, let us examine this expression undet
three different assumptions.
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1- 21—({;—1‘))’30.

This case is incompatible with m(t) < z,.

2. g =2A—(t—1) >z

Under this condition, in order to have my(f) = z, and m(¢) = z,, we
cannot have my(t — r) = z,. For if this were true, we should have

myt) = min {4 — (t — 1), m(t — 7)} > ;.
Hence we must have m(t — #) < z,, which implies that m(t) = m(t — ).
It follows that under this condition, the above probability is equal to
prob {m(t — r) < &}, which is equal to Fi(x;; ¢ — 7).

3. xlgll—(t_f).

It is easy to see that under this condition, a necessary and sufficient
condition that mJ¢t) <, and m(f) < is that m(t —r) <2, and
m(t — t) < «. Hence the above probability is equal to Fi(z, =,;t — 7).

Combining these conditions we see that
prob {mt) £ @, m(t) £ o, | 7, = 7}
Fa i (t — oz, + ¢ — ) — Uz, + ¢ — 7)]
= + Fx, @it —o) o, +E—2) =<t
1 >t
If we integrate with respect to the distribution of r, we obtain
(32) Fl(xm Ly t) =1- \I’(t)

+S;F[,(xl Dt — Ol + ¢ — 1) — Azt £ — ) dW(E)

+S:Fx(mos &t — T)Q(xl +t— 7-') d‘I’(ﬁ) .

This is an integral equation for F; which may be solved if we know F,
The same argument may be applied for any value of %, and the fol-

lowing integral equation is obtained.

(33) Fk(mm ey Ty t) =1- \F(t)

k-1

+JE_USOF1:-1($U, rrey Ty QSJ_H, s, @y ;t _ ‘t‘)
x [z, + ¢ — 1) — Qp0; + ¢ — )] d¥(7)
* SF"(E‘“ oo, Zy st — o), +E—1)d¥(r), for k= 1.

1)

Let us examine these equations in the special case in which ¥(r)
=1—¢"*. We obtain

(34) _Qf_t(‘fp_-_é_ti"_x_ti_t_)_ + ull — Oz, + L F oy *+ 0 24 L)

k-1

= uEFx—x(mm ey Eyay Ly ey Wy f5)[“(-“"'-7,1 +£) — 'Q(mjﬂ + )],
j=0

which may be solved recursively.
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These equations furnish an alternative procedure for eomputing the
probability distribution of the number of shipments not yet delivered
at time ¢ If we denote by p.(t) the probability that the number of
outstanding shipments at time ¢ is less than or equal to k, then clearly
D) = Fy(co, «+«, 00, 0; ¢), and therefore

(35) pe(2) + u[l — Qo) = +ull — QUE)]pe-A£) .
The solution of this system of equations yields the partial sums of the
exponential series

X ar
nlt) = QHGE—'
el Pl

with parameter

a= uS' [1— Q&) de .

5. Truncated Model with Poisson Input

This is the same model as discussed in Section 2 with the modification
that whenever the state of the process (number of unfilled orders)
reaches N, then all subsequent demands are turned away until the
process falls back to the state N — 1. We assume that the demands
occur singly and arise as a Poisson process with parameter 4. Again,
we shall analyze for this truncated variant of the model the random
variables my(t), mi(t), - ++, mp(t) introduced in Section 4. The reader
should observe that m(f) (¢ = N+ 1) is not defined for the truncated
model, since at most N orders can be unfilled at any given moment in
time. The methods employed in deriving equations (17) and (33) are
not immediately applicable in the present context. Instead of pursuing
an approach generalizing equation (34) when the input is Poisson, it
appears simpler to propose a method of analysis which exploits in a direct
way the properties of the Poisson input. Let g¢u.(f) be the probability
that the state of the process (number of unfilled orders) at time ¢ is
smaller than N. Let

Fi(z; t) = Pry{m(t) < 2} ,

where the superseript N is inserted to emphasize the level of truncation.

We shall assume in what follows that Q(«x) is a continuous function
of z. Some remarks on the situation where Q(z) may have jumps will
be given later.

By the standard infinitesimal arguments valid for the case of Poisson
input we show that Fi(x;t) satisfies a first order partial differential
equation. This is accomplished by considering what can happen during
the interval of time (f, ¢t + &) with & sufficiently small. If Fj(x;t) has
continuous partial derivatives, then it follows that
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(38)  Fl(zmt+ k) = (1 — AIF{(2 + ki t) + thgh(H)Uz)F¥(z; t)
+ A1 — gENF(z; &) + o(h) .

Indeed, the lefthand side of F'}(x;t + &) is equal to Pr {mft + k) < x}
by definition. We investigate now the meaning of the terms of the
righthand side of equation (36). The event my(t + k) < = can result in
two ways. At time £, m(t) <2+ % and no demand occurred during
the time interval (¢, ¢ 4 k). The first term of the righthand side is the
probability of such a contingency. On the other hand, if a demand
arises in the time interval (¢, ¢ + &) (prob ~ %), then this demand can
affect the possible values of m(t) only if the state of the process is
less than N. If this is the case, then myt + k) <=z if and only if
max (¥, my(t)) < « + h, wheré y is an observation from the distribution
Qy). The second term of (36) is the probability of this event to within
an order of magnitude o(#). The third term corresponds to the circum-
stance when a demand occurs but the state of the system is N and
therefore this demand is to be disregarded.
Dividing by & and letting » approach zero, we obtain

OFi(z; 8) _ OF5(=; t)

37
(37) ot oxr

— gMtAF (@ )1 — Q(@)] , Fif(a; 0) =1

(x> 0).
The fact that F{(x;t) possess continuous partial derivatives may be
seen as follows. First consider the event that m pulses have occurred
‘in time ¢ according to the Poisson input. The conditional distributions
of the locations £ in the interval [0, ¢] of the m events of a Poisson
process are known to be beta distributions. We associate m observations
v based on Qfz) with these events. In terms of 3, one can compute
the conditional F(z;¢), and it is readily seen that this distribution
function has a continuous partial derivative with respect to z. This
can be done for any m and since the convergence is uniform the
existence of @F{(x;t)/6x is secured. A direct argument on (36) then
establishes the existence of

OF(x; t)
at
The solution of (37) following standard procedures is obtained as
(38) FXz;t)=e R FARCTY CETRE S SR )

We prove now that lim ¢,(¢) exists. This is the substance of the
taron
following two lemmas.

LEMMA A. lim So ot — 1 — QE)ldE  ezists .

[l )

ProoF. Let the random variable A, represent the duration of time
starting with zero for which all servers are free. Let B, represent the
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subsequent time interval for which at least one server is busy. A4, is
defined as the following idle time (no servers are busy)and B, the next
busy period. The random variables A, and B, are constructed analogously.
Because of the character of the Poisson input the chance variables A,
are independent observations with a common exponential distribution.
The B, are likewise independent identically distributed random variables
which are also independent of A,.

A time value ¢ is said to be covered by A if ¢ falls in one of the A
intervals. Invoking a result of renewal processes, we obtain

. . _ EA)
(39) lzl_.rE Pr {t is covered by A} = WB)
(see [4], p. 292), where E{A) and E(B) are the average values of 4,
and B, respectively. From its interpretation the probability that ¢ is
covered by A is precisely F(0,¢). Hence the conclusion of the lemma
follows on comparing (38) and (39).

Our next lemma is an application of the classical Wiener Tauberian
theorem.

LEMMA B. lim q.(t) ewxists.

[l ]

ProoF. It is easy to verify, since ((¢) is continuous, that 1 — Q(¢)
is integrable (because {£d§)(€) < «) and possesses a Fourier transform
which vanishes nowhere. Next we show that g,(?) is a slowly decreasing
funection, i.e.,

H_rn gt + h) — qt}] = 0.

A0

Recall that gt + h) is the probability that at time ¢ + 2 fewer than
N servers are busy. The usual infinitesimal arguments show that
gkt + h) =2 g(tN1 — 2R) .
Clearly,
gt + k) — gdt) = —Ahgot) = — 2R,

and we deduce that g¢u(¢) is slowly decreasing. In view of Lemma A
and the Wiener theorem, the assertion of Lemma B is established [9].

Applying Lemma B and a simple Abelian theorem, we obtain the
limit result

Ny § e 1 t
(40) lim Fl(z t) = Fig) = ¢ ° ot ~0®k
where ¢" = lim g¢u?).

L=

Let s, =22, =22, = - 22,=0. Then
(41) Fl(ay, 2y, » o0y @ t) = Pry{mylt) < @, mt) = @y =00y mM(t) S @}
for & < N, where the symbol N again means that we are considering
the mode! truncated as described above. Similar to (37) we may derive
a partial differential equation which F} must satisfy. A calculation
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yields

aFy t oF)

2 L= X r &y 2ty By
(42) ot § 7z, (20, @, Z; b)
k-1
OO ) By sy -+ 203 DE,) = 2]
- QN(t)’]Ff(xm Ty oy Ty t)[l - ﬂ(zk)}’ fOI‘ k ; 1s

with

Fioy 2y, o002 0)=1.
Equations (37) and (42) may be solved recursively by means of the
recognized methods of the theory of first order linear partial differen-

tial equations. To describe the form of the distribution, we record the
result for the case k = 1 (see also (38) for the case &k = 0), viz.:

F¥(x,, 2,3 £) = e~ S;‘j"”x Opt+ay —0 -~ 0Dk

x [14 4] autt + 7 — ot — @ + 6 — 0 &].

1
The remaining Fi' may be obtained similarly. One can prove by solving
(42) explicitly and citing the consequence of Lemma B that

lim F;N(xn Ty **, Ty t)

[—sce

converges to F(x, @, +-+,«,). This last stationary distribution may be

computed directly by recursively solving the equation
LY 0

2

2 By w0,
& o, (0, ) &)

k=1

= _‘quFf—I(mo, ey Tygy Lpegs * "y :.E,,)[Q(x_,) — oxy,1)]

J=0
+ @AF (@, @1y + -+, @)1 — Q)]
We shall now utilize the result of (42) to deduce the form of the
limiting distribution of the probabilities

P = lim p,(2)

where p,(t) is the probability that the number of busy servers at time
t does not exceed r,

Let oy, =2, = +++ = 2,_, = o (i.e., let 2, — oo, then let z, — o, ete.,
in (42)) and set Gz, t) = F¥(co, 00, 00, +++,00,2;¢t). It follows from
(42) that

(43) -"—a";— = 24 (5 8) + gu(E)Goi(z DL — OU2)]

_ — qu{tNG(z; 1 — Q)] .
If t - co, (48) regults in the expression

44 0= % GHz) + "G (=)[1 — O@)] — ACH)1 — =) ,
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where
G¥x) = lim G (x; ¢) .

Solving equations (44) and successively setting x = 0 shows that

p, = (F(0) is a finite exponential polynomial
o3 d
ey b
=t !
with

@ = Rq”g:[l — Q(E)] dt .

This can also be seen on comparing (44) and (35). The constant ¢* may
be determined by the normalization requirement that G3(0) =1, This
proves that the limiting distributions for the state (number of busy
servers) of the process is a truncated Poisson distribution [8]. '

The result substantiates an old conjecture concerning the number of
busy telephone lines, The special case where (2 is an exponential distribu-
tion was originally analyzed by Erlang [3]. It was stated by Takacs
in 1957 [8] that it is widely believed that the limiting distribution of
the probabilities of the number of busy servers for a Poisson input is
a truncated Poisson distribution depending only on the mean of Q(z)
and in all other respects independent of the form of Q(z). Takacs
further claims that there does not seem to exist in the literature a proof
of this fact. As a corollary of our study of the distributions F) we
have verified this conjecture in the circumstance where () is con-
tinuous and otherwise arbitrary. Actually, if the above proof is
examined, it may be seen to apply to the more general case in which
Q is a non-lattice distribution. It seems extremely intuitive that the
gsame result holds with Q(z) an arbitrary distribution, and this could
probably be proved by approximating {}{x) by continuous distributions.
A rigorous proof of this limiting analysis has not been carried out.

6. Poisson Input Varying with Time

We consider again the model (with no truncation) discussed in Sections
2. 3, and 4, such that pulses arrive according to a Poisson process with
parameter i(f), a continuous positive function of time. The service time
distribution is £2(z), which we assume initially to be a continuous function
of . The practical applications to inventory analysis in allowing A(t)
to vary with time are clear.

We introduce, for ¢y =X &, 2 &, = +++ 2 Xy,

Fiywy, @, 2y v 00y T t) = Primit) = =, m(t) = @,y 00, ma(t) S @}

for k=0,1, 2, .-+, where the m,(¢) have the same meaning as previous-
ly. Since the input process is Poisson, we find that
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aF, X 6F
4 LI £
T

+ J'(t)g Fk-l(xﬂr ety Lyogy Typry 2y Ty t)[ﬂ(x_,) - Q(ZJ+;)]

J=0
—AEVF Ly Zyy o0 oy 243 )1 — Ux,)] for k=0
with '
Flzp @, +++,2;0)=1 and F., =0,
The reader may observe that (45) is identical to (42) with i(t) replacing
igdt). We may solve for F, recursively, which yields

2+ ataee-pr-acned
¥

46)  Fmt)=o"
iz, 2 t) =e = {5Fmac s -bo-obnt
x [1 + S::+‘A(t + 2 — 6){9(930 — o + E) — Q(E)} dE] . ete.

If i(t), a8 ¢ tends to o, converges to A > 0, then a simple direct Abelian
argument shows that the limit distribution for the number of busy
servers is a Poisson distribution with parameter ip where

p= S:vdﬂ(v) .

In this case we can show that the limit distribution is Poisson even
if {z) is not continuous. Indeed, consider three service distributions
obeying the inequalities Q'(z) < Q(z) < Q¥x) where QYz) and Q¥x) are
continuous, and let the input process be the same Poisson process with
parameter i(¢). It iz very easy to see that

Fuzg, @y, o+, 20 t) S Fu(@o, @4y +- -, 23 8) S Py, @, « 00, 203 8) .
In particular

o AT ol -x§n-okon

<lim F(0,t) sTim F0,t)<e

t—on t—e

Letting Q'¢) and Q%¢) approach Q(¢), we deduce that
lim Fy0,t) = e,
where

p={T01-nEna.
An extension of this argument gives

lim Fifeo, 00, ve, o0, 0;8) = {1 + (u) + - + &2V,

L=

and we conelude that the limit distribution of the number of busy
servers is Poisson with parameter ip.

If At} does not converge, then it is easy to construct examples such
that Fi(0, t) does not converge even if A(¢) is almost periodiec.
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